Compare commits

...

59 Commits
v0.9 ... master

Author SHA1 Message Date
9eb0e28bcb [meanas.fdtd.misc] add basic pulse and beam shapes 2025-03-12 23:40:00 -07:00
c858b20d47 Bump numpy dependency to >=2.0 2025-03-12 23:19:20 -07:00
777ecbc024 [fdfd.solvers.generic] add option to pass a guess solution 2025-02-05 00:13:46 -08:00
c4f8749941 [fdfd.solvers.generic] report residual scaled to b 2025-02-05 00:09:25 -08:00
cd5cc9eb83 [fdfd.eme] Add basic (WIP) eignmode expansion functionality 2025-01-28 22:07:19 -08:00
99e8d32eb1 [waveguide_cyl] frequency should be real 2025-01-28 22:06:32 -08:00
1cb0cb2e4f [fdfd.waveguide_cyl] Improve documentation and add auxiliary functions (e.g. exy2exyz) 2025-01-28 21:59:59 -08:00
234e8d7ac3 delete h version of operator in comment 2025-01-28 19:55:09 -08:00
83f4d87ad8 [fdfd.waveguide*] misc fixes 2025-01-28 19:54:48 -08:00
1987ee473a improve type annotations 2025-01-28 19:54:13 -08:00
4afc6cf62e cleanup latex 2025-01-14 22:34:52 -08:00
53d5812b4a [waveguide_2d] Remove \gamma from docs in favor of just using \beta 2025-01-14 22:34:35 -08:00
651e255704 add derivation for exy2e() 2025-01-14 22:15:18 -08:00
71c2bbfada Add linear_wavenumbers() for calculating 1/distance wavenumbers 2025-01-14 22:02:43 -08:00
6a56921c12 Return angular wavenumbers, and remove r0 arg (leaving only rmin) 2025-01-14 22:02:19 -08:00
006833acf2 add logger 2025-01-14 22:01:29 -08:00
155f30068f add inner_product() and use it for energy calculation 2025-01-14 22:01:10 -08:00
7987dc796f mode numbers may be any sequence 2025-01-14 22:00:21 -08:00
829007c672 Only keep the real part of the energy 2025-01-14 22:00:08 -08:00
659566750f update for new gridlock syntax 2025-01-14 21:59:46 -08:00
76701f593c Check overlap only on forward-propagating part of mode 2025-01-14 21:59:37 -08:00
4e3a163522 indentation & style 2025-01-14 21:59:12 -08:00
50f92e1cc8 [vectorization] add nvdim arg allowing unvec() on 2D fields 2025-01-14 21:58:46 -08:00
b3c2fd391b [waveguide_2d] Return modes sorted by wavenumber (descending) 2025-01-14 21:57:54 -08:00
c543868c0b check for sign=0 case 2025-01-14 21:51:32 -08:00
e54735d9c6 Fix cylindrical waveguide module
- Properly account for rmin vs r0
- Change return values to match waveguide_2d
- Change operator definition to look more like waveguide_2d

remaining TODO:
- Fix docs
- Further consolidate operators vs waveguide_2d
- Figure out E/H field conversions
2025-01-07 00:10:15 -08:00
4f2433320d fix zip(strict=True) for 2D problems 2025-01-07 00:05:19 -08:00
47415a0beb Return list-of-vectors from waveguide mode solve 2025-01-07 00:04:53 -08:00
e459b5e61f clean up comments and some types 2025-01-07 00:04:01 -08:00
36431cd0e4 enable numpy 2.0 and recent scipy 2024-07-29 02:25:16 -07:00
739e96df3d avoid a copy 2024-07-29 00:34:17 -07:00
63e7cb949f explicitly specify closed variables 2024-07-29 00:33:58 -07:00
c53a3c4d84 unused var 2024-07-29 00:33:43 -07:00
5dd9994e76 improve some type annotations 2024-07-29 00:32:52 -07:00
1021768e30 simplify indentation 2024-07-29 00:32:20 -07:00
95e923d7b7 improve error handling 2024-07-29 00:32:03 -07:00
3f8802cb5f use strict zip 2024-07-29 00:31:44 -07:00
43bb0ba379 use generators where applicable 2024-07-29 00:31:16 -07:00
e19968bb9f linter-related test updates 2024-07-29 00:30:00 -07:00
43f038d761 modernize type annotations 2024-07-29 00:29:39 -07:00
d5fca741d1 remove type:ignore from scipy imports (done at pyproject.toml level) 2024-07-29 00:27:59 -07:00
ca94ad1b25 use path.open() 2024-07-29 00:23:08 -07:00
10f26c12b4 add ruff and mypy configs 2024-07-29 00:22:54 -07:00
ee51c7db49 improve type annotations 2024-07-28 23:23:47 -07:00
36bea6a593 drop unused import 2024-07-28 23:23:21 -07:00
b16b35d84a use new numpy.random.Generator approach 2024-07-28 23:23:11 -07:00
6f3ae5a64f explicitly re-export some names 2024-07-28 23:22:21 -07:00
99c22d572f bump numpy version 2024-07-28 23:21:59 -07:00
2f00baf0c6 fixup cylindrical wg example 2024-07-18 19:31:17 -07:00
2712d96f2a add notes on references 2024-07-18 19:31:17 -07:00
dc3e733e7f flake8 fixes 2024-07-18 19:31:17 -07:00
95e3f71b40 use f-strings in place of .format() 2024-07-18 19:31:17 -07:00
639f88bba8 add sensitivity calculation 2024-07-18 19:31:17 -07:00
ccfd4fbf04 use parentheses instead of backslash 2024-07-15 16:32:48 -07:00
77715da8b4 Use raw strings to avoid double backslashes 2024-07-15 16:32:31 -07:00
2d48858973 drop duplicate import 2024-07-15 16:10:51 -07:00
8c49710861 black bg for tex svgs 2024-07-14 22:09:16 -07:00
22565328ab use parens in place of backslashes 2024-07-14 22:08:52 -07:00
4c8a07bf20 Use raw strings to eliminate repeated backslashes 2024-07-14 22:08:30 -07:00
34 changed files with 1720 additions and 786 deletions

View File

@ -46,20 +46,24 @@ def test0(solver=generic_solver):
# #### Create the grid, mask, and draw the device #### # #### Create the grid, mask, and draw the device ####
grid = gridlock.Grid(edge_coords) grid = gridlock.Grid(edge_coords)
epsilon = grid.allocate(n_air**2, dtype=numpy.float32) epsilon = grid.allocate(n_air**2, dtype=numpy.float32)
grid.draw_cylinder(epsilon, grid.draw_cylinder(
surface_normal=2, epsilon,
center=center, surface_normal=2,
radius=max(radii), center=center,
thickness=th, radius=max(radii),
eps=n_ring**2, thickness=th,
num_points=24) foreground=n_ring**2,
grid.draw_cylinder(epsilon, num_points=24,
surface_normal=2, )
center=center, grid.draw_cylinder(
radius=min(radii), epsilon,
thickness=th*1.1, surface_normal=2,
eps=n_air ** 2, center=center,
num_points=24) radius=min(radii),
thickness=th*1.1,
foreground=n_air ** 2,
num_points=24,
)
dxes = [grid.dxyz, grid.autoshifted_dxyz()] dxes = [grid.dxyz, grid.autoshifted_dxyz()]
for a in (0, 1, 2): for a in (0, 1, 2):
@ -71,9 +75,9 @@ def test0(solver=generic_solver):
J[1][15, grid.shape[1]//2, grid.shape[2]//2] = 1 J[1][15, grid.shape[1]//2, grid.shape[2]//2] = 1
''' #
Solve! # Solve!
''' #
sim_args = { sim_args = {
'omega': omega, 'omega': omega,
'dxes': dxes, 'dxes': dxes,
@ -87,9 +91,9 @@ def test0(solver=generic_solver):
E = unvec(x, grid.shape) E = unvec(x, grid.shape)
''' #
Plot results # Plot results
''' #
pyplot.figure() pyplot.figure()
pyplot.pcolor(numpy.real(E[1][:, :, grid.shape[2]//2]), cmap='seismic') pyplot.pcolor(numpy.real(E[1][:, :, grid.shape[2]//2]), cmap='seismic')
pyplot.axis('equal') pyplot.axis('equal')
@ -122,7 +126,7 @@ def test1(solver=generic_solver):
# #### Create the grid and draw the device #### # #### Create the grid and draw the device ####
grid = gridlock.Grid(edge_coords) grid = gridlock.Grid(edge_coords)
epsilon = grid.allocate(n_air**2, dtype=numpy.float32) epsilon = grid.allocate(n_air**2, dtype=numpy.float32)
grid.draw_cuboid(epsilon, center=center, dimensions=[8e3, w, th], eps=n_wg**2) grid.draw_cuboid(epsilon, center=center, dimensions=[8e3, w, th], foreground=n_wg**2)
dxes = [grid.dxyz, grid.autoshifted_dxyz()] dxes = [grid.dxyz, grid.autoshifted_dxyz()]
for a in (0, 1, 2): for a in (0, 1, 2):
@ -169,9 +173,9 @@ def test1(solver=generic_solver):
# pcolor((numpy.abs(J3).sum(axis=2).sum(axis=0) > 0).astype(float).T) # pcolor((numpy.abs(J3).sum(axis=2).sum(axis=0) > 0).astype(float).T)
pyplot.show(block=True) pyplot.show(block=True)
''' #
Solve! # Solve!
''' #
sim_args = { sim_args = {
'omega': omega, 'omega': omega,
'dxes': dxes, 'dxes': dxes,
@ -188,9 +192,9 @@ def test1(solver=generic_solver):
E = unvec(x, grid.shape) E = unvec(x, grid.shape)
''' #
Plot results # Plot results
''' #
center = grid.pos2ind([0, 0, 0], None).astype(int) center = grid.pos2ind([0, 0, 0], None).astype(int)
pyplot.figure() pyplot.figure()
pyplot.subplot(2, 2, 1) pyplot.subplot(2, 2, 1)
@ -232,7 +236,7 @@ def test1(solver=generic_solver):
pyplot.grid(alpha=0.6) pyplot.grid(alpha=0.6)
pyplot.title('Overlap with mode') pyplot.title('Overlap with mode')
pyplot.show() pyplot.show()
print('Average overlap with mode:', sum(q)/len(q)) print('Average overlap with mode:', sum(q[8:32])/len(q[8:32]))
def module_available(name): def module_available(name):

View File

@ -157,7 +157,8 @@ def main():
e[1][tuple(grid.shape//2)] += field_source(t) e[1][tuple(grid.shape//2)] += field_source(t)
update_H(e, h) update_H(e, h)
print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start))) avg_rate = (t + 1)/(time.perf_counter() - start))
print(f'iteration {t}: average {avg_rate} iterations per sec')
sys.stdout.flush() sys.stdout.flush()
if t % 20 == 0: if t % 20 == 0:

View File

@ -3,7 +3,7 @@ import numpy
from numpy.linalg import norm from numpy.linalg import norm
from meanas.fdmath import vec, unvec from meanas.fdmath import vec, unvec
from meanas.fdfd import waveguide_mode, functional, scpml from meanas.fdfd import waveguide_cyl, functional, scpml
from meanas.fdfd.solvers import generic as generic_solver from meanas.fdfd.solvers import generic as generic_solver
import gridlock import gridlock
@ -37,29 +37,34 @@ def test1(solver=generic_solver):
xyz_max = numpy.array([800, y_max, z_max]) + (pml_thickness + 2) * dx xyz_max = numpy.array([800, y_max, z_max]) + (pml_thickness + 2) * dx
# Coordinates of the edges of the cells. # Coordinates of the edges of the cells.
half_edge_coords = [numpy.arange(dx/2, m + dx/2, step=dx) for m in xyz_max] half_edge_coords = [numpy.arange(dx / 2, m + dx / 2, step=dx) for m in xyz_max]
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords] edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
edge_coords[0] = numpy.array([-dx, dx]) edge_coords[0] = numpy.array([-dx, dx])
# #### Create the grid and draw the device #### # #### Create the grid and draw the device ####
grid = gridlock.Grid(edge_coords) grid = gridlock.Grid(edge_coords)
epsilon = grid.allocate(n_air**2, dtype=numpy.float32) epsilon = grid.allocate(n_air**2, dtype=numpy.float32)
grid.draw_cuboid(epsilon, center=center, dimensions=[8e3, w, th], eps=n_wg**2) grid.draw_cuboid(epsilon, center=center, dimensions=[8e3, w, th], foreground=n_wg**2)
dxes = [grid.dxyz, grid.autoshifted_dxyz()] dxes = [grid.dxyz, grid.autoshifted_dxyz()]
for a in (1, 2): for a in (1, 2):
for p in (-1, 1): for p in (-1, 1):
dxes = scmpl.stretch_with_scpml(dxes, omega=omega, axis=a, polarity=p, dxes = scpml.stretch_with_scpml(
thickness=pml_thickness) dxes,
omega=omega,
axis=a,
polarity=p,
thickness=pml_thickness,
)
wg_args = { wg_args = {
'omega': omega, 'omega': omega,
'dxes': [(d[1], d[2]) for d in dxes], 'dxes': [(d[1], d[2]) for d in dxes],
'epsilon': vec(g.transpose([1, 2, 0]) for g in epsilon), 'epsilon': vec(epsilon.transpose([0, 2, 3, 1])),
'r0': r0, 'r0': r0,
} }
wg_results = waveguide_mode.solve_waveguide_mode_cylindrical(mode_number=0, **wg_args) wg_results = waveguide_cyl.solve_mode(mode_number=0, **wg_args)
E = wg_results['E'] E = wg_results['E']
@ -70,20 +75,17 @@ def test1(solver=generic_solver):
''' '''
Plot results Plot results
''' '''
def pcolor(v): def pcolor(fig, ax, v, title):
vmax = numpy.max(numpy.abs(v)) vmax = numpy.max(numpy.abs(v))
pyplot.pcolor(v.T, cmap='seismic', vmin=-vmax, vmax=vmax) mappable = ax.pcolormesh(v.T, cmap='seismic', vmin=-vmax, vmax=vmax)
pyplot.axis('equal') ax.set_aspect('equal', adjustable='box')
pyplot.colorbar() ax.set_title(title)
ax.figure.colorbar(mappable)
pyplot.figure() fig, axes = pyplot.subplots(2, 2)
pyplot.subplot(2, 2, 1) pcolor(fig, axes[0][0], numpy.real(E[0]), 'Ex')
pcolor(numpy.real(E[0][:, :])) pcolor(fig, axes[0][1], numpy.real(E[1]), 'Ey')
pyplot.subplot(2, 2, 2) pcolor(fig, axes[1][0], numpy.real(E[2]), 'Ez')
pcolor(numpy.real(E[1][:, :]))
pyplot.subplot(2, 2, 3)
pcolor(numpy.real(E[2][:, :]))
pyplot.subplot(2, 2, 4)
pyplot.show() pyplot.show()

View File

@ -12,7 +12,7 @@ cd ~/projects/meanas
rm -rf _doc_mathimg rm -rf _doc_mathimg
pdoc --pdf --force --template-dir pdoc_templates -o doc . > doc.md pdoc --pdf --force --template-dir pdoc_templates -o doc . > doc.md
pandoc --metadata=title:"meanas" --from=markdown+abbreviations --to=html --output=doc.htex --gladtex -s --css pdoc_templates/pdoc.css doc.md pandoc --metadata=title:"meanas" --from=markdown+abbreviations --to=html --output=doc.htex --gladtex -s --css pdoc_templates/pdoc.css doc.md
gladtex -a -n -d _doc_mathimg -c white doc.htex gladtex -a -n -d _doc_mathimg -c white -b black doc.htex
# Approach 3: html with gladtex # Approach 3: html with gladtex
#pdoc3 --html --force --template-dir pdoc_templates -o doc . #pdoc3 --html --force --template-dir pdoc_templates -o doc .

View File

@ -11,7 +11,8 @@ __author__ = 'Jan Petykiewicz'
try: try:
with open(pathlib.Path(__file__).parent / 'README.md', 'r') as f: readme_path = pathlib.Path(__file__).parent / 'README.md'
with readme_path.open('r') as f:
__doc__ = f.read() __doc__ = f.read()
except Exception: except Exception:
pass pass

View File

@ -1,12 +1,12 @@
""" """
Solvers for eigenvalue / eigenvector problems Solvers for eigenvalue / eigenvector problems
""" """
from typing import Callable from collections.abc import Callable
import numpy import numpy
from numpy.typing import NDArray, ArrayLike from numpy.typing import NDArray, ArrayLike
from numpy.linalg import norm from numpy.linalg import norm
from scipy import sparse # type: ignore from scipy import sparse
import scipy.sparse.linalg as spalg # type: ignore import scipy.sparse.linalg as spalg
def power_iteration( def power_iteration(
@ -25,8 +25,9 @@ def power_iteration(
Returns: Returns:
(Largest-magnitude eigenvalue, Corresponding eigenvector estimate) (Largest-magnitude eigenvalue, Corresponding eigenvector estimate)
""" """
rng = numpy.random.default_rng()
if guess_vector is None: if guess_vector is None:
v = numpy.random.rand(operator.shape[0]) + 1j * numpy.random.rand(operator.shape[0]) v = rng.random(operator.shape[0]) + 1j * rng.random(operator.shape[0])
else: else:
v = guess_vector v = guess_vector

View File

@ -1,4 +1,4 @@
""" r"""
Tools for finite difference frequency-domain (FDFD) simulations and calculations. Tools for finite difference frequency-domain (FDFD) simulations and calculations.
These mostly involve picking a single frequency, then setting up and solving a These mostly involve picking a single frequency, then setting up and solving a
@ -19,71 +19,71 @@ Submodules:
From the "Frequency domain" section of `meanas.fdmath`, we have From the "Frequency domain" section of `meanas.fdmath`, we have
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{E}_{l, \\vec{r}} &= \\tilde{E}_{\\vec{r}} e^{-\\imath \\omega l \\Delta_t} \\\\ \tilde{E}_{l, \vec{r}} &= \tilde{E}_{\vec{r}} e^{-\imath \omega l \Delta_t} \\
\\tilde{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= \\tilde{H}_{\\vec{r} + \\frac{1}{2}} e^{-\\imath \\omega (l - \\frac{1}{2}) \\Delta_t} \\\\ \tilde{H}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &= \tilde{H}_{\vec{r} + \frac{1}{2}} e^{-\imath \omega (l - \frac{1}{2}) \Delta_t} \\
\\tilde{J}_{l, \\vec{r}} &= \\tilde{J}_{\\vec{r}} e^{-\\imath \\omega (l - \\frac{1}{2}) \\Delta_t} \\\\ \tilde{J}_{l, \vec{r}} &= \tilde{J}_{\vec{r}} e^{-\imath \omega (l - \frac{1}{2}) \Delta_t} \\
\\tilde{M}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= \\tilde{M}_{\\vec{r} + \\frac{1}{2}} e^{-\\imath \\omega l \\Delta_t} \\\\ \tilde{M}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &= \tilde{M}_{\vec{r} + \frac{1}{2}} e^{-\imath \omega l \Delta_t} \\
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}}) \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{\vec{r}})
-\\Omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} &= -\\imath \\Omega \\tilde{J}_{\\vec{r}} e^{\\imath \\omega \\Delta_t / 2} \\\\ -\Omega^2 \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} &= -\imath \Omega \tilde{J}_{\vec{r}} e^{\imath \omega \Delta_t / 2} \\
\\Omega &= 2 \\sin(\\omega \\Delta_t / 2) / \\Delta_t \Omega &= 2 \sin(\omega \Delta_t / 2) / \Delta_t
\\end{aligned} \end{aligned}
$$ $$
resulting in resulting in
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{\\partial}_t &\\Rightarrow -\\imath \\Omega e^{-\\imath \\omega \\Delta_t / 2}\\\\ \tilde{\partial}_t &\Rightarrow -\imath \Omega e^{-\imath \omega \Delta_t / 2}\\
\\hat{\\partial}_t &\\Rightarrow -\\imath \\Omega e^{ \\imath \\omega \\Delta_t / 2}\\\\ \hat{\partial}_t &\Rightarrow -\imath \Omega e^{ \imath \omega \Delta_t / 2}\\
\\end{aligned} \end{aligned}
$$ $$
Maxwell's equations are then Maxwell's equations are then
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}} &= \tilde{\nabla} \times \tilde{E}_{\vec{r}} &=
\\imath \\Omega e^{-\\imath \\omega \\Delta_t / 2} \\hat{B}_{\\vec{r} + \\frac{1}{2}} \imath \Omega e^{-\imath \omega \Delta_t / 2} \hat{B}_{\vec{r} + \frac{1}{2}}
- \\hat{M}_{\\vec{r} + \\frac{1}{2}} \\\\ - \hat{M}_{\vec{r} + \frac{1}{2}} \\
\\hat{\\nabla} \\times \\hat{H}_{\\vec{r} + \\frac{1}{2}} &= \hat{\nabla} \times \hat{H}_{\vec{r} + \frac{1}{2}} &=
-\\imath \\Omega e^{ \\imath \\omega \\Delta_t / 2} \\tilde{D}_{\\vec{r}} -\imath \Omega e^{ \imath \omega \Delta_t / 2} \tilde{D}_{\vec{r}}
+ \\tilde{J}_{\\vec{r}} \\\\ + \tilde{J}_{\vec{r}} \\
\\tilde{\\nabla} \\cdot \\hat{B}_{\\vec{r} + \\frac{1}{2}} &= 0 \\\\ \tilde{\nabla} \cdot \hat{B}_{\vec{r} + \frac{1}{2}} &= 0 \\
\\hat{\\nabla} \\cdot \\tilde{D}_{\\vec{r}} &= \\rho_{\\vec{r}} \hat{\nabla} \cdot \tilde{D}_{\vec{r}} &= \rho_{\vec{r}}
\\end{aligned} \end{aligned}
$$ $$
With $\\Delta_t \\to 0$, this simplifies to With $\Delta_t \to 0$, this simplifies to
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{E}_{l, \\vec{r}} &\\to \\tilde{E}_{\\vec{r}} \\\\ \tilde{E}_{l, \vec{r}} &\to \tilde{E}_{\vec{r}} \\
\\tilde{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &\\to \\tilde{H}_{\\vec{r} + \\frac{1}{2}} \\\\ \tilde{H}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &\to \tilde{H}_{\vec{r} + \frac{1}{2}} \\
\\tilde{J}_{l, \\vec{r}} &\\to \\tilde{J}_{\\vec{r}} \\\\ \tilde{J}_{l, \vec{r}} &\to \tilde{J}_{\vec{r}} \\
\\tilde{M}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &\\to \\tilde{M}_{\\vec{r} + \\frac{1}{2}} \\\\ \tilde{M}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &\to \tilde{M}_{\vec{r} + \frac{1}{2}} \\
\\Omega &\\to \\omega \\\\ \Omega &\to \omega \\
\\tilde{\\partial}_t &\\to -\\imath \\omega \\\\ \tilde{\partial}_t &\to -\imath \omega \\
\\hat{\\partial}_t &\\to -\\imath \\omega \\\\ \hat{\partial}_t &\to -\imath \omega \\
\\end{aligned} \end{aligned}
$$ $$
and then and then
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}} &= \tilde{\nabla} \times \tilde{E}_{\vec{r}} &=
\\imath \\omega \\hat{B}_{\\vec{r} + \\frac{1}{2}} \imath \omega \hat{B}_{\vec{r} + \frac{1}{2}}
- \\hat{M}_{\\vec{r} + \\frac{1}{2}} \\\\ - \hat{M}_{\vec{r} + \frac{1}{2}} \\
\\hat{\\nabla} \\times \\hat{H}_{\\vec{r} + \\frac{1}{2}} &= \hat{\nabla} \times \hat{H}_{\vec{r} + \frac{1}{2}} &=
-\\imath \\omega \\tilde{D}_{\\vec{r}} -\imath \omega \tilde{D}_{\vec{r}}
+ \\tilde{J}_{\\vec{r}} \\\\ + \tilde{J}_{\vec{r}} \\
\\end{aligned} \end{aligned}
$$ $$
$$ $$
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}}) \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{\vec{r}})
-\\omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} = -\\imath \\omega \\tilde{J}_{\\vec{r}} \\\\ -\omega^2 \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} = -\imath \omega \tilde{J}_{\vec{r}} \\
$$ $$
# TODO FDFD? # TODO FDFD?
@ -91,5 +91,12 @@ $$
""" """
from . import solvers, operators, functional, scpml, waveguide_2d, waveguide_3d from . import (
solvers as solvers,
operators as operators,
functional as functional,
scpml as scpml,
waveguide_2d as waveguide_2d,
waveguide_3d as waveguide_3d,
)
# from . import farfield, bloch TODO # from . import farfield, bloch TODO

View File

@ -94,16 +94,17 @@ This module contains functions for generating and solving the
""" """
from typing import Callable, Any, cast, Sequence from typing import Any, cast
from collections.abc import Callable, Sequence
import logging import logging
import numpy import numpy
from numpy import pi, real, trace from numpy import pi, real, trace
from numpy.fft import fftfreq from numpy.fft import fftfreq
from numpy.typing import NDArray, ArrayLike from numpy.typing import NDArray, ArrayLike
import scipy # type: ignore import scipy
import scipy.optimize # type: ignore import scipy.optimize
from scipy.linalg import norm # type: ignore from scipy.linalg import norm
import scipy.sparse.linalg as spalg # type: ignore import scipy.sparse.linalg as spalg
from ..fdmath import fdfield_t, cfdfield_t from ..fdmath import fdfield_t, cfdfield_t
@ -114,7 +115,6 @@ logger = logging.getLogger(__name__)
try: try:
import pyfftw.interfaces.numpy_fft # type: ignore import pyfftw.interfaces.numpy_fft # type: ignore
import pyfftw.interfaces # type: ignore import pyfftw.interfaces # type: ignore
import multiprocessing
logger.info('Using pyfftw') logger.info('Using pyfftw')
pyfftw.interfaces.cache.enable() pyfftw.interfaces.cache.enable()
@ -155,7 +155,7 @@ def generate_kmn(
All are given in the xyz basis (e.g. `|k|[0,0,0] = norm(G_matrix @ k0)`). All are given in the xyz basis (e.g. `|k|[0,0,0] = norm(G_matrix @ k0)`).
""" """
k0 = numpy.array(k0) k0 = numpy.array(k0)
G_matrix = numpy.array(G_matrix, copy=False) G_matrix = numpy.asarray(G_matrix)
Gi_grids = numpy.array(numpy.meshgrid(*(fftfreq(n, 1 / n) for n in shape[:3]), indexing='ij')) Gi_grids = numpy.array(numpy.meshgrid(*(fftfreq(n, 1 / n) for n in shape[:3]), indexing='ij'))
Gi = numpy.moveaxis(Gi_grids, 0, -1) Gi = numpy.moveaxis(Gi_grids, 0, -1)
@ -232,7 +232,7 @@ def maxwell_operator(
Raveled conv(1/mu_k, ik x conv(1/eps_k, ik x h_mn)), returned Raveled conv(1/mu_k, ik x conv(1/eps_k, ik x h_mn)), returned
and overwritten in-place of `h`. and overwritten in-place of `h`.
""" """
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)] hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2))
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis #{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
@ -303,12 +303,12 @@ def hmn_2_exyz(
k_mag, m, n = generate_kmn(k0, G_matrix, shape) k_mag, m, n = generate_kmn(k0, G_matrix, shape)
def operator(h: NDArray[numpy.complex128]) -> cfdfield_t: def operator(h: NDArray[numpy.complex128]) -> cfdfield_t:
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)] hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2))
d_xyz = (n * hin_m d_xyz = (n * hin_m
- m * hin_n) * k_mag # noqa: E128 - m * hin_n) * k_mag # noqa: E128
# divide by epsilon # divide by epsilon
return numpy.array([ei for ei in numpy.moveaxis(ifftn(d_xyz, axes=range(3)) / epsilon, 3, 0)]) # TODO avoid copy return numpy.moveaxis(ifftn(d_xyz, axes=range(3)) / epsilon, 3, 0)
return operator return operator
@ -341,7 +341,7 @@ def hmn_2_hxyz(
_k_mag, m, n = generate_kmn(k0, G_matrix, shape) _k_mag, m, n = generate_kmn(k0, G_matrix, shape)
def operator(h: NDArray[numpy.complex128]) -> cfdfield_t: def operator(h: NDArray[numpy.complex128]) -> cfdfield_t:
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)] hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2))
h_xyz = (m * hin_m h_xyz = (m * hin_m
+ n * hin_n) # noqa: E128 + n * hin_n) # noqa: E128
return numpy.array([ifftn(hi) for hi in numpy.moveaxis(h_xyz, 3, 0)]) return numpy.array([ifftn(hi) for hi in numpy.moveaxis(h_xyz, 3, 0)])
@ -394,7 +394,7 @@ def inverse_maxwell_operator_approx(
Returns: Returns:
Raveled ik x conv(eps_k, ik x conv(mu_k, h_mn)) Raveled ik x conv(eps_k, ik x conv(mu_k, h_mn))
""" """
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)] hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2))
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis #{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
@ -538,7 +538,7 @@ def eigsolve(
`(eigenvalues, eigenvectors)` where `eigenvalues[i]` corresponds to the `(eigenvalues, eigenvectors)` where `eigenvalues[i]` corresponds to the
vector `eigenvectors[i, :]` vector `eigenvectors[i, :]`
""" """
k0 = numpy.array(k0, copy=False) k0 = numpy.asarray(k0)
h_size = 2 * epsilon[0].size h_size = 2 * epsilon[0].size
@ -561,11 +561,12 @@ def eigsolve(
prev_theta = 0.5 prev_theta = 0.5
D = numpy.zeros(shape=y_shape, dtype=complex) D = numpy.zeros(shape=y_shape, dtype=complex)
rng = numpy.random.default_rng()
Z: NDArray[numpy.complex128] Z: NDArray[numpy.complex128]
if y0 is None: if y0 is None:
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape) Z = rng.random(y_shape) + 1j * rng.random(y_shape)
else: else:
Z = numpy.array(y0, copy=False).T Z = numpy.asarray(y0).T
while True: while True:
Z *= num_modes / norm(Z) Z *= num_modes / norm(Z)
@ -573,7 +574,7 @@ def eigsolve(
try: try:
U = numpy.linalg.inv(ZtZ) U = numpy.linalg.inv(ZtZ)
except numpy.linalg.LinAlgError: except numpy.linalg.LinAlgError:
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape) Z = rng.random(y_shape) + 1j * rng.random(y_shape)
continue continue
trace_U = real(trace(U)) trace_U = real(trace(U))
@ -646,8 +647,7 @@ def eigsolve(
Qi_memo: list[float | None] = [None, None] Qi_memo: list[float | None] = [None, None]
def Qi_func(theta: float) -> float: def Qi_func(theta: float, Qi_memo=Qi_memo, ZtZ=ZtZ, DtD=DtD, symZtD=symZtD) -> float: # noqa: ANN001
nonlocal Qi_memo
if Qi_memo[0] == theta: if Qi_memo[0] == theta:
return cast(float, Qi_memo[1]) return cast(float, Qi_memo[1])
@ -656,7 +656,7 @@ def eigsolve(
Q = c * c * ZtZ + s * s * DtD + 2 * s * c * symZtD Q = c * c * ZtZ + s * s * DtD + 2 * s * c * symZtD
try: try:
Qi = numpy.linalg.inv(Q) Qi = numpy.linalg.inv(Q)
except numpy.linalg.LinAlgError: except numpy.linalg.LinAlgError as err:
logger.info('taylor Qi') logger.info('taylor Qi')
# if c or s small, taylor expand # if c or s small, taylor expand
if c < 1e-4 * s and c != 0: if c < 1e-4 * s and c != 0:
@ -666,12 +666,12 @@ def eigsolve(
ZtZi = numpy.linalg.inv(ZtZ) ZtZi = numpy.linalg.inv(ZtZ)
Qi = ZtZi / (c * c) - 2 * s / (c * c * c) * (ZtZi @ (ZtZi @ symZtD).conj().T) Qi = ZtZi / (c * c) - 2 * s / (c * c * c) * (ZtZi @ (ZtZi @ symZtD).conj().T)
else: else:
raise Exception('Inexplicable singularity in trace_func') raise Exception('Inexplicable singularity in trace_func') from err
Qi_memo[0] = theta Qi_memo[0] = theta
Qi_memo[1] = cast(float, Qi) Qi_memo[1] = cast(float, Qi)
return cast(float, Qi) return cast(float, Qi)
def trace_func(theta: float) -> float: def trace_func(theta: float, ZtAZ=ZtAZ, DtAD=DtAD, symZtAD=symZtAD) -> float: # noqa: ANN001
c = numpy.cos(theta) c = numpy.cos(theta)
s = numpy.sin(theta) s = numpy.sin(theta)
Qi = Qi_func(theta) Qi = Qi_func(theta)
@ -680,15 +680,15 @@ def eigsolve(
return numpy.abs(trace) return numpy.abs(trace)
if False: if False:
def trace_deriv(theta): def trace_deriv(theta, sgn: int = sgn, ZtAZ=ZtAZ, DtAD=DtAD, symZtD=symZtD, symZtAD=symZtAD, ZtZ=ZtZ, DtD=DtD): # noqa: ANN001
Qi = Qi_func(theta) Qi = Qi_func(theta)
c2 = numpy.cos(2 * theta) c2 = numpy.cos(2 * theta)
s2 = numpy.sin(2 * theta) s2 = numpy.sin(2 * theta)
F = -0.5*s2 * (ZtAZ - DtAD) + c2 * symZtAD F = -0.5 * s2 * (ZtAZ - DtAD) + c2 * symZtAD
trace_deriv = _rtrace_AtB(Qi, F) trace_deriv = _rtrace_AtB(Qi, F)
G = Qi @ F.conj().T @ Qi.conj().T G = Qi @ F.conj().T @ Qi.conj().T
H = -0.5*s2 * (ZtZ - DtD) + c2 * symZtD H = -0.5 * s2 * (ZtZ - DtD) + c2 * symZtD
trace_deriv -= _rtrace_AtB(G, H) trace_deriv -= _rtrace_AtB(G, H)
trace_deriv *= 2 trace_deriv *= 2
@ -696,12 +696,12 @@ def eigsolve(
U_sZtD = U @ symZtD U_sZtD = U @ symZtD
dE = 2.0 * (_rtrace_AtB(U, symZtAD) - dE = 2.0 * (_rtrace_AtB(U, symZtAD)
_rtrace_AtB(ZtAZU, U_sZtD)) - _rtrace_AtB(ZtAZU, U_sZtD))
d2E = 2 * (_rtrace_AtB(U, DtAD) - d2E = 2 * (_rtrace_AtB(U, DtAD)
_rtrace_AtB(ZtAZU, U @ (DtD - 4 * symZtD @ U_sZtD)) - - _rtrace_AtB(ZtAZU, U @ (DtD - 4 * symZtD @ U_sZtD))
4 * _rtrace_AtB(U, symZtAD @ U_sZtD)) - 4 * _rtrace_AtB(U, symZtAD @ U_sZtD))
# Newton-Raphson to find a root of the first derivative: # Newton-Raphson to find a root of the first derivative:
theta = -dE / d2E theta = -dE / d2E
@ -781,7 +781,7 @@ def linmin(x_guess, f0, df0, x_max, f_tol=0.1, df_tol=min(tolerance, 1e-6), x_to
x_min, x_max, isave, dsave) x_min, x_max, isave, dsave)
for i in range(int(1e6)): for i in range(int(1e6)):
if task != 'F': if task != 'F':
logging.info('search converged in {} iterations'.format(i)) logging.info(f'search converged in {i} iterations')
break break
fx = f(x, dfx) fx = f(x, dfx)
x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task, x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
@ -799,3 +799,52 @@ def _rtrace_AtB(
def _symmetrize(A: NDArray[numpy.complex128]) -> NDArray[numpy.complex128]: def _symmetrize(A: NDArray[numpy.complex128]) -> NDArray[numpy.complex128]:
return (A + A.conj().T) * 0.5 return (A + A.conj().T) * 0.5
def inner_product(eL, hL, eR, hR) -> complex:
# assumes x-axis propagation
assert numpy.array_equal(eR.shape, hR.shape)
assert numpy.array_equal(eL.shape, hL.shape)
assert numpy.array_equal(eR.shape, eL.shape)
# Cross product, times 2 since it's <p | n>, then divide by 4. # TODO might want to abs() this?
norm2R = (eR[1] * hR[2] - eR[2] * hR[1]).sum() / 2
norm2L = (eL[1] * hL[2] - eL[2] * hL[1]).sum() / 2
# eRxhR_x = numpy.cross(eR.reshape(3, -1), hR.reshape(3, -1), axis=0).reshape(eR.shape)[0] / normR
# logger.info(f'power {eRxhR_x.sum() / 2})
eR /= numpy.sqrt(norm2R)
hR /= numpy.sqrt(norm2R)
eL /= numpy.sqrt(norm2L)
hL /= numpy.sqrt(norm2L)
# (eR x hL)[0] and (eL x hR)[0]
eRxhL_x = eR[1] * hL[2] - eR[2] - hL[1]
eLxhR_x = eL[1] * hR[2] - eL[2] - hR[1]
#return 1j * (eRxhL_x - eLxhR_x).sum() / numpy.sqrt(norm2R * norm2L)
#return (eRxhL_x.sum() - eLxhR_x.sum()) / numpy.sqrt(norm2R * norm2L)
return eRxhL_x.sum() - eLxhR_x.sum()
def trq(eI, hI, eO, hO) -> tuple[complex, complex]:
pp = inner_product(eO, hO, eI, hI)
pn = inner_product(eO, hO, eI, -hI)
np = inner_product(eO, -hO, eI, hI)
nn = inner_product(eO, -hO, eI, -hI)
assert pp == -nn
assert pn == -np
logger.info(f'''
{pp=:4g} {pn=:4g}
{nn=:4g} {np=:4g}
{nn * pp / pn=:4g} {-np=:4g}
''')
r = -pp / pn # -<Pp|Bp>/<Pn/Bp> = -(-pp) / (-pn)
t = (np - nn * pp / pn) / 4
return t, r

68
meanas/fdfd/eme.py Normal file
View File

@ -0,0 +1,68 @@
import numpy
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
from .waveguide_2d import inner_product
def get_tr(ehL, wavenumbers_L, ehR, wavenumbers_R, dxes: dx_lists_t):
nL = len(wavenumbers_L)
nR = len(wavenumbers_R)
A12 = numpy.zeros((nL, nR), dtype=complex)
A21 = numpy.zeros((nL, nR), dtype=complex)
B11 = numpy.zeros((nL,), dtype=complex)
for ll in range(nL):
eL, hL = ehL[ll]
B11[ll] = inner_product(eL, hL, dxes=dxes, conj_h=False)
for rr in range(nR):
eR, hR = ehR[rr]
A12[ll, rr] = inner_product(eL, hR, dxes=dxes, conj_h=False) # TODO optimize loop?
A21[ll, rr] = inner_product(eR, hL, dxes=dxes, conj_h=False)
# tt0 = 2 * numpy.linalg.pinv(A21 + numpy.conj(A12))
tt0, _resid, _rank, _sing = numpy.linalg.lstsq(A21 + A12, numpy.diag(2 * B11), rcond=None)
U, st, V = numpy.linalg.svd(tt0)
gain = st > 1
st[gain] = 1 / st[gain]
tt = U @ numpy.diag(st) @ V
# rr = 0.5 * (A21 - numpy.conj(A12)) @ tt
rr = numpy.diag(0.5 / B11) @ (A21 - A12) @ tt
return tt, rr
def get_abcd(eL_xys, wavenumbers_L, eR_xys, wavenumbers_R, **kwargs):
t12, r12 = get_tr(eL_xys, wavenumbers_L, eR_xys, wavenumbers_R, **kwargs)
t21, r21 = get_tr(eR_xys, wavenumbers_R, eL_xys, wavenumbers_L, **kwargs)
t21i = numpy.linalg.pinv(t21)
A = t12 - r21 @ t21i @ r12
B = r21 @ t21i
C = -t21i @ r12
D = t21i
return sparse.block_array(((A, B), (C, D)))
def get_s(
eL_xys,
wavenumbers_L,
eR_xys,
wavenumbers_R,
force_nogain: bool = False,
force_reciprocal: bool = False,
**kwargs):
t12, r12 = get_tr(eL_xys, wavenumbers_L, eR_xys, wavenumbers_R, **kwargs)
t21, r21 = get_tr(eR_xys, wavenumbers_R, eL_xys, wavenumbers_L, **kwargs)
ss = numpy.block([[r12, t12],
[t21, r21]])
if force_nogain:
# force S @ S.H diagonal
U, sing, V = numpy.linalg.svd(ss)
ss = numpy.diag(sing) @ U @ V
if force_reciprocal:
ss = 0.5 * (ss + ss.T)
return ss

View File

@ -1,7 +1,8 @@
""" """
Functions for performing near-to-farfield transformation (and the reverse). Functions for performing near-to-farfield transformation (and the reverse).
""" """
from typing import Any, Sequence, cast from typing import Any, cast
from collections.abc import Sequence
import numpy import numpy
from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift
from numpy import pi from numpy import pi

View File

@ -5,7 +5,7 @@ Functional versions of many FDFD operators. These can be useful for performing
The functions generated here expect `cfdfield_t` inputs with shape (3, X, Y, Z), The functions generated here expect `cfdfield_t` inputs with shape (3, X, Y, Z),
e.g. E = [E_x, E_y, E_z] where each (complex) component has shape (X, Y, Z) e.g. E = [E_x, E_y, E_z] where each (complex) component has shape (X, Y, Z)
""" """
from typing import Callable from collections.abc import Callable
import numpy import numpy
from ..fdmath import dx_lists_t, fdfield_t, cfdfield_t, cfdfield_updater_t from ..fdmath import dx_lists_t, fdfield_t, cfdfield_t, cfdfield_updater_t
@ -47,8 +47,7 @@ def e_full(
if mu is None: if mu is None:
return op_1 return op_1
else: return op_mu
return op_mu
def eh_full( def eh_full(
@ -84,8 +83,7 @@ def eh_full(
if mu is None: if mu is None:
return op_1 return op_1
else: return op_mu
return op_mu
def e2h( def e2h(
@ -116,8 +114,7 @@ def e2h(
if mu is None: if mu is None:
return e2h_1_1 return e2h_1_1
else: return e2h_mu
return e2h_mu
def m2j( def m2j(
@ -151,8 +148,7 @@ def m2j(
if mu is None: if mu is None:
return m2j_1 return m2j_1
else: return m2j_mu
return m2j_mu
def e_tfsf_source( def e_tfsf_source(
@ -189,10 +185,10 @@ def e_tfsf_source(
def poynting_e_cross_h(dxes: dx_lists_t) -> Callable[[cfdfield_t, cfdfield_t], cfdfield_t]: def poynting_e_cross_h(dxes: dx_lists_t) -> Callable[[cfdfield_t, cfdfield_t], cfdfield_t]:
""" r"""
Generates a function that takes the single-frequency `E` and `H` fields Generates a function that takes the single-frequency `E` and `H` fields
and calculates the cross product `E` x `H` = $E \\times H$ as required and calculates the cross product `E` x `H` = $E \times H$ as required
for the Poynting vector, $S = E \\times H$ for the Poynting vector, $S = E \times H$
Note: Note:
This function also shifts the input `E` field by one cell as required This function also shifts the input `E` field by one cell as required

View File

@ -28,7 +28,7 @@ The following operators are included:
""" """
import numpy import numpy
import scipy.sparse as sparse # type: ignore from scipy import sparse
from ..fdmath import vec, dx_lists_t, vfdfield_t, vcfdfield_t from ..fdmath import vec, dx_lists_t, vfdfield_t, vcfdfield_t
from ..fdmath.operators import shift_with_mirror, shift_circ, curl_forward, curl_back from ..fdmath.operators import shift_with_mirror, shift_circ, curl_forward, curl_back
@ -40,19 +40,19 @@ __author__ = 'Jan Petykiewicz'
def e_full( def e_full(
omega: complex, omega: complex,
dxes: dx_lists_t, dxes: dx_lists_t,
epsilon: vfdfield_t, epsilon: vfdfield_t | vcfdfield_t,
mu: vfdfield_t | None = None, mu: vfdfield_t | None = None,
pec: vfdfield_t | None = None, pec: vfdfield_t | None = None,
pmc: vfdfield_t | None = None, pmc: vfdfield_t | None = None,
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" r"""
Wave operator Wave operator
$$ \\nabla \\times (\\frac{1}{\\mu} \\nabla \\times) - \\Omega^2 \\epsilon $$ $$ \nabla \times (\frac{1}{\mu} \nabla \times) - \Omega^2 \epsilon $$
del x (1/mu * del x) - omega**2 * epsilon del x (1/mu * del x) - omega**2 * epsilon
for use with the E-field, with wave equation for use with the E-field, with wave equation
$$ (\\nabla \\times (\\frac{1}{\\mu} \\nabla \\times) - \\Omega^2 \\epsilon) E = -\\imath \\omega J $$ $$ (\nabla \times (\frac{1}{\mu} \nabla \times) - \Omega^2 \epsilon) E = -\imath \omega J $$
(del x (1/mu * del x) - omega**2 * epsilon) E = -i * omega * J (del x (1/mu * del x) - omega**2 * epsilon) E = -i * omega * J
@ -131,14 +131,14 @@ def h_full(
pec: vfdfield_t | None = None, pec: vfdfield_t | None = None,
pmc: vfdfield_t | None = None, pmc: vfdfield_t | None = None,
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" r"""
Wave operator Wave operator
$$ \\nabla \\times (\\frac{1}{\\epsilon} \\nabla \\times) - \\omega^2 \\mu $$ $$ \nabla \times (\frac{1}{\epsilon} \nabla \times) - \omega^2 \mu $$
del x (1/epsilon * del x) - omega**2 * mu del x (1/epsilon * del x) - omega**2 * mu
for use with the H-field, with wave equation for use with the H-field, with wave equation
$$ (\\nabla \\times (\\frac{1}{\\epsilon} \\nabla \\times) - \\omega^2 \\mu) E = \\imath \\omega M $$ $$ (\nabla \times (\frac{1}{\epsilon} \nabla \times) - \omega^2 \mu) E = \imath \omega M $$
(del x (1/epsilon * del x) - omega**2 * mu) E = i * omega * M (del x (1/epsilon * del x) - omega**2 * mu) E = i * omega * M
@ -188,28 +188,28 @@ def eh_full(
pec: vfdfield_t | None = None, pec: vfdfield_t | None = None,
pmc: vfdfield_t | None = None, pmc: vfdfield_t | None = None,
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" r"""
Wave operator for `[E, H]` field representation. This operator implements Maxwell's Wave operator for `[E, H]` field representation. This operator implements Maxwell's
equations without cancelling out either E or H. The operator is equations without cancelling out either E or H. The operator is
$$ \\begin{bmatrix} $$ \begin{bmatrix}
-\\imath \\omega \\epsilon & \\nabla \\times \\\\ -\imath \omega \epsilon & \nabla \times \\
\\nabla \\times & \\imath \\omega \\mu \nabla \times & \imath \omega \mu
\\end{bmatrix} $$ \end{bmatrix} $$
[[-i * omega * epsilon, del x ], [[-i * omega * epsilon, del x ],
[del x, i * omega * mu]] [del x, i * omega * mu]]
for use with a field vector of the form `cat(vec(E), vec(H))`: for use with a field vector of the form `cat(vec(E), vec(H))`:
$$ \\begin{bmatrix} $$ \begin{bmatrix}
-\\imath \\omega \\epsilon & \\nabla \\times \\\\ -\imath \omega \epsilon & \nabla \times \\
\\nabla \\times & \\imath \\omega \\mu \nabla \times & \imath \omega \mu
\\end{bmatrix} \end{bmatrix}
\\begin{bmatrix} E \\\\ \begin{bmatrix} E \\
H H
\\end{bmatrix} \end{bmatrix}
= \\begin{bmatrix} J \\\\ = \begin{bmatrix} J \\
-M -M
\\end{bmatrix} $$ \end{bmatrix} $$
Args: Args:
omega: Angular frequency of the simulation omega: Angular frequency of the simulation
@ -321,11 +321,11 @@ def poynting_e_cross(e: vcfdfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
""" """
shape = [len(dx) for dx in dxes[0]] shape = [len(dx) for dx in dxes[0]]
fx, fy, fz = [shift_circ(i, shape, 1) for i in range(3)] fx, fy, fz = (shift_circ(i, shape, 1) for i in range(3))
dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')] dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')]
dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')] dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')]
Ex, Ey, Ez = [ei * da for ei, da in zip(numpy.split(e, 3), dxag)] Ex, Ey, Ez = (ei * da for ei, da in zip(numpy.split(e, 3), dxag, strict=True))
block_diags = [[ None, fx @ -Ez, fx @ Ey], block_diags = [[ None, fx @ -Ez, fx @ Ey],
[ fy @ Ez, None, fy @ -Ex], [ fy @ Ez, None, fy @ -Ex],
@ -349,11 +349,11 @@ def poynting_h_cross(h: vcfdfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
""" """
shape = [len(dx) for dx in dxes[0]] shape = [len(dx) for dx in dxes[0]]
fx, fy, fz = [shift_circ(i, shape, 1) for i in range(3)] fx, fy, fz = (shift_circ(i, shape, 1) for i in range(3))
dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')] dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')]
dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')] dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')]
Hx, Hy, Hz = [sparse.diags(hi * db) for hi, db in zip(numpy.split(h, 3), dxbg)] Hx, Hy, Hz = (sparse.diags(hi * db) for hi, db in zip(numpy.split(h, 3), dxbg, strict=True))
P = (sparse.bmat( P = (sparse.bmat(
[[ None, -Hz @ fx, Hy @ fx], [[ None, -Hz @ fx, Hy @ fx],

View File

@ -2,7 +2,7 @@
Functions for creating stretched coordinate perfectly matched layer (PML) absorbers. Functions for creating stretched coordinate perfectly matched layer (PML) absorbers.
""" """
from typing import Sequence, Callable from collections.abc import Sequence, Callable
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray

View File

@ -2,13 +2,14 @@
Solvers and solver interface for FDFD problems. Solvers and solver interface for FDFD problems.
""" """
from typing import Callable, Dict, Any, Optional from typing import Any
from collections.abc import Callable
import logging import logging
import numpy import numpy
from numpy.typing import ArrayLike, NDArray from numpy.typing import ArrayLike, NDArray
from numpy.linalg import norm from numpy.linalg import norm
import scipy.sparse.linalg # type: ignore import scipy.sparse.linalg
from ..fdmath import dx_lists_t, vfdfield_t, vcfdfield_t from ..fdmath import dx_lists_t, vfdfield_t, vcfdfield_t
from . import operators from . import operators
@ -34,16 +35,17 @@ def _scipy_qmr(
Guess for solution (returned even if didn't converge) Guess for solution (returned even if didn't converge)
""" """
''' #
Report on our progress #Report on our progress
''' #
ii = 0 ii = 0
def log_residual(xk: ArrayLike) -> None: def log_residual(xk: ArrayLike) -> None:
nonlocal ii nonlocal ii
ii += 1 ii += 1
if ii % 100 == 0: if ii % 100 == 0:
logger.info('Solver residual at iteration {} : {}'.format(ii, norm(A @ xk - b))) cur_norm = norm(A @ xk - b) / norm(b)
logger.info(f'Solver residual at iteration {ii} : {cur_norm}')
if 'callback' in kwargs: if 'callback' in kwargs:
def augmented_callback(xk: ArrayLike) -> None: def augmented_callback(xk: ArrayLike) -> None:
@ -54,10 +56,9 @@ def _scipy_qmr(
else: else:
kwargs['callback'] = log_residual kwargs['callback'] = log_residual
''' #
Run the actual solve # Run the actual solve
''' #
x, _ = scipy.sparse.linalg.qmr(A, b, **kwargs) x, _ = scipy.sparse.linalg.qmr(A, b, **kwargs)
return x return x
@ -67,12 +68,14 @@ def generic(
dxes: dx_lists_t, dxes: dx_lists_t,
J: vcfdfield_t, J: vcfdfield_t,
epsilon: vfdfield_t, epsilon: vfdfield_t,
mu: Optional[vfdfield_t] = None, mu: vfdfield_t | None = None,
pec: Optional[vfdfield_t] = None, *,
pmc: Optional[vfdfield_t] = None, pec: vfdfield_t | None = None,
pmc: vfdfield_t | None = None,
adjoint: bool = False, adjoint: bool = False,
matrix_solver: Callable[..., ArrayLike] = _scipy_qmr, matrix_solver: Callable[..., ArrayLike] = _scipy_qmr,
matrix_solver_opts: Optional[Dict[str, Any]] = None, matrix_solver_opts: dict[str, Any] | None = None,
E_guess: vcfdfield_t | None = None,
) -> vcfdfield_t: ) -> vcfdfield_t:
""" """
Conjugate gradient FDFD solver using CSR sparse matrices. Conjugate gradient FDFD solver using CSR sparse matrices.
@ -99,6 +102,8 @@ def generic(
which doesn't return convergence info and logs the residual which doesn't return convergence info and logs the residual
every 100 iterations. every 100 iterations.
matrix_solver_opts: Passed as kwargs to `matrix_solver(...)` matrix_solver_opts: Passed as kwargs to `matrix_solver(...)`
E_guess: Guess at the solution E-field. `matrix_solver` must accept an
`x0` argument with the same purpose.
Returns: Returns:
E-field which solves the system. E-field which solves the system.
@ -119,6 +124,13 @@ def generic(
A = Pl @ A0 @ Pr A = Pl @ A0 @ Pr
b = Pl @ b0 b = Pl @ b0
if E_guess is not None:
if adjoint:
x0 = Pr.H @ E_guess
else:
x0 = Pl @ E_guess
matrix_solver_opts['x0'] = x0
x = matrix_solver(A.tocsr(), b, **matrix_solver_opts) x = matrix_solver(A.tocsr(), b, **matrix_solver_opts)
if adjoint: if adjoint:

View File

@ -1,4 +1,4 @@
""" r"""
Operators and helper functions for waveguides with unchanging cross-section. Operators and helper functions for waveguides with unchanging cross-section.
The propagation direction is chosen to be along the z axis, and all fields The propagation direction is chosen to be along the z axis, and all fields
@ -12,180 +12,180 @@ As the z-dependence is known, all the functions in this file assume a 2D grid
Consider Maxwell's equations in continuous space, in the frequency domain. Assuming Consider Maxwell's equations in continuous space, in the frequency domain. Assuming
a structure with some (x, y) cross-section extending uniformly into the z dimension, a structure with some (x, y) cross-section extending uniformly into the z dimension,
with a diagonal $\\epsilon$ tensor, we have with a diagonal $\epsilon$ tensor, we have
$$ $$
\\begin{aligned} \begin{aligned}
\\nabla \\times \\vec{E}(x, y, z) &= -\\imath \\omega \\mu \\vec{H} \\\\ \nabla \times \vec{E}(x, y, z) &= -\imath \omega \mu \vec{H} \\
\\nabla \\times \\vec{H}(x, y, z) &= \\imath \\omega \\epsilon \\vec{E} \\\\ \nabla \times \vec{H}(x, y, z) &= \imath \omega \epsilon \vec{E} \\
\\vec{E}(x,y,z) = (\\vec{E}_t(x, y) + E_z(x, y)\\vec{z}) e^{-\\gamma z} \\\\ \vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\imath \beta z} \\
\\vec{H}(x,y,z) = (\\vec{H}_t(x, y) + H_z(x, y)\\vec{z}) e^{-\\gamma z} \\\\ \vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\imath \beta z} \\
\\end{aligned} \end{aligned}
$$ $$
Expanding the first two equations into vector components, we get Expanding the first two equations into vector components, we get
$$ $$
\\begin{aligned} \begin{aligned}
-\\imath \\omega \\mu_{xx} H_x &= \\partial_y E_z - \\partial_z E_y \\\\ -\imath \omega \mu_{xx} H_x &= \partial_y E_z - \partial_z E_y \\
-\\imath \\omega \\mu_{yy} H_y &= \\partial_z E_x - \\partial_x E_z \\\\ -\imath \omega \mu_{yy} H_y &= \partial_z E_x - \partial_x E_z \\
-\\imath \\omega \\mu_{zz} H_z &= \\partial_x E_y - \\partial_y E_x \\\\ -\imath \omega \mu_{zz} H_z &= \partial_x E_y - \partial_y E_x \\
\\imath \\omega \\epsilon_{xx} E_x &= \\partial_y H_z - \\partial_z H_y \\\\ \imath \omega \epsilon_{xx} E_x &= \partial_y H_z - \partial_z H_y \\
\\imath \\omega \\epsilon_{yy} E_y &= \\partial_z H_x - \\partial_x H_z \\\\ \imath \omega \epsilon_{yy} E_y &= \partial_z H_x - \partial_x H_z \\
\\imath \\omega \\epsilon_{zz} E_z &= \\partial_x H_y - \\partial_y H_x \\\\ \imath \omega \epsilon_{zz} E_z &= \partial_x H_y - \partial_y H_x \\
\\end{aligned} \end{aligned}
$$ $$
Substituting in our expressions for $\\vec{E}$, $\\vec{H}$ and discretizing: Substituting in our expressions for $\vec{E}$, $\vec{H}$ and discretizing:
$$ $$
\\begin{aligned} \begin{aligned}
-\\imath \\omega \\mu_{xx} H_x &= \\tilde{\\partial}_y E_z + \\gamma E_y \\\\ -\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta E_y \\
-\\imath \\omega \\mu_{yy} H_y &= -\\gamma E_x - \\tilde{\\partial}_x E_z \\\\ -\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \tilde{\partial}_x E_z \\
-\\imath \\omega \\mu_{zz} H_z &= \\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x \\\\ -\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
\\imath \\omega \\epsilon_{xx} E_x &= \\hat{\\partial}_y H_z + \\gamma H_y \\\\ \imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta H_y \\
\\imath \\omega \\epsilon_{yy} E_y &= -\\gamma H_x - \\hat{\\partial}_x H_z \\\\ \imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \hat{\partial}_x H_z \\
\\imath \\omega \\epsilon_{zz} E_z &= \\hat{\\partial}_x H_y - \\hat{\\partial}_y H_x \\\\ \imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
\\end{aligned} \end{aligned}
$$ $$
Rewrite the last three equations as Rewrite the last three equations as
$$
\\begin{aligned}
\\gamma H_y &= \\imath \\omega \\epsilon_{xx} E_x - \\hat{\\partial}_y H_z \\\\
\\gamma H_x &= -\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z \\\\
\\imath \\omega E_z &= \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x H_y - \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y H_x \\\\
\\end{aligned}
$$
Now apply $\\gamma \\tilde{\\partial}_x$ to the last equation,
then substitute in for $\\gamma H_x$ and $\\gamma H_y$:
$$ $$
\\begin{aligned} \begin{aligned}
\\gamma \\tilde{\\partial}_x \\imath \\omega E_z &= \\gamma \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x H_y \imath \beta H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
- \\gamma \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y H_x \\\\ \imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
&= \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x ( \\imath \\omega \\epsilon_{xx} E_x - \\hat{\\partial}_y H_z) \imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
- \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (-\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z) \\\\ \end{aligned}
&= \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x ( \\imath \\omega \\epsilon_{xx} E_x)
- \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (-\\imath \\omega \\epsilon_{yy} E_y) \\\\
\\gamma \\tilde{\\partial}_x E_z &= \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
+ \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y) \\\\
\\end{aligned}
$$ $$
With a similar approach (but using $\\gamma \\tilde{\\partial}_y$ instead), we can get Now apply $\imath \beta \tilde{\partial}_x$ to the last equation,
then substitute in for $\imath \beta H_x$ and $\imath \beta H_y$:
$$ $$
\\begin{aligned} \begin{aligned}
\\gamma \\tilde{\\partial}_y E_z &= \\tilde{\\partial}_y \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x) \imath \beta \tilde{\partial}_x \imath \omega E_z &= \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
+ \\tilde{\\partial}_y \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y) \\\\ - \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
\\end{aligned} &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z)
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x)
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y) \\
\imath \beta \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
\end{aligned}
$$ $$
We can combine this equation for $\\gamma \\tilde{\\partial}_y E_z$ with With a similar approach (but using $\imath \beta \tilde{\partial}_y$ instead), we can get
the unused $\\imath \\omega \\mu_{xx} H_x$ and $\\imath \\omega \\mu_{yy} H_y$ equations to get
$$ $$
\\begin{aligned} \begin{aligned}
-\\imath \\omega \\mu_{xx} \\gamma H_x &= \\gamma^2 E_y + \\gamma \\tilde{\\partial}_y E_z \\\\ \imath \beta \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
-\\imath \\omega \\mu_{xx} \\gamma H_x &= \\gamma^2 E_y + \\tilde{\\partial}_y ( + \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
\\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x) \end{aligned}
+ \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y) $$
)\\\\
\\end{aligned} We can combine this equation for $\imath \beta \tilde{\partial}_y E_z$ with
the unused $\imath \omega \mu_{xx} H_x$ and $\imath \omega \mu_{yy} H_y$ equations to get
$$
\begin{aligned}
-\imath \omega \mu_{xx} \imath \beta H_x &= -\beta^2 E_y + \imath \beta \tilde{\partial}_y E_z \\
-\imath \omega \mu_{xx} \imath \beta H_x &= -\beta^2 E_y + \tilde{\partial}_y (
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
)\\
\end{aligned}
$$ $$
and and
$$ $$
\\begin{aligned} \begin{aligned}
-\\imath \\omega \\mu_{yy} \\gamma H_y &= -\\gamma^2 E_x - \\gamma \\tilde{\\partial}_x E_z \\\\ -\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \imath \beta \tilde{\partial}_x E_z \\
-\\imath \\omega \\mu_{yy} \\gamma H_y &= -\\gamma^2 E_x - \\tilde{\\partial}_x ( -\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \tilde{\partial}_x (
\\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x) \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y) + \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
)\\\\ )\\
\\end{aligned} \end{aligned}
$$ $$
However, based on our rewritten equation for $\\gamma H_x$ and the so-far unused However, based on our rewritten equation for $\imath \beta H_x$ and the so-far unused
equation for $\\imath \\omega \\mu_{zz} H_z$ we can also write equation for $\imath \omega \mu_{zz} H_z$ we can also write
$$ $$
\\begin{aligned} \begin{aligned}
-\\imath \\omega \\mu_{xx} (\\gamma H_x) &= -\\imath \\omega \\mu_{xx} (-\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z) \\\\ -\imath \omega \mu_{xx} (\imath \beta H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
&= -\\omega^2 \\mu_{xx} \\epsilon_{yy} E_y &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y + \imath \omega \mu_{xx} \hat{\partial}_x (
+\\imath \\omega \\mu_{xx} \\hat{\\partial}_x ( \frac{1}{-\imath \omega \mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x)) \\
\\frac{1}{-\\imath \\omega \\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x)) \\\\ &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
&= -\\omega^2 \\mu_{xx} \\epsilon_{yy} E_y -\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
-\\mu_{xx} \\hat{\\partial}_x \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\ \end{aligned}
\\end{aligned}
$$ $$
and, similarly, and, similarly,
$$ $$
\\begin{aligned} \begin{aligned}
-\\imath \\omega \\mu_{yy} (\\gamma H_y) &= \\omega^2 \\mu_{yy} \\epsilon_{xx} E_x -\imath \omega \mu_{yy} (\imath \beta H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
+\\mu_{yy} \\hat{\\partial}_y \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\ +\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
\\end{aligned} \end{aligned}
$$ $$
By combining both pairs of expressions, we get By combining both pairs of expressions, we get
$$ $$
\\begin{aligned} \begin{aligned}
-\\gamma^2 E_x - \\tilde{\\partial}_x ( \beta^2 E_x - \tilde{\partial}_x (
\\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x) \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y) + \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
) &= \\omega^2 \\mu_{yy} \\epsilon_{xx} E_x ) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
+\\mu_{yy} \\hat{\\partial}_y \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\ +\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
\\gamma^2 E_y + \\tilde{\\partial}_y ( -\beta^2 E_y + \tilde{\partial}_y (
\\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x) \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y) + \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
) &= -\\omega^2 \\mu_{xx} \\epsilon_{yy} E_y ) &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
-\\mu_{xx} \\hat{\\partial}_x \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\ -\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
\\end{aligned} \end{aligned}
$$ $$
Using these, we can construct the eigenvalue problem Using these, we can construct the eigenvalue problem
$$ $$
\\beta^2 \\begin{bmatrix} E_x \\\\ \beta^2 \begin{bmatrix} E_x \\
E_y \\end{bmatrix} = E_y \end{bmatrix} =
(\\omega^2 \\begin{bmatrix} \\mu_{yy} \\epsilon_{xx} & 0 \\\\ (\omega^2 \begin{bmatrix} \mu_{yy} \epsilon_{xx} & 0 \\
0 & \\mu_{xx} \\epsilon_{yy} \\end{bmatrix} + 0 & \mu_{xx} \epsilon_{yy} \end{bmatrix} +
\\begin{bmatrix} -\\mu_{yy} \\hat{\\partial}_y \\\\ \begin{bmatrix} -\mu_{yy} \hat{\partial}_y \\
\\mu_{xx} \\hat{\\partial}_x \\end{bmatrix} \\mu_{zz}^{-1} \mu_{xx} \hat{\partial}_x \end{bmatrix} \mu_{zz}^{-1}
\\begin{bmatrix} -\\tilde{\\partial}_y & \\tilde{\\partial}_x \\end{bmatrix} + \begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
\\begin{bmatrix} \\tilde{\\partial}_x \\\\ \begin{bmatrix} \tilde{\partial}_x \\
\\tilde{\\partial}_y \\end{bmatrix} \\epsilon_{zz}^{-1} \tilde{\partial}_y \end{bmatrix} \epsilon_{zz}^{-1}
\\begin{bmatrix} \\hat{\\partial}_x \\epsilon_{xx} & \\hat{\\partial}_y \\epsilon_{yy} \\end{bmatrix}) \begin{bmatrix} \hat{\partial}_x \epsilon_{xx} & \hat{\partial}_y \epsilon_{yy} \end{bmatrix})
\\begin{bmatrix} E_x \\\\ \begin{bmatrix} E_x \\
E_y \\end{bmatrix} E_y \end{bmatrix}
$$ $$
where $\\gamma = \\imath\\beta$. In the literature, $\\beta$ is usually used to denote In the literature, $\beta$ is usually used to denote the lossless/real part of the propagation constant,
the lossless/real part of the propagation constant, but in `meanas` it is allowed to but in `meanas` it is allowed to be complex.
be complex.
An equivalent eigenvalue problem can be formed using the $H_x$ and $H_y$ fields, if those are more convenient. An equivalent eigenvalue problem can be formed using the $H_x$ and $H_y$ fields, if those are more convenient.
Note that $E_z$ was never discretized, so $\\gamma$ and $\\beta$ will need adjustment Note that $E_z$ was never discretized, so $\beta$ will need adjustment to account for numerical dispersion
to account for numerical dispersion if the result is introduced into a space with a discretized z-axis. if the result is introduced into a space with a discretized z-axis.
""" """
# TODO update module docs # TODO update module docs
from typing import Any from typing import Any
from collections.abc import Sequence
import numpy import numpy
from numpy.typing import NDArray, ArrayLike from numpy.typing import NDArray, ArrayLike
from numpy.linalg import norm from numpy.linalg import norm
import scipy.sparse as sparse # type: ignore from scipy import sparse
from ..fdmath.operators import deriv_forward, deriv_back, cross from ..fdmath.operators import deriv_forward, deriv_back, cross
from ..fdmath import unvec, dx_lists_t, vfdfield_t, vcfdfield_t from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
@ -198,7 +198,7 @@ def operator_e(
epsilon: vfdfield_t, epsilon: vfdfield_t,
mu: vfdfield_t | None = None, mu: vfdfield_t | None = None,
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" r"""
Waveguide operator of the form Waveguide operator of the form
omega**2 * mu * epsilon + omega**2 * mu * epsilon +
@ -210,18 +210,18 @@ def operator_e(
More precisely, the operator is More precisely, the operator is
$$ $$
\\omega^2 \\begin{bmatrix} \\mu_{yy} \\epsilon_{xx} & 0 \\\\ \omega^2 \begin{bmatrix} \mu_{yy} \epsilon_{xx} & 0 \\
0 & \\mu_{xx} \\epsilon_{yy} \\end{bmatrix} + 0 & \mu_{xx} \epsilon_{yy} \end{bmatrix} +
\\begin{bmatrix} -\\mu_{yy} \\hat{\\partial}_y \\\\ \begin{bmatrix} -\mu_{yy} \hat{\partial}_y \\
\\mu_{xx} \\hat{\\partial}_x \\end{bmatrix} \\mu_{zz}^{-1} \mu_{xx} \hat{\partial}_x \end{bmatrix} \mu_{zz}^{-1}
\\begin{bmatrix} -\\tilde{\\partial}_y & \\tilde{\\partial}_x \\end{bmatrix} + \begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
\\begin{bmatrix} \\tilde{\\partial}_x \\\\ \begin{bmatrix} \tilde{\partial}_x \\
\\tilde{\\partial}_y \\end{bmatrix} \\epsilon_{zz}^{-1} \tilde{\partial}_y \end{bmatrix} \epsilon_{zz}^{-1}
\\begin{bmatrix} \\hat{\\partial}_x \\epsilon_{xx} & \\hat{\\partial}_y \\epsilon_{yy} \\end{bmatrix} \begin{bmatrix} \hat{\partial}_x \epsilon_{xx} & \hat{\partial}_y \epsilon_{yy} \end{bmatrix}
$$ $$
$\\tilde{\\partial}_x$ and $\\hat{\\partial}_x$ are the forward and backward derivatives along x, $\tilde{\partial}_x$ and $\hat{\partial}_x$ are the forward and backward derivatives along x,
and each $\\epsilon_{xx}$, $\\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material and each $\epsilon_{xx}$, $\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material
property distribution. property distribution.
This operator can be used to form an eigenvalue problem of the form This operator can be used to form an eigenvalue problem of the form
@ -253,9 +253,11 @@ def operator_e(
mu_yx = sparse.diags(numpy.hstack((mu_parts[1], mu_parts[0]))) mu_yx = sparse.diags(numpy.hstack((mu_parts[1], mu_parts[0])))
mu_z_inv = sparse.diags(1 / mu_parts[2]) mu_z_inv = sparse.diags(1 / mu_parts[2])
op = omega * omega * mu_yx @ eps_xy + \ op = (
mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx)) + \ omega * omega * mu_yx @ eps_xy
sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy + mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx))
+ sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
)
return op return op
@ -265,7 +267,7 @@ def operator_h(
epsilon: vfdfield_t, epsilon: vfdfield_t,
mu: vfdfield_t | None = None, mu: vfdfield_t | None = None,
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" r"""
Waveguide operator of the form Waveguide operator of the form
omega**2 * epsilon * mu + omega**2 * epsilon * mu +
@ -277,18 +279,18 @@ def operator_h(
More precisely, the operator is More precisely, the operator is
$$ $$
\\omega^2 \\begin{bmatrix} \\epsilon_{yy} \\mu_{xx} & 0 \\\\ \omega^2 \begin{bmatrix} \epsilon_{yy} \mu_{xx} & 0 \\
0 & \\epsilon_{xx} \\mu_{yy} \\end{bmatrix} + 0 & \epsilon_{xx} \mu_{yy} \end{bmatrix} +
\\begin{bmatrix} -\\epsilon_{yy} \\tilde{\\partial}_y \\\\ \begin{bmatrix} -\epsilon_{yy} \tilde{\partial}_y \\
\\epsilon_{xx} \\tilde{\\partial}_x \\end{bmatrix} \\epsilon_{zz}^{-1} \epsilon_{xx} \tilde{\partial}_x \end{bmatrix} \epsilon_{zz}^{-1}
\\begin{bmatrix} -\\hat{\\partial}_y & \\hat{\\partial}_x \\end{bmatrix} + \begin{bmatrix} -\hat{\partial}_y & \hat{\partial}_x \end{bmatrix} +
\\begin{bmatrix} \\hat{\\partial}_x \\\\ \begin{bmatrix} \hat{\partial}_x \\
\\hat{\\partial}_y \\end{bmatrix} \\mu_{zz}^{-1} \hat{\partial}_y \end{bmatrix} \mu_{zz}^{-1}
\\begin{bmatrix} \\tilde{\\partial}_x \\mu_{xx} & \\tilde{\\partial}_y \\mu_{yy} \\end{bmatrix} \begin{bmatrix} \tilde{\partial}_x \mu_{xx} & \tilde{\partial}_y \mu_{yy} \end{bmatrix}
$$ $$
$\\tilde{\\partial}_x$ and $\\hat{\\partial}_x$ are the forward and backward derivatives along x, $\tilde{\partial}_x$ and $\hat{\partial}_x$ are the forward and backward derivatives along x,
and each $\\epsilon_{xx}$, $\\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material and each $\epsilon_{xx}$, $\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material
property distribution. property distribution.
This operator can be used to form an eigenvalue problem of the form This operator can be used to form an eigenvalue problem of the form
@ -320,10 +322,11 @@ def operator_h(
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1]))) mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
mu_z_inv = sparse.diags(1 / mu_parts[2]) mu_z_inv = sparse.diags(1 / mu_parts[2])
op = omega * omega * eps_yx @ mu_xy + \ op = (
eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx)) + \ omega * omega * eps_yx @ mu_xy
sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy + eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx))
+ sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
)
return op return op
@ -410,18 +413,13 @@ def _normalized_fields(
shape = [s.size for s in dxes[0]] shape = [s.size for s in dxes[0]]
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)] dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
E = unvec(e, shape)
H = unvec(h, shape)
# Find time-averaged Sz and normalize to it # Find time-averaged Sz and normalize to it
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting # H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
phase = numpy.exp(-1j * -prop_phase / 2) phase = numpy.exp(-1j * -prop_phase / 2)
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0] Sz_tavg = inner_product(e, h, dxes=dxes, prop_phase=prop_phase, conj_h=True).real
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1] assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}'
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
assert Sz_tavg > 0, 'Found a mode propagating in the wrong direction! Sz_tavg={}'.format(Sz_tavg)
energy = epsilon * e.conj() * e energy = numpy.real(epsilon * e.conj() * e)
norm_amplitude = 1 / numpy.sqrt(Sz_tavg) norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
@ -431,6 +429,7 @@ def _normalized_fields(
sign = numpy.sign(E_weighted[:, sign = numpy.sign(E_weighted[:,
:max(shape[0] // 2, 1), :max(shape[0] // 2, 1),
:max(shape[1] // 2, 1)].real.sum()) :max(shape[1] // 2, 1)].real.sum())
assert sign != 0
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle) norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
@ -531,10 +530,37 @@ def exy2e(
dxes: dx_lists_t, dxes: dx_lists_t,
epsilon: vfdfield_t, epsilon: vfdfield_t,
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" r"""
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields, Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
into a vectorized E containing all three E components into a vectorized E containing all three E components
From the operator derivation (see module docs), we have
$$
\imath \omega \epsilon_{zz} E_z = \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
$$
as well as the intermediate equations
$$
\begin{aligned}
\imath \beta H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
\end{aligned}
$$
Combining these, we get
$$
\begin{aligned}
E_z &= \frac{1}{- \omega \beta \epsilon_{zz}} ((
\hat{\partial}_y \hat{\partial}_x H_z
-\hat{\partial}_x \hat{\partial}_y H_z)
+ \imath \omega (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y))
&= \frac{1}{\imath \beta \epsilon_{zz}} (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y)
\end{aligned}
$$
Args: Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)` wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy` It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
@ -717,8 +743,111 @@ def e_err(
return float(norm(op) / norm(e)) return float(norm(op) / norm(e))
def sensitivity(
e_norm: vcfdfield_t,
h_norm: vcfdfield_t,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t | None = None,
) -> vcfdfield_t:
r"""
Given a waveguide structure (`dxes`, `epsilon`, `mu`) and mode fields
(`e_norm`, `h_norm`, `wavenumber`, `omega`), calculates the sensitivity of the wavenumber
$\beta$ to changes in the dielectric structure $\epsilon$.
The output is a vector of the same size as `vec(epsilon)`, with each element specifying the
sensitivity of `wavenumber` to changes in the corresponding element in `vec(epsilon)`, i.e.
$$sens_{i} = \frac{\partial\beta}{\partial\epsilon_i}$$
An adjoint approach is used to calculate the sensitivity; the derivation is provided here:
Starting with the eigenvalue equation
$$\beta^2 E_{xy} = A_E E_{xy}$$
where $A_E$ is the waveguide operator from `operator_e()`, and $E_{xy} = \begin{bmatrix} E_x \\
E_y \end{bmatrix}$,
we can differentiate with respect to one of the $\epsilon$ elements (i.e. at one Yee grid point), $\epsilon_i$:
$$
(2 \beta) \partial_{\epsilon_i}(\beta) E_{xy} + \beta^2 \partial_{\epsilon_i} E_{xy}
= \partial_{\epsilon_i}(A_E) E_{xy} + A_E \partial_{\epsilon_i} E_{xy}
$$
We then multiply by $H_{yx}^\star = \begin{bmatrix}H_y^\star \\ -H_x^\star \end{bmatrix}$ from the left:
$$
(2 \beta) \partial_{\epsilon_i}(\beta) H_{yx}^\star E_{xy} + \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy}
= H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} + H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy}
$$
However, $H_{yx}^\star$ is actually a left-eigenvector of $A_E$. This can be verified by inspecting
the form of `operator_h` ($A_H$) and comparing its conjugate transpose to `operator_e` ($A_E$). Also, note
$H_{yx}^\star \cdot E_{xy} = H^\star \times E$ recalls the mode orthogonality relation. See doi:10.5194/ars-9-85-201
for a similar approach. Therefore,
$$
H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy} = \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy}
$$
and we can simplify to
$$
\partial_{\epsilon_i}(\beta)
= \frac{1}{2 \beta} \frac{H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} }{H_{yx}^\star E_{xy}}
$$
This expression can be quickly calculated for all $i$ by writing out the various terms of
$\partial_{\epsilon_i} A_E$ and recognizing that the vector-matrix-vector products (i.e. scalars)
$sens_i = \vec{v}_{left} \partial_{\epsilon_i} (\epsilon_{xyz}) \vec{v}_{right}$, indexed by $i$, can be expressed as
elementwise multiplications $\vec{sens} = \vec{v}_{left} \star \vec{v}_{right}$
Args:
e_norm: Normalized, vectorized E_xyz field for the mode. E.g. as returned by `normalized_fields_e`.
h_norm: Normalized, vectorized H_xyz field for the mode. E.g. as returned by `normalized_fields_e`.
wavenumber: Propagation constant for the mode. The z-axis is assumed to be continuous (i.e. without numerical dispersion).
omega: The angular frequency of the system.
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representation of the operator.
"""
if mu is None:
mu = numpy.ones_like(epsilon)
Dfx, Dfy = deriv_forward(dxes[0])
Dbx, Dby = deriv_back(dxes[1])
eps_x, eps_y, eps_z = numpy.split(epsilon, 3)
eps_xy = sparse.diags(numpy.hstack((eps_x, eps_y)))
eps_z_inv = sparse.diags(1 / eps_z)
mu_x, mu_y, _mu_z = numpy.split(mu, 3)
mu_yx = sparse.diags(numpy.hstack((mu_y, mu_x)))
da_exxhyy = vec(dxes[1][0][:, None] * dxes[0][1][None, :])
da_eyyhxx = vec(dxes[1][1][None, :] * dxes[0][0][:, None])
ev_xy = numpy.concatenate(numpy.split(e_norm, 3)[:2]) * numpy.concatenate([da_exxhyy, da_eyyhxx])
hx, hy, hz = numpy.split(h_norm, 3)
hv_yx_conj = numpy.conj(numpy.concatenate([hy, -hx]))
sens_xy1 = (hv_yx_conj @ (omega * omega * mu_yx)) * ev_xy
sens_xy2 = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby))) * ev_xy
sens_z = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ (-eps_z_inv * eps_z_inv)) * (sparse.hstack((Dbx, Dby)) @ eps_xy @ ev_xy)
norm = hv_yx_conj @ ev_xy
sens_tot = numpy.concatenate([sens_xy1 + sens_xy2, sens_z]) / (2 * wavenumber * norm)
return sens_tot
def solve_modes( def solve_modes(
mode_numbers: list[int], mode_numbers: Sequence[int],
omega: complex, omega: complex,
dxes: dx_lists_t, dxes: dx_lists_t,
epsilon: vfdfield_t, epsilon: vfdfield_t,
@ -739,32 +868,38 @@ def solve_modes(
ability to find the correct mode. Default 2. ability to find the correct mode. Default 2.
Returns: Returns:
e_xys: list of vfdfield_t specifying fields e_xys: NDArray of vfdfield_t specifying fields. First dimension is mode number.
wavenumbers: list of wavenumbers wavenumbers: list of wavenumbers
""" """
''' #
Solve for the largest-magnitude eigenvalue of the real operator # Solve for the largest-magnitude eigenvalue of the real operator
''' #
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes] dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
mu_real = None if mu is None else numpy.real(mu) mu_real = None if mu is None else numpy.real(mu)
A_r = operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), mu_real) A_r = operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), mu_real)
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin) eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
e_xys = eigvecs[:, -(numpy.array(mode_numbers) + 1)] keep_inds = -(numpy.array(mode_numbers) + 1)
e_xys = eigvecs[:, keep_inds].T
eigvals = eigvals[keep_inds]
''' #
Now solve for the eigenvector of the full operator, using the real operator's # Now solve for the eigenvector of the full operator, using the real operator's
eigenvector as an initial guess for Rayleigh quotient iteration. # eigenvector as an initial guess for Rayleigh quotient iteration.
''' #
A = operator_e(omega, dxes, epsilon, mu) A = operator_e(omega, dxes, epsilon, mu)
for nn in range(len(mode_numbers)): for nn in range(len(mode_numbers)):
eigvals[nn], e_xys[:, nn] = rayleigh_quotient_iteration(A, e_xys[:, nn]) eigvals[nn], e_xys[nn, :] = rayleigh_quotient_iteration(A, e_xys[nn, :])
# Calculate the wave-vector (force the real part to be positive) # Calculate the wave-vector (force the real part to be positive)
wavenumbers = numpy.sqrt(eigvals) wavenumbers = numpy.sqrt(eigvals)
wavenumbers *= numpy.sign(numpy.real(wavenumbers)) wavenumbers *= numpy.sign(numpy.real(wavenumbers))
order = wavenumbers.argsort()[::-1]
e_xys = e_xys[order]
wavenumbers = wavenumbers[order]
return e_xys, wavenumbers return e_xys, wavenumbers
@ -786,4 +921,38 @@ def solve_mode(
""" """
kwargs['mode_numbers'] = [mode_number] kwargs['mode_numbers'] = [mode_number]
e_xys, wavenumbers = solve_modes(*args, **kwargs) e_xys, wavenumbers = solve_modes(*args, **kwargs)
return e_xys[:, 0], wavenumbers[0] return e_xys[0], wavenumbers[0]
def inner_product( # TODO documentation
e1: vcfdfield_t,
h2: vcfdfield_t,
dxes: dx_lists_t,
prop_phase: float = 0,
conj_h: bool = False,
trapezoid: bool = False,
) -> complex:
shape = [s.size for s in dxes[0]]
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
phase = numpy.exp(-1j * -prop_phase / 2)
E1 = unvec(e1, shape)
H2 = unvec(h2, shape) * phase
if conj_h:
H2 = numpy.conj(H2)
# Find time-averaged Sz and normalize to it
dxes_real = [[numpy.real(dxyz) for dxyz in dxeh] for dxeh in dxes]
if trapezoid:
Sz_a = numpy.trapezoid(numpy.trapezoid(E1[0] * H2[1], numpy.cumsum(dxes_real[0][1])), numpy.cumsum(dxes_real[1][0]))
Sz_b = numpy.trapezoid(numpy.trapezoid(E1[1] * H2[0], numpy.cumsum(dxes_real[0][0])), numpy.cumsum(dxes_real[1][1]))
else:
Sz_a = E1[0] * H2[1] * dxes_real[1][0][:, None] * dxes_real[0][1][None, :]
Sz_b = E1[1] * H2[0] * dxes_real[0][0][:, None] * dxes_real[1][1][None, :]
Sz = 0.5 * (Sz_a.sum() - Sz_b.sum())
return Sz

View File

@ -4,9 +4,11 @@ Tools for working with waveguide modes in 3D domains.
This module relies heavily on `waveguide_2d` and mostly just transforms This module relies heavily on `waveguide_2d` and mostly just transforms
its parameters into 2D equivalents and expands the results back into 3D. its parameters into 2D equivalents and expands the results back into 3D.
""" """
from typing import Sequence, Any from typing import Any
from collections.abc import Sequence
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
from numpy import complexfloating
from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, cfdfield_t from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, cfdfield_t
from . import operators, waveguide_2d from . import operators, waveguide_2d
@ -21,7 +23,7 @@ def solve_mode(
slices: Sequence[slice], slices: Sequence[slice],
epsilon: fdfield_t, epsilon: fdfield_t,
mu: fdfield_t | None = None, mu: fdfield_t | None = None,
) -> dict[str, complex | NDArray[numpy.float_]]: ) -> dict[str, complex | NDArray[complexfloating]]:
""" """
Given a 3D grid, selects a slice from the grid and attempts to Given a 3D grid, selects a slice from the grid and attempts to
solve for an eigenmode propagating through that slice. solve for an eigenmode propagating through that slice.
@ -40,8 +42,8 @@ def solve_mode(
Returns: Returns:
``` ```
{ {
'E': list[NDArray[numpy.float_]], 'E': NDArray[complexfloating],
'H': list[NDArray[numpy.float_]], 'H': NDArray[complexfloating],
'wavenumber': complex, 'wavenumber': complex,
} }
``` ```
@ -51,9 +53,9 @@ def solve_mode(
slices = tuple(slices) slices = tuple(slices)
''' #
Solve the 2D problem in the specified plane # Solve the 2D problem in the specified plane
''' #
# Define rotation to set z as propagation direction # Define rotation to set z as propagation direction
order = numpy.roll(range(3), 2 - axis) order = numpy.roll(range(3), 2 - axis)
reverse_order = numpy.roll(range(3), axis - 2) reverse_order = numpy.roll(range(3), axis - 2)
@ -71,9 +73,10 @@ def solve_mode(
} }
e_xy, wavenumber_2d = waveguide_2d.solve_mode(mode_number, **args_2d) e_xy, wavenumber_2d = waveguide_2d.solve_mode(mode_number, **args_2d)
''' #
Apply corrections and expand to 3D # Apply corrections and expand to 3D
''' #
# Correct wavenumber to account for numerical dispersion. # Correct wavenumber to account for numerical dispersion.
wavenumber = 2 / dx_prop * numpy.arcsin(wavenumber_2d * dx_prop / 2) wavenumber = 2 / dx_prop * numpy.arcsin(wavenumber_2d * dx_prop / 2)

View File

@ -1,31 +1,102 @@
""" r"""
Operators and helper functions for cylindrical waveguides with unchanging cross-section. Operators and helper functions for cylindrical waveguides with unchanging cross-section.
WORK IN PROGRESS, CURRENTLY BROKEN Waveguide operator is derived according to 10.1364/OL.33.001848.
The curl equations in the complex coordinate system become
As the z-dependence is known, all the functions in this file assume a 2D grid $$
\begin{aligned}
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta frac{E_y}{\tilde{t}_x} \\
-\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \frac{1}{\hat{t}_x} \tilde{\partial}_x \tilde{t}_x E_z \\
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta \frac{H_y}{\hat{T}} \\
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \{1}{\tilde{t}_x} \hat{\partial}_x \hat{t}_x} H_z \\
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
\end{aligned}
$$
where $t_x = 1 + \frac{\Delta_{x, m}}{R_0}$ is the grid spacing adjusted by the nominal radius $R0$.
Rewrite the last three equations as
$$
\begin{aligned}
\imath \beta H_y &= \imath \omega \hat{t}_x \epsilon_{xx} E_x - \hat{t}_x \hat{\partial}_y H_z \\
\imath \beta H_x &= -\imath \omega \hat{t}_x \epsilon_{yy} E_y - \hat{t}_x \hat{\partial}_x H_z \\
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
\end{aligned}
$$
The derivation then follows the same steps as the straight waveguide, leading to the eigenvalue problem
$$
\beta^2 \begin{bmatrix} E_x \\
E_y \end{bmatrix} =
(\omega^2 \begin{bmatrix} T_b T_b \mu_{yy} \epsilon_{xx} & 0 \\
0 & T_a T_a \mu_{xx} \epsilon_{yy} \end{bmatrix} +
\begin{bmatrix} -T_b \mu_{yy} \hat{\partial}_y \\
T_a \mu_{xx} \hat{\partial}_x \end{bmatrix} T_b \mu_{zz}^{-1}
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
\begin{bmatrix} \tilde{\partial}_x \\
\tilde{\partial}_y \end{bmatrix} T_a \epsilon_{zz}^{-1}
\begin{bmatrix} \hat{\partial}_x T_b \epsilon_{xx} & \hat{\partial}_y T_a \epsilon_{yy} \end{bmatrix})
\begin{bmatrix} E_x \\
E_y \end{bmatrix}
$$
which resembles the straight waveguide eigenproblem with additonal $T_a$ and $T_b$ terms. These
are diagonal matrices containing the $t_x$ values:
$$
\begin{aligned}
T_a &= 1 + \frac{\Delta_{x, m }}{R_0}
T_b &= 1 + \frac{\Delta_{x, m + \frac{1}{2} }}{R_0}
\end{aligned}
TODO: consider 10.1364/OE.20.021583 for an alternate approach
$$
As in the straight waveguide case, all the functions in this file assume a 2D grid
(i.e. `dxes = [[[dr_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dr_h_0, ...], [dy_h_0, ...]]]`). (i.e. `dxes = [[[dr_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dr_h_0, ...], [dy_h_0, ...]]]`).
""" """
# TODO update module docs from typing import Any, cast
from collections.abc import Sequence
import logging
import numpy import numpy
import scipy.sparse as sparse # type: ignore from numpy.typing import NDArray, ArrayLike
from scipy import sparse
from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, vfdfield_t, cfdfield_t from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
from ..fdmath.operators import deriv_forward, deriv_back from ..fdmath.operators import deriv_forward, deriv_back
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
from . import waveguide_2d
logger = logging.getLogger(__name__)
def cylindrical_operator( def cylindrical_operator(
omega: complex, omega: float,
dxes: dx_lists_t, dxes: dx_lists_t,
epsilon: vfdfield_t, epsilon: vfdfield_t,
r0: float, rmin: float,
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" r"""
Cylindrical coordinate waveguide operator of the form Cylindrical coordinate waveguide operator of the form
TODO $$
(\omega^2 \begin{bmatrix} T_b T_b \mu_{yy} \epsilon_{xx} & 0 \\
0 & T_a T_a \mu_{xx} \epsilon_{yy} \end{bmatrix} +
\begin{bmatrix} -T_b \mu_{yy} \hat{\partial}_y \\
T_a \mu_{xx} \hat{\partial}_x \end{bmatrix} T_b \mu_{zz}^{-1}
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
\begin{bmatrix} \tilde{\partial}_x \\
\tilde{\partial}_y \end{bmatrix} T_a \epsilon_{zz}^{-1}
\begin{bmatrix} \hat{\partial}_x T_b \epsilon_{xx} & \hat{\partial}_y T_a \epsilon_{yy} \end{bmatrix})
\begin{bmatrix} E_x \\
E_y \end{bmatrix}
$$
for use with a field vector of the form `[E_r, E_y]`. for use with a field vector of the form `[E_r, E_y]`.
@ -35,12 +106,13 @@ def cylindrical_operator(
which can then be solved for the eigenmodes of the system which can then be solved for the eigenmodes of the system
(an `exp(-i * wavenumber * theta)` theta-dependence is assumed for the fields). (an `exp(-i * wavenumber * theta)` theta-dependence is assumed for the fields).
(NOTE: See module docs and 10.1364/OL.33.001848)
Args: Args:
omega: The angular frequency of the system omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D) dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid epsilon: Vectorized dielectric constant grid
r0: Radius of curvature for the simulation. This should be the minimum value of rmin: Radius at the left edge of the simulation domain (at minimum 'x')
r within the simulation domain.
Returns: Returns:
Sparse matrix representation of the operator Sparse matrix representation of the operator
@ -49,44 +121,34 @@ def cylindrical_operator(
Dfx, Dfy = deriv_forward(dxes[0]) Dfx, Dfy = deriv_forward(dxes[0])
Dbx, Dby = deriv_back(dxes[1]) Dbx, Dby = deriv_back(dxes[1])
rx = r0 + numpy.cumsum(dxes[0][0]) Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
ry = r0 + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0])
tx = rx / r0
ty = ry / r0
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
eps_parts = numpy.split(epsilon, 3) eps_parts = numpy.split(epsilon, 3)
eps_x = sparse.diags(eps_parts[0]) eps_x = sparse.diags_array(eps_parts[0])
eps_y = sparse.diags(eps_parts[1]) eps_y = sparse.diags_array(eps_parts[1])
eps_z_inv = sparse.diags(1 / eps_parts[2]) eps_z_inv = sparse.diags_array(1 / eps_parts[2])
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
b0 = Dbx @ Ty @ Dfy
b1 = Dby @ Ty @ Dfx
diag = sparse.block_diag
omega2 = omega * omega omega2 = omega * omega
diag = sparse.block_diag
op = (omega2 * diag((Tx, Ty)) + pa) @ diag((a0, a1)) + \ sq0 = omega2 * diag((Tb @ Tb @ eps_x,
- (sparse.bmat(((None, Ty), (Tx, None))) + pb / omega2) @ diag((b0, b1)) Ta @ Ta @ eps_y))
lin0 = sparse.vstack((-Tb @ Dby, Ta @ Dbx)) @ Tb @ sparse.hstack((-Dfy, Dfx))
lin1 = sparse.vstack((Dfx, Dfy)) @ Ta @ eps_z_inv @ sparse.hstack((Dbx @ Tb @ eps_x,
Dby @ Ta @ eps_y))
op = sq0 + lin0 + lin1
return op return op
def solve_mode( def solve_modes(
mode_number: int, mode_numbers: Sequence[int],
omega: complex, omega: float,
dxes: dx_lists_t, dxes: dx_lists_t,
epsilon: vfdfield_t, epsilon: vfdfield_t,
r0: float, rmin: float,
) -> dict[str, complex | cfdfield_t]: mode_margin: int = 2,
) -> tuple[vcfdfield_t, NDArray[numpy.complex128]]:
""" """
TODO: fixup
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
of the bent waveguide with the specified mode number. of the bent waveguide with the specified mode number.
@ -96,48 +158,345 @@ def solve_mode(
dxes: Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types. dxes: Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types.
The first coordinate is assumed to be r, the second is y. The first coordinate is assumed to be r, the second is y.
epsilon: Dielectric constant epsilon: Dielectric constant
r0: Radius of curvature for the simulation. This should be the minimum value of rmin: Radius of curvature for the simulation. This should be the minimum value of
r within the simulation domain. r within the simulation domain.
Returns: Returns:
``` e_xys: NDArray of vfdfield_t specifying fields. First dimension is mode number.
{ angular_wavenumbers: list of wavenumbers in 1/rad units.
'E': list[NDArray[numpy.complex_]],
'H': list[NDArray[numpy.complex_]],
'wavenumber': complex,
}
```
""" """
''' #
Solve for the largest-magnitude eigenvalue of the real operator # Solve for the largest-magnitude eigenvalue of the real operator
''' #
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes] dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0) A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), rmin=rmin)
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3) eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
e_xy = eigvecs[:, -(mode_number + 1)] keep_inds = -(numpy.array(mode_numbers) + 1)
e_xys = eigvecs[:, keep_inds].T
eigvals = eigvals[keep_inds]
''' #
Now solve for the eigenvector of the full operator, using the real operator's # Now solve for the eigenvector of the full operator, using the real operator's
eigenvector as an initial guess for Rayleigh quotient iteration. # eigenvector as an initial guess for Rayleigh quotient iteration.
''' #
A = cylindrical_operator(omega, dxes, epsilon, r0) A = cylindrical_operator(omega, dxes, epsilon, rmin=rmin)
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy) for nn in range(len(mode_numbers)):
eigvals[nn], e_xys[nn, :] = rayleigh_quotient_iteration(A, e_xys[nn, :])
# Calculate the wave-vector (force the real part to be positive) # Calculate the wave-vector (force the real part to be positive)
wavenumber = numpy.sqrt(eigval) wavenumbers = numpy.sqrt(eigvals)
wavenumber *= numpy.sign(numpy.real(wavenumber)) wavenumbers *= numpy.sign(numpy.real(wavenumbers))
# TODO: Perform correction on wavenumber to account for numerical dispersion. # Wavenumbers assume the mode is at rmin, which is unlikely
# Instead, return the wavenumber in inverse radians
angular_wavenumbers = wavenumbers * cast(complex, rmin)
shape = [d.size for d in dxes[0]] order = angular_wavenumbers.argsort()[::-1]
e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1]))) e_xys = e_xys[order]
fields = { angular_wavenumbers = angular_wavenumbers[order]
'wavenumber': wavenumber,
'E': unvec(e_xy, shape),
# 'E': unvec(e, shape),
# 'H': unvec(h, shape),
}
return fields return e_xys, angular_wavenumbers
def solve_mode(
mode_number: int,
*args: Any,
**kwargs: Any,
) -> tuple[vcfdfield_t, complex]:
"""
Wrapper around `solve_modes()` that solves for a single mode.
Args:
mode_number: 0-indexed mode number to solve for
*args: passed to `solve_modes()`
**kwargs: passed to `solve_modes()`
Returns:
(e_xy, angular_wavenumber)
"""
kwargs['mode_numbers'] = [mode_number]
e_xys, angular_wavenumbers = solve_modes(*args, **kwargs)
return e_xys[0], angular_wavenumbers[0]
def linear_wavenumbers(
e_xys: vcfdfield_t,
angular_wavenumbers: ArrayLike,
epsilon: vfdfield_t,
dxes: dx_lists_t,
rmin: float,
) -> NDArray[numpy.complex128]:
"""
Calculate linear wavenumbers (1/distance) based on angular wavenumbers (1/rad)
and the mode's energy distribution.
Args:
e_xys: Vectorized mode fields with shape (num_modes, 2 * x *y)
angular_wavenumbers: Wavenumbers assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. They should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
epsilon: Vectorized dielectric constant grid with shape (3, x, y)
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
Returns:
NDArray containing the calculated linear (1/distance) wavenumbers
"""
angular_wavenumbers = numpy.asarray(angular_wavenumbers)
mode_radii = numpy.empty_like(angular_wavenumbers, dtype=float)
wavenumbers = numpy.empty_like(angular_wavenumbers)
shape2d = (len(dxes[0][0]), len(dxes[0][1]))
epsilon2d = unvec(epsilon, shape2d)[:2]
grid_radii = rmin + numpy.cumsum(dxes[0][0])
for ii in range(angular_wavenumbers.size):
efield = unvec(e_xys[ii], shape2d, 2)
energy = numpy.real((efield * efield.conj()) * epsilon2d)
energy_vs_x = energy.sum(axis=(0, 2))
mode_radii[ii] = (grid_radii * energy_vs_x).sum() / energy_vs_x.sum()
logger.info(f'{mode_radii=}')
lin_wavenumbers = angular_wavenumbers / mode_radii
return lin_wavenumbers
def exy2h(
angular_wavenumber: complex,
omega: float,
dxes: dx_lists_t,
rmin: float,
epsilon: vfdfield_t,
mu: vfdfield_t | None = None
) -> sparse.spmatrix:
"""
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
into a vectorized H containing all three H components
Args:
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. It should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representing the operator.
"""
e2hop = e2h(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, mu=mu)
return e2hop @ exy2e(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon)
def exy2e(
angular_wavenumber: complex,
omega: float,
dxes: dx_lists_t,
rmin: float,
epsilon: vfdfield_t,
) -> sparse.spmatrix:
"""
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
into a vectorized E containing all three E components
Unlike the straight waveguide case, the H_z components do not cancel and must be calculated
from E_x and E_y in order to then calculate E_z.
Args:
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. It should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
epsilon: Vectorized dielectric constant grid
Returns:
Sparse matrix representing the operator.
"""
Dfx, Dfy = deriv_forward(dxes[0])
Dbx, Dby = deriv_back(dxes[1])
wavenumber = angular_wavenumber / rmin
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
Tai = sparse.diags_array(1 / Ta.diagonal())
Tbi = sparse.diags_array(1 / Tb.diagonal())
epsilon_parts = numpy.split(epsilon, 3)
epsilon_x, epsilon_y = (sparse.diags_array(epsi) for epsi in epsilon_parts[:2])
epsilon_z_inv = sparse.diags_array(1 / epsilon_parts[2])
n_pts = dxes[0][0].size * dxes[0][1].size
zeros = sparse.coo_array((n_pts, n_pts))
keep_x = sparse.block_array([[sparse.eye_array(n_pts), None], [None, zeros]])
keep_y = sparse.block_array([[zeros, None], [None, sparse.eye_array(n_pts)]])
mu_z = numpy.ones(n_pts)
mu_z_inv = sparse.diags_array(1 / mu_z)
exy2hz = 1 / (-1j * omega) * mu_z_inv @ sparse.hstack((Dfy, -Dfx))
hxy2ez = 1 / (1j * omega) * epsilon_z_inv @ sparse.hstack((Dby, -Dbx))
exy2hy = Tb / (1j * wavenumber) @ (-1j * omega * sparse.hstack((epsilon_x, zeros)) - Dby @ exy2hz)
exy2hx = Tb / (1j * wavenumber) @ ( 1j * omega * sparse.hstack((zeros, epsilon_y)) - Tai @ Dbx @ Tb @ exy2hz)
exy2ez = hxy2ez @ sparse.vstack((exy2hx, exy2hy))
op = sparse.vstack((sparse.eye_array(2 * n_pts),
exy2ez))
return op
def e2h(
angular_wavenumber: complex,
omega: float,
dxes: dx_lists_t,
rmin: float,
mu: vfdfield_t | None = None
) -> sparse.spmatrix:
r"""
Returns an operator which, when applied to a vectorized E eigenfield, produces
the vectorized H eigenfield.
This operator is created directly from the initial coordinate-transformed equations:
$$
\begin{aligned}
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta \frac{H_y}{\hat{T}} \\
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \{1}{\tilde{t}_x} \hat{\partial}_x \hat{t}_x} H_z \\
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
\end{aligned}
$$
Args:
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. It should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representation of the operator.
"""
Dfx, Dfy = deriv_forward(dxes[0])
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
Tai = sparse.diags_array(1 / Ta.diagonal())
Tbi = sparse.diags_array(1 / Tb.diagonal())
jB = 1j * angular_wavenumber / rmin
op = sparse.block_array([[ None, -jB * Tai, -Dfy],
[jB * Tbi, None, Tbi @ Dfx @ Ta],
[ Dfy, -Dfx, None]]) / (-1j * omega)
if mu is not None:
op = sparse.diags_array(1 / mu) @ op
return op
def dxes2T(
dxes: dx_lists_t,
rmin: float,
) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
r"""
Returns the $T_a$ and $T_b$ diagonal matrices which are used to apply the cylindrical
coordinate transformation in various operators.
Args:
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
Returns:
Sparse matrix representations of the operators Ta and Tb
"""
ra = rmin + numpy.cumsum(dxes[0][0]) # Radius at Ey points
rb = rmin + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0]) # Radius at Ex points
ta = ra / rmin
tb = rb / rmin
Ta = sparse.diags_array(vec(ta[:, None].repeat(dxes[0][1].size, axis=1)))
Tb = sparse.diags_array(vec(tb[:, None].repeat(dxes[1][1].size, axis=1)))
return Ta, Tb
def normalized_fields_e(
e_xy: ArrayLike,
angular_wavenumber: complex,
omega: float,
dxes: dx_lists_t,
rmin: float,
epsilon: vfdfield_t,
mu: vfdfield_t | None = None,
prop_phase: float = 0,
) -> tuple[vcfdfield_t, vcfdfield_t]:
"""
Given a vector `e_xy` containing the vectorized E_x and E_y fields,
returns normalized, vectorized E and H fields for the system.
Args:
e_xy: Vector containing E_x and E_y fields
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. It should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
Default 0 (continuous propagation direction, i.e. dz->0).
Returns:
`(e, h)`, where each field is vectorized, normalized,
and contains all three vector components.
"""
e = exy2e(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon) @ e_xy
h = exy2h(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon, mu=mu) @ e_xy
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon,
mu=mu, prop_phase=prop_phase)
return e_norm, h_norm
def _normalized_fields(
e: vcfdfield_t,
h: vcfdfield_t,
omega: complex,
dxes: dx_lists_t,
rmin: float,
epsilon: vfdfield_t,
mu: vfdfield_t | None = None,
prop_phase: float = 0,
) -> tuple[vcfdfield_t, vcfdfield_t]:
h *= -1
# TODO documentation for normalized_fields
shape = [s.size for s in dxes[0]]
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
# Find time-averaged Sz and normalize to it
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
phase = numpy.exp(-1j * -prop_phase / 2)
Sz_tavg = waveguide_2d.inner_product(e, h, dxes=dxes, prop_phase=prop_phase, conj_h=True).real # Note, using linear poynting vector
assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}'
energy = numpy.real(epsilon * e.conj() * e)
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
# Try to break symmetry to assign a consistent sign [experimental]
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
sign = numpy.sign(E_weighted[:,
:max(shape[0] // 2, 1),
:max(shape[1] // 2, 1)].real.sum())
assert sign != 0
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
print('\nAAA\n', waveguide_2d.inner_product(e, h, dxes, prop_phase=prop_phase))
e *= norm_factor
h *= norm_factor
print(f'{sign=} {norm_amplitude=} {norm_angle=} {prop_phase=}')
print(waveguide_2d.inner_product(e, h, dxes, prop_phase=prop_phase))
return e, h

View File

@ -1,4 +1,4 @@
""" r"""
Basic discrete calculus for finite difference (fd) simulations. Basic discrete calculus for finite difference (fd) simulations.
@ -43,11 +43,11 @@ Scalar derivatives and cell shifts
---------------------------------- ----------------------------------
Define the discrete forward derivative as Define the discrete forward derivative as
$$ [\\tilde{\\partial}_x f]_{m + \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m + 1} - f_m) $$ $$ [\tilde{\partial}_x f]_{m + \frac{1}{2}} = \frac{1}{\Delta_{x, m}} (f_{m + 1} - f_m) $$
where $f$ is a function defined at discrete locations on the x-axis (labeled using $m$). where $f$ is a function defined at discrete locations on the x-axis (labeled using $m$).
The value at $m$ occupies a length $\\Delta_{x, m}$ along the x-axis. Note that $m$ The value at $m$ occupies a length $\Delta_{x, m}$ along the x-axis. Note that $m$
is an index along the x-axis, _not_ necessarily an x-coordinate, since each length is an index along the x-axis, _not_ necessarily an x-coordinate, since each length
$\\Delta_{x, m}, \\Delta_{x, m+1}, ...$ is independently chosen. $\Delta_{x, m}, \Delta_{x, m+1}, ...$ is independently chosen.
If we treat `f` as a 1D array of values, with the `i`-th value `f[i]` taking up a length `dx[i]` If we treat `f` as a 1D array of values, with the `i`-th value `f[i]` taking up a length `dx[i]`
along the x-axis, the forward derivative is along the x-axis, the forward derivative is
@ -56,13 +56,13 @@ along the x-axis, the forward derivative is
Likewise, discrete reverse derivative is Likewise, discrete reverse derivative is
$$ [\\hat{\\partial}_x f ]_{m - \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m} - f_{m - 1}) $$ $$ [\hat{\partial}_x f ]_{m - \frac{1}{2}} = \frac{1}{\Delta_{x, m}} (f_{m} - f_{m - 1}) $$
or or
deriv_back(f)[i] = (f[i] - f[i - 1]) / dx[i] deriv_back(f)[i] = (f[i] - f[i - 1]) / dx[i]
The derivatives' values are shifted by a half-cell relative to the original function, and The derivatives' values are shifted by a half-cell relative to the original function, and
will have different cell widths if all the `dx[i]` ( $\\Delta_{x, m}$ ) are not will have different cell widths if all the `dx[i]` ( $\Delta_{x, m}$ ) are not
identical: identical:
[figure: derivatives and cell sizes] [figure: derivatives and cell sizes]
@ -88,19 +88,19 @@ identical:
In the above figure, In the above figure,
`f0 =` $f_0$, `f1 =` $f_1$ `f0 =` $f_0$, `f1 =` $f_1$
`Df0 =` $[\\tilde{\\partial}f]_{0 + \\frac{1}{2}}$ `Df0 =` $[\tilde{\partial}f]_{0 + \frac{1}{2}}$
`Df1 =` $[\\tilde{\\partial}f]_{1 + \\frac{1}{2}}$ `Df1 =` $[\tilde{\partial}f]_{1 + \frac{1}{2}}$
`df0 =` $[\\hat{\\partial}f]_{0 - \\frac{1}{2}}$ `df0 =` $[\hat{\partial}f]_{0 - \frac{1}{2}}$
etc. etc.
The fractional subscript $m + \\frac{1}{2}$ is used to indicate values defined The fractional subscript $m + \frac{1}{2}$ is used to indicate values defined
at shifted locations relative to the original $m$, with corresponding lengths at shifted locations relative to the original $m$, with corresponding lengths
$$ \\Delta_{x, m + \\frac{1}{2}} = \\frac{1}{2} * (\\Delta_{x, m} + \\Delta_{x, m + 1}) $$ $$ \Delta_{x, m + \frac{1}{2}} = \frac{1}{2} * (\Delta_{x, m} + \Delta_{x, m + 1}) $$
Just as $m$ is not itself an x-coordinate, neither is $m + \\frac{1}{2}$; Just as $m$ is not itself an x-coordinate, neither is $m + \frac{1}{2}$;
carefully note the positions of the various cells in the above figure vs their labels. carefully note the positions of the various cells in the above figure vs their labels.
If the positions labeled with $m$ are considered the "base" or "original" grid, If the positions labeled with $m$ are considered the "base" or "original" grid,
the positions labeled with $m + \\frac{1}{2}$ are said to lie on a "dual" or the positions labeled with $m + \frac{1}{2}$ are said to lie on a "dual" or
"derived" grid. "derived" grid.
For the remainder of the `Discrete calculus` section, all figures will show For the remainder of the `Discrete calculus` section, all figures will show
@ -113,12 +113,12 @@ Gradients and fore-vectors
-------------------------- --------------------------
Expanding to three dimensions, we can define two gradients Expanding to three dimensions, we can define two gradients
$$ [\\tilde{\\nabla} f]_{m,n,p} = \\vec{x} [\\tilde{\\partial}_x f]_{m + \\frac{1}{2},n,p} + $$ [\tilde{\nabla} f]_{m,n,p} = \vec{x} [\tilde{\partial}_x f]_{m + \frac{1}{2},n,p} +
\\vec{y} [\\tilde{\\partial}_y f]_{m,n + \\frac{1}{2},p} + \vec{y} [\tilde{\partial}_y f]_{m,n + \frac{1}{2},p} +
\\vec{z} [\\tilde{\\partial}_z f]_{m,n,p + \\frac{1}{2}} $$ \vec{z} [\tilde{\partial}_z f]_{m,n,p + \frac{1}{2}} $$
$$ [\\hat{\\nabla} f]_{m,n,p} = \\vec{x} [\\hat{\\partial}_x f]_{m + \\frac{1}{2},n,p} + $$ [\hat{\nabla} f]_{m,n,p} = \vec{x} [\hat{\partial}_x f]_{m + \frac{1}{2},n,p} +
\\vec{y} [\\hat{\\partial}_y f]_{m,n + \\frac{1}{2},p} + \vec{y} [\hat{\partial}_y f]_{m,n + \frac{1}{2},p} +
\\vec{z} [\\hat{\\partial}_z f]_{m,n,p + \\frac{1}{2}} $$ \vec{z} [\hat{\partial}_z f]_{m,n,p + \frac{1}{2}} $$
or or
@ -144,12 +144,12 @@ y in y, and z in z.
We call the resulting object a "fore-vector" or "back-vector", depending We call the resulting object a "fore-vector" or "back-vector", depending
on the direction of the shift. We write it as on the direction of the shift. We write it as
$$ \\tilde{g}_{m,n,p} = \\vec{x} g^x_{m + \\frac{1}{2},n,p} + $$ \tilde{g}_{m,n,p} = \vec{x} g^x_{m + \frac{1}{2},n,p} +
\\vec{y} g^y_{m,n + \\frac{1}{2},p} + \vec{y} g^y_{m,n + \frac{1}{2},p} +
\\vec{z} g^z_{m,n,p + \\frac{1}{2}} $$ \vec{z} g^z_{m,n,p + \frac{1}{2}} $$
$$ \\hat{g}_{m,n,p} = \\vec{x} g^x_{m - \\frac{1}{2},n,p} + $$ \hat{g}_{m,n,p} = \vec{x} g^x_{m - \frac{1}{2},n,p} +
\\vec{y} g^y_{m,n - \\frac{1}{2},p} + \vec{y} g^y_{m,n - \frac{1}{2},p} +
\\vec{z} g^z_{m,n,p - \\frac{1}{2}} $$ \vec{z} g^z_{m,n,p - \frac{1}{2}} $$
[figure: gradient / fore-vector] [figure: gradient / fore-vector]
@ -172,15 +172,15 @@ Divergences
There are also two divergences, There are also two divergences,
$$ d_{n,m,p} = [\\tilde{\\nabla} \\cdot \\hat{g}]_{n,m,p} $$ d_{n,m,p} = [\tilde{\nabla} \cdot \hat{g}]_{n,m,p}
= [\\tilde{\\partial}_x g^x]_{m,n,p} + = [\tilde{\partial}_x g^x]_{m,n,p} +
[\\tilde{\\partial}_y g^y]_{m,n,p} + [\tilde{\partial}_y g^y]_{m,n,p} +
[\\tilde{\\partial}_z g^z]_{m,n,p} $$ [\tilde{\partial}_z g^z]_{m,n,p} $$
$$ d_{n,m,p} = [\\hat{\\nabla} \\cdot \\tilde{g}]_{n,m,p} $$ d_{n,m,p} = [\hat{\nabla} \cdot \tilde{g}]_{n,m,p}
= [\\hat{\\partial}_x g^x]_{m,n,p} + = [\hat{\partial}_x g^x]_{m,n,p} +
[\\hat{\\partial}_y g^y]_{m,n,p} + [\hat{\partial}_y g^y]_{m,n,p} +
[\\hat{\\partial}_z g^z]_{m,n,p} $$ [\hat{\partial}_z g^z]_{m,n,p} $$
or or
@ -203,7 +203,7 @@ where `g = [gx, gy, gz]` is a fore- or back-vector field.
Since we applied the forward divergence to the back-vector (and vice-versa), the resulting scalar value Since we applied the forward divergence to the back-vector (and vice-versa), the resulting scalar value
is defined at the back-vector's (fore-vector's) location $(m,n,p)$ and not at the locations of its components is defined at the back-vector's (fore-vector's) location $(m,n,p)$ and not at the locations of its components
$(m \\pm \\frac{1}{2},n,p)$ etc. $(m \pm \frac{1}{2},n,p)$ etc.
[figure: divergence] [figure: divergence]
^^ ^^
@ -227,23 +227,23 @@ Curls
The two curls are then The two curls are then
$$ \\begin{aligned} $$ \begin{aligned}
\\hat{h}_{m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}} &= \\\\ \hat{h}_{m + \frac{1}{2}, n + \frac{1}{2}, p + \frac{1}{2}} &= \\
[\\tilde{\\nabla} \\times \\tilde{g}]_{m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}} &= [\tilde{\nabla} \times \tilde{g}]_{m + \frac{1}{2}, n + \frac{1}{2}, p + \frac{1}{2}} &=
\\vec{x} (\\tilde{\\partial}_y g^z_{m,n,p + \\frac{1}{2}} - \\tilde{\\partial}_z g^y_{m,n + \\frac{1}{2},p}) \\\\ \vec{x} (\tilde{\partial}_y g^z_{m,n,p + \frac{1}{2}} - \tilde{\partial}_z g^y_{m,n + \frac{1}{2},p}) \\
&+ \\vec{y} (\\tilde{\\partial}_z g^x_{m + \\frac{1}{2},n,p} - \\tilde{\\partial}_x g^z_{m,n,p + \\frac{1}{2}}) \\\\ &+ \vec{y} (\tilde{\partial}_z g^x_{m + \frac{1}{2},n,p} - \tilde{\partial}_x g^z_{m,n,p + \frac{1}{2}}) \\
&+ \\vec{z} (\\tilde{\\partial}_x g^y_{m,n + \\frac{1}{2},p} - \\tilde{\\partial}_y g^z_{m + \\frac{1}{2},n,p}) &+ \vec{z} (\tilde{\partial}_x g^y_{m,n + \frac{1}{2},p} - \tilde{\partial}_y g^z_{m + \frac{1}{2},n,p})
\\end{aligned} $$ \end{aligned} $$
and and
$$ \\tilde{h}_{m - \\frac{1}{2}, n - \\frac{1}{2}, p - \\frac{1}{2}} = $$ \tilde{h}_{m - \frac{1}{2}, n - \frac{1}{2}, p - \frac{1}{2}} =
[\\hat{\\nabla} \\times \\hat{g}]_{m - \\frac{1}{2}, n - \\frac{1}{2}, p - \\frac{1}{2}} $$ [\hat{\nabla} \times \hat{g}]_{m - \frac{1}{2}, n - \frac{1}{2}, p - \frac{1}{2}} $$
where $\\hat{g}$ and $\\tilde{g}$ are located at $(m,n,p)$ where $\hat{g}$ and $\tilde{g}$ are located at $(m,n,p)$
with components at $(m \\pm \\frac{1}{2},n,p)$ etc., with components at $(m \pm \frac{1}{2},n,p)$ etc.,
while $\\hat{h}$ and $\\tilde{h}$ are located at $(m \\pm \\frac{1}{2}, n \\pm \\frac{1}{2}, p \\pm \\frac{1}{2})$ while $\hat{h}$ and $\tilde{h}$ are located at $(m \pm \frac{1}{2}, n \pm \frac{1}{2}, p \pm \frac{1}{2})$
with components at $(m, n \\pm \\frac{1}{2}, p \\pm \\frac{1}{2})$ etc. with components at $(m, n \pm \frac{1}{2}, p \pm \frac{1}{2})$ etc.
[code: curls] [code: curls]
@ -287,27 +287,27 @@ Maxwell's Equations
If we discretize both space (m,n,p) and time (l), Maxwell's equations become If we discretize both space (m,n,p) and time (l), Maxwell's equations become
$$ \\begin{aligned} $$ \begin{aligned}
\\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &= -\\tilde{\\partial}_t \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} \tilde{\nabla} \times \tilde{E}_{l,\vec{r}} &= -\tilde{\partial}_t \hat{B}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}}
- \\hat{M}_{l, \\vec{r} + \\frac{1}{2}} \\\\ - \hat{M}_{l, \vec{r} + \frac{1}{2}} \\
\\hat{\\nabla} \\times \\hat{H}_{l-\\frac{1}{2},\\vec{r} + \\frac{1}{2}} &= \\hat{\\partial}_t \\tilde{D}_{l, \\vec{r}} \hat{\nabla} \times \hat{H}_{l-\frac{1}{2},\vec{r} + \frac{1}{2}} &= \hat{\partial}_t \tilde{D}_{l, \vec{r}}
+ \\tilde{J}_{l-\\frac{1}{2},\\vec{r}} \\\\ + \tilde{J}_{l-\frac{1}{2},\vec{r}} \\
\\tilde{\\nabla} \\cdot \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= 0 \\\\ \tilde{\nabla} \cdot \hat{B}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}} &= 0 \\
\\hat{\\nabla} \\cdot \\tilde{D}_{l,\\vec{r}} &= \\rho_{l,\\vec{r}} \hat{\nabla} \cdot \tilde{D}_{l,\vec{r}} &= \rho_{l,\vec{r}}
\\end{aligned} $$ \end{aligned} $$
with with
$$ \\begin{aligned} $$ \begin{aligned}
\\hat{B}_{\\vec{r}} &= \\mu_{\\vec{r} + \\frac{1}{2}} \\cdot \\hat{H}_{\\vec{r} + \\frac{1}{2}} \\\\ \hat{B}_{\vec{r}} &= \mu_{\vec{r} + \frac{1}{2}} \cdot \hat{H}_{\vec{r} + \frac{1}{2}} \\
\\tilde{D}_{\\vec{r}} &= \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} \tilde{D}_{\vec{r}} &= \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}}
\\end{aligned} $$ \end{aligned} $$
where the spatial subscripts are abbreviated as $\\vec{r} = (m, n, p)$ and where the spatial subscripts are abbreviated as $\vec{r} = (m, n, p)$ and
$\\vec{r} + \\frac{1}{2} = (m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2})$, $\vec{r} + \frac{1}{2} = (m + \frac{1}{2}, n + \frac{1}{2}, p + \frac{1}{2})$,
$\\tilde{E}$ and $\\hat{H}$ are the electric and magnetic fields, $\tilde{E}$ and $\hat{H}$ are the electric and magnetic fields,
$\\tilde{J}$ and $\\hat{M}$ are the electric and magnetic current distributions, $\tilde{J}$ and $\hat{M}$ are the electric and magnetic current distributions,
and $\\epsilon$ and $\\mu$ are the dielectric permittivity and magnetic permeability. and $\epsilon$ and $\mu$ are the dielectric permittivity and magnetic permeability.
The above is Yee's algorithm, written in a form analogous to Maxwell's equations. The above is Yee's algorithm, written in a form analogous to Maxwell's equations.
The time derivatives can be expanded to form the update equations: The time derivatives can be expanded to form the update equations:
@ -369,34 +369,34 @@ Each component forms its own grid, offset from the others:
The divergence equations can be derived by taking the divergence of the curl equations The divergence equations can be derived by taking the divergence of the curl equations
and combining them with charge continuity, and combining them with charge continuity,
$$ \\hat{\\nabla} \\cdot \\tilde{J} + \\hat{\\partial}_t \\rho = 0 $$ $$ \hat{\nabla} \cdot \tilde{J} + \hat{\partial}_t \rho = 0 $$
implying that the discrete Maxwell's equations do not produce spurious charges. implying that the discrete Maxwell's equations do not produce spurious charges.
Wave equation Wave equation
------------- -------------
Taking the backward curl of the $\\tilde{\\nabla} \\times \\tilde{E}$ equation and Taking the backward curl of the $\tilde{\nabla} \times \tilde{E}$ equation and
replacing the resulting $\\hat{\\nabla} \\times \\hat{H}$ term using its respective equation, replacing the resulting $\hat{\nabla} \times \hat{H}$ term using its respective equation,
and setting $\\hat{M}$ to zero, we can form the discrete wave equation: and setting $\hat{M}$ to zero, we can form the discrete wave equation:
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &= \tilde{\nabla} \times \tilde{E}_{l,\vec{r}} &=
-\\tilde{\\partial}_t \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} -\tilde{\partial}_t \hat{B}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}}
- \\hat{M}_{l-1, \\vec{r} + \\frac{1}{2}} \\\\ - \hat{M}_{l-1, \vec{r} + \frac{1}{2}} \\
\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &= \mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}} &=
-\\tilde{\\partial}_t \\hat{H}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} \\\\ -\tilde{\partial}_t \hat{H}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}} \\
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}}) &= \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}}) &=
\\hat{\\nabla} \\times (-\\tilde{\\partial}_t \\hat{H}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}}) \\\\ \hat{\nabla} \times (-\tilde{\partial}_t \hat{H}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}}) \\
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}}) &= \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}}) &=
-\\tilde{\\partial}_t \\hat{\\nabla} \\times \\hat{H}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} \\\\ -\tilde{\partial}_t \hat{\nabla} \times \hat{H}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}} \\
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}}) &= \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}}) &=
-\\tilde{\\partial}_t \\hat{\\partial}_t \\epsilon_{\\vec{r}} \\tilde{E}_{l, \\vec{r}} + \\hat{\\partial}_t \\tilde{J}_{l-\\frac{1}{2},\\vec{r}} \\\\ -\tilde{\partial}_t \hat{\partial}_t \epsilon_{\vec{r}} \tilde{E}_{l, \vec{r}} + \hat{\partial}_t \tilde{J}_{l-\frac{1}{2},\vec{r}} \\
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}}) \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}})
+ \\tilde{\\partial}_t \\hat{\\partial}_t \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{l, \\vec{r}} + \tilde{\partial}_t \hat{\partial}_t \epsilon_{\vec{r}} \cdot \tilde{E}_{l, \vec{r}}
&= \\tilde{\\partial}_t \\tilde{J}_{l - \\frac{1}{2}, \\vec{r}} &= \tilde{\partial}_t \tilde{J}_{l - \frac{1}{2}, \vec{r}}
\\end{aligned} \end{aligned}
$$ $$
@ -406,27 +406,27 @@ Frequency domain
We can substitute in a time-harmonic fields We can substitute in a time-harmonic fields
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{E}_{l, \\vec{r}} &= \\tilde{E}_{\\vec{r}} e^{-\\imath \\omega l \\Delta_t} \\\\ \tilde{E}_{l, \vec{r}} &= \tilde{E}_{\vec{r}} e^{-\imath \omega l \Delta_t} \\
\\tilde{J}_{l, \\vec{r}} &= \\tilde{J}_{\\vec{r}} e^{-\\imath \\omega (l - \\frac{1}{2}) \\Delta_t} \tilde{J}_{l, \vec{r}} &= \tilde{J}_{\vec{r}} e^{-\imath \omega (l - \frac{1}{2}) \Delta_t}
\\end{aligned} \end{aligned}
$$ $$
resulting in resulting in
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{\\partial}_t &\\Rightarrow (e^{ \\imath \\omega \\Delta_t} - 1) / \\Delta_t = \\frac{-2 \\imath}{\\Delta_t} \\sin(\\omega \\Delta_t / 2) e^{-\\imath \\omega \\Delta_t / 2} = -\\imath \\Omega e^{-\\imath \\omega \\Delta_t / 2}\\\\ \tilde{\partial}_t &\Rightarrow (e^{ \imath \omega \Delta_t} - 1) / \Delta_t = \frac{-2 \imath}{\Delta_t} \sin(\omega \Delta_t / 2) e^{-\imath \omega \Delta_t / 2} = -\imath \Omega e^{-\imath \omega \Delta_t / 2}\\
\\hat{\\partial}_t &\\Rightarrow (1 - e^{-\\imath \\omega \\Delta_t}) / \\Delta_t = \\frac{-2 \\imath}{\\Delta_t} \\sin(\\omega \\Delta_t / 2) e^{ \\imath \\omega \\Delta_t / 2} = -\\imath \\Omega e^{ \\imath \\omega \\Delta_t / 2}\\\\ \hat{\partial}_t &\Rightarrow (1 - e^{-\imath \omega \Delta_t}) / \Delta_t = \frac{-2 \imath}{\Delta_t} \sin(\omega \Delta_t / 2) e^{ \imath \omega \Delta_t / 2} = -\imath \Omega e^{ \imath \omega \Delta_t / 2}\\
\\Omega &= 2 \\sin(\\omega \\Delta_t / 2) / \\Delta_t \Omega &= 2 \sin(\omega \Delta_t / 2) / \Delta_t
\\end{aligned} \end{aligned}
$$ $$
This gives the frequency-domain wave equation, This gives the frequency-domain wave equation,
$$ $$
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}}) \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{\vec{r}})
-\\Omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} = -\\imath \\Omega \\tilde{J}_{\\vec{r}} e^{\\imath \\omega \\Delta_t / 2} \\\\ -\Omega^2 \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} = -\imath \Omega \tilde{J}_{\vec{r}} e^{\imath \omega \Delta_t / 2} \\
$$ $$
@ -436,48 +436,48 @@ Plane waves and Dispersion relation
With uniform material distribution and no sources With uniform material distribution and no sources
$$ $$
\\begin{aligned} \begin{aligned}
\\mu_{\\vec{r} + \\frac{1}{2}} &= \\mu \\\\ \mu_{\vec{r} + \frac{1}{2}} &= \mu \\
\\epsilon_{\\vec{r}} &= \\epsilon \\\\ \epsilon_{\vec{r}} &= \epsilon \\
\\tilde{J}_{\\vec{r}} &= 0 \\\\ \tilde{J}_{\vec{r}} &= 0 \\
\\end{aligned} \end{aligned}
$$ $$
the frequency domain wave equation simplifies to the frequency domain wave equation simplifies to
$$ \\hat{\\nabla} \\times \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}} - \\Omega^2 \\epsilon \\mu \\tilde{E}_{\\vec{r}} = 0 $$ $$ \hat{\nabla} \times \tilde{\nabla} \times \tilde{E}_{\vec{r}} - \Omega^2 \epsilon \mu \tilde{E}_{\vec{r}} = 0 $$
Since $\\hat{\\nabla} \\cdot \\tilde{E}_{\\vec{r}} = 0$, we can simplify Since $\hat{\nabla} \cdot \tilde{E}_{\vec{r}} = 0$, we can simplify
$$ $$
\\begin{aligned} \begin{aligned}
\\hat{\\nabla} \\times \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}} \hat{\nabla} \times \tilde{\nabla} \times \tilde{E}_{\vec{r}}
&= \\tilde{\\nabla}(\\hat{\\nabla} \\cdot \\tilde{E}_{\\vec{r}}) - \\hat{\\nabla} \\cdot \\tilde{\\nabla} \\tilde{E}_{\\vec{r}} \\\\ &= \tilde{\nabla}(\hat{\nabla} \cdot \tilde{E}_{\vec{r}}) - \hat{\nabla} \cdot \tilde{\nabla} \tilde{E}_{\vec{r}} \\
&= - \\hat{\\nabla} \\cdot \\tilde{\\nabla} \\tilde{E}_{\\vec{r}} \\\\ &= - \hat{\nabla} \cdot \tilde{\nabla} \tilde{E}_{\vec{r}} \\
&= - \\tilde{\\nabla}^2 \\tilde{E}_{\\vec{r}} &= - \tilde{\nabla}^2 \tilde{E}_{\vec{r}}
\\end{aligned} \end{aligned}
$$ $$
and we get and we get
$$ \\tilde{\\nabla}^2 \\tilde{E}_{\\vec{r}} + \\Omega^2 \\epsilon \\mu \\tilde{E}_{\\vec{r}} = 0 $$ $$ \tilde{\nabla}^2 \tilde{E}_{\vec{r}} + \Omega^2 \epsilon \mu \tilde{E}_{\vec{r}} = 0 $$
We can convert this to three scalar-wave equations of the form We can convert this to three scalar-wave equations of the form
$$ (\\tilde{\\nabla}^2 + K^2) \\phi_{\\vec{r}} = 0 $$ $$ (\tilde{\nabla}^2 + K^2) \phi_{\vec{r}} = 0 $$
with $K^2 = \\Omega^2 \\mu \\epsilon$. Now we let with $K^2 = \Omega^2 \mu \epsilon$. Now we let
$$ \\phi_{\\vec{r}} = A e^{\\imath (k_x m \\Delta_x + k_y n \\Delta_y + k_z p \\Delta_z)} $$ $$ \phi_{\vec{r}} = A e^{\imath (k_x m \Delta_x + k_y n \Delta_y + k_z p \Delta_z)} $$
resulting in resulting in
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{\\partial}_x &\\Rightarrow (e^{ \\imath k_x \\Delta_x} - 1) / \\Delta_t = \\frac{-2 \\imath}{\\Delta_x} \\sin(k_x \\Delta_x / 2) e^{ \\imath k_x \\Delta_x / 2} = \\imath K_x e^{ \\imath k_x \\Delta_x / 2}\\\\ \tilde{\partial}_x &\Rightarrow (e^{ \imath k_x \Delta_x} - 1) / \Delta_t = \frac{-2 \imath}{\Delta_x} \sin(k_x \Delta_x / 2) e^{ \imath k_x \Delta_x / 2} = \imath K_x e^{ \imath k_x \Delta_x / 2}\\
\\hat{\\partial}_x &\\Rightarrow (1 - e^{-\\imath k_x \\Delta_x}) / \\Delta_t = \\frac{-2 \\imath}{\\Delta_x} \\sin(k_x \\Delta_x / 2) e^{-\\imath k_x \\Delta_x / 2} = \\imath K_x e^{-\\imath k_x \\Delta_x / 2}\\\\ \hat{\partial}_x &\Rightarrow (1 - e^{-\imath k_x \Delta_x}) / \Delta_t = \frac{-2 \imath}{\Delta_x} \sin(k_x \Delta_x / 2) e^{-\imath k_x \Delta_x / 2} = \imath K_x e^{-\imath k_x \Delta_x / 2}\\
K_x &= 2 \\sin(k_x \\Delta_x / 2) / \\Delta_x \\\\ K_x &= 2 \sin(k_x \Delta_x / 2) / \Delta_x \\
\\end{aligned} \end{aligned}
$$ $$
with similar expressions for the y and z dimnsions (and $K_y, K_z$). with similar expressions for the y and z dimnsions (and $K_y, K_z$).
@ -485,20 +485,20 @@ with similar expressions for the y and z dimnsions (and $K_y, K_z$).
This implies This implies
$$ $$
\\tilde{\\nabla}^2 = -(K_x^2 + K_y^2 + K_z^2) \\phi_{\\vec{r}} \\\\ \tilde{\nabla}^2 = -(K_x^2 + K_y^2 + K_z^2) \phi_{\vec{r}} \\
K_x^2 + K_y^2 + K_z^2 = \\Omega^2 \\mu \\epsilon = \\Omega^2 / c^2 K_x^2 + K_y^2 + K_z^2 = \Omega^2 \mu \epsilon = \Omega^2 / c^2
$$ $$
where $c = \\sqrt{\\mu \\epsilon}$. where $c = \sqrt{\mu \epsilon}$.
Assuming real $(k_x, k_y, k_z), \\omega$ will be real only if Assuming real $(k_x, k_y, k_z), \omega$ will be real only if
$$ c^2 \\Delta_t^2 = \\frac{\\Delta_t^2}{\\mu \\epsilon} < 1/(\\frac{1}{\\Delta_x^2} + \\frac{1}{\\Delta_y^2} + \\frac{1}{\\Delta_z^2}) $$ $$ c^2 \Delta_t^2 = \frac{\Delta_t^2}{\mu \epsilon} < 1/(\frac{1}{\Delta_x^2} + \frac{1}{\Delta_y^2} + \frac{1}{\Delta_z^2}) $$
If $\\Delta_x = \\Delta_y = \\Delta_z$, this simplifies to $c \\Delta_t < \\Delta_x / \\sqrt{3}$. If $\Delta_x = \Delta_y = \Delta_z$, this simplifies to $c \Delta_t < \Delta_x / \sqrt{3}$.
This last form can be interpreted as enforcing causality; the distance that light This last form can be interpreted as enforcing causality; the distance that light
travels in one timestep (i.e., $c \\Delta_t$) must be less than the diagonal travels in one timestep (i.e., $c \Delta_t$) must be less than the diagonal
of the smallest cell ( $\\Delta_x / \\sqrt{3}$ when on a uniform cubic grid). of the smallest cell ( $\Delta_x / \sqrt{3}$ when on a uniform cubic grid).
Grid description Grid description
@ -515,8 +515,8 @@ to make the illustration simpler; we need at least two cells in the x dimension
demonstrate how nonuniform `dx` affects the various components. demonstrate how nonuniform `dx` affects the various components.
Place the E fore-vectors at integer indices $r = (m, n, p)$ and the H back-vectors Place the E fore-vectors at integer indices $r = (m, n, p)$ and the H back-vectors
at fractional indices $r + \\frac{1}{2} = (m + \\frac{1}{2}, n + \\frac{1}{2}, at fractional indices $r + \frac{1}{2} = (m + \frac{1}{2}, n + \frac{1}{2},
p + \\frac{1}{2})$. Remember that these are indices and not coordinates; they can p + \frac{1}{2})$. Remember that these are indices and not coordinates; they can
correspond to arbitrary (monotonically increasing) coordinates depending on the cell widths. correspond to arbitrary (monotonically increasing) coordinates depending on the cell widths.
Draw lines to denote the planes on which the H components and back-vectors are defined. Draw lines to denote the planes on which the H components and back-vectors are defined.
@ -718,14 +718,14 @@ composed of the three diagonal tensor components:
or or
$$ $$
\\epsilon = \\begin{bmatrix} \\epsilon_{xx} & 0 & 0 \\\\ \epsilon = \begin{bmatrix} \epsilon_{xx} & 0 & 0 \\
0 & \\epsilon_{yy} & 0 \\\\ 0 & \epsilon_{yy} & 0 \\
0 & 0 & \\epsilon_{zz} \\end{bmatrix} 0 & 0 & \epsilon_{zz} \end{bmatrix}
$$ $$
$$ $$
\\mu = \\begin{bmatrix} \\mu_{xx} & 0 & 0 \\\\ \mu = \begin{bmatrix} \mu_{xx} & 0 & 0 \\
0 & \\mu_{yy} & 0 \\\\ 0 & \mu_{yy} & 0 \\
0 & 0 & \\mu_{zz} \\end{bmatrix} 0 & 0 & \mu_{zz} \end{bmatrix}
$$ $$
where the off-diagonal terms (e.g. `epsilon_xy`) are assumed to be zero. where the off-diagonal terms (e.g. `epsilon_xy`) are assumed to be zero.
@ -741,8 +741,24 @@ the true values can be multiplied back in after the simulation is complete if no
normalized results are needed. normalized results are needed.
""" """
from .types import fdfield_t, vfdfield_t, cfdfield_t, vcfdfield_t, dx_lists_t, dx_lists_mut from .types import (
from .types import fdfield_updater_t, cfdfield_updater_t fdfield_t as fdfield_t,
from .vectorization import vec, unvec vfdfield_t as vfdfield_t,
from . import operators, functional, types, vectorization cfdfield_t as cfdfield_t,
vcfdfield_t as vcfdfield_t,
dx_lists_t as dx_lists_t,
dx_lists_mut as dx_lists_mut,
fdfield_updater_t as fdfield_updater_t,
cfdfield_updater_t as cfdfield_updater_t,
)
from .vectorization import (
vec as vec,
unvec as unvec,
)
from . import (
operators as operators,
functional as functional,
types as types,
vectorization as vectorization,
)

View File

@ -3,16 +3,18 @@ Math functions for finite difference simulations
Basic discrete calculus etc. Basic discrete calculus etc.
""" """
from typing import Sequence, Callable from typing import TypeVar
from collections.abc import Sequence, Callable
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
from numpy import floating, complexfloating
from .types import fdfield_t, fdfield_updater_t from .types import fdfield_t, fdfield_updater_t
def deriv_forward( def deriv_forward(
dx_e: Sequence[NDArray[numpy.float_]] | None = None, dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]: ) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
""" """
Utility operators for taking discretized derivatives (backward variant). Utility operators for taking discretized derivatives (backward variant).
@ -36,7 +38,7 @@ def deriv_forward(
def deriv_back( def deriv_back(
dx_h: Sequence[NDArray[numpy.float_]] | None = None, dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]: ) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
""" """
Utility operators for taking discretized derivatives (forward variant). Utility operators for taking discretized derivatives (forward variant).
@ -59,10 +61,13 @@ def deriv_back(
return derivs return derivs
TT = TypeVar('TT', bound='NDArray[floating | complexfloating]')
def curl_forward( def curl_forward(
dx_e: Sequence[NDArray[numpy.float_]] | None = None, dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> fdfield_updater_t: ) -> Callable[[TT], TT]:
""" r"""
Curl operator for use with the E field. Curl operator for use with the E field.
Args: Args:
@ -71,11 +76,11 @@ def curl_forward(
Returns: Returns:
Function `f` for taking the discrete forward curl of a field, Function `f` for taking the discrete forward curl of a field,
`f(E)` -> curlE $= \\nabla_f \\times E$ `f(E)` -> curlE $= \nabla_f \times E$
""" """
Dx, Dy, Dz = deriv_forward(dx_e) Dx, Dy, Dz = deriv_forward(dx_e)
def ce_fun(e: fdfield_t) -> fdfield_t: def ce_fun(e: TT) -> TT:
output = numpy.empty_like(e) output = numpy.empty_like(e)
output[0] = Dy(e[2]) output[0] = Dy(e[2])
output[1] = Dz(e[0]) output[1] = Dz(e[0])
@ -89,9 +94,9 @@ def curl_forward(
def curl_back( def curl_back(
dx_h: Sequence[NDArray[numpy.float_]] | None = None, dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> fdfield_updater_t: ) -> Callable[[TT], TT]:
""" r"""
Create a function which takes the backward curl of a field. Create a function which takes the backward curl of a field.
Args: Args:
@ -100,11 +105,11 @@ def curl_back(
Returns: Returns:
Function `f` for taking the discrete backward curl of a field, Function `f` for taking the discrete backward curl of a field,
`f(H)` -> curlH $= \\nabla_b \\times H$ `f(H)` -> curlH $= \nabla_b \times H$
""" """
Dx, Dy, Dz = deriv_back(dx_h) Dx, Dy, Dz = deriv_back(dx_h)
def ch_fun(h: fdfield_t) -> fdfield_t: def ch_fun(h: TT) -> TT:
output = numpy.empty_like(h) output = numpy.empty_like(h)
output[0] = Dy(h[2]) output[0] = Dy(h[2])
output[1] = Dz(h[0]) output[1] = Dz(h[0])
@ -118,7 +123,7 @@ def curl_back(
def curl_forward_parts( def curl_forward_parts(
dx_e: Sequence[NDArray[numpy.float_]] | None = None, dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> Callable: ) -> Callable:
Dx, Dy, Dz = deriv_forward(dx_e) Dx, Dy, Dz = deriv_forward(dx_e)
@ -131,7 +136,7 @@ def curl_forward_parts(
def curl_back_parts( def curl_back_parts(
dx_h: Sequence[NDArray[numpy.float_]] | None = None, dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> Callable: ) -> Callable:
Dx, Dy, Dz = deriv_back(dx_h) Dx, Dy, Dz = deriv_back(dx_h)

View File

@ -3,10 +3,11 @@ Matrix operators for finite difference simulations
Basic discrete calculus etc. Basic discrete calculus etc.
""" """
from typing import Sequence from collections.abc import Sequence
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
import scipy.sparse as sparse # type: ignore from numpy import floating, complexfloating
from scipy import sparse
from .types import vfdfield_t from .types import vfdfield_t
@ -29,12 +30,12 @@ def shift_circ(
Sparse matrix for performing the circular shift. Sparse matrix for performing the circular shift.
""" """
if len(shape) not in (2, 3): if len(shape) not in (2, 3):
raise Exception('Invalid shape: {}'.format(shape)) raise Exception(f'Invalid shape: {shape}')
if axis not in range(len(shape)): if axis not in range(len(shape)):
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape)) raise Exception(f'Invalid direction: {axis}, shape is {shape}')
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)] shifts = [abs(shift_distance) if a == axis else 0 for a in range(len(shape))]
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)] shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts, strict=True)]
ijk = numpy.meshgrid(*shifted_diags, indexing='ij') ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
n = numpy.prod(shape) n = numpy.prod(shape)
@ -69,12 +70,11 @@ def shift_with_mirror(
Sparse matrix for performing the shift-with-mirror. Sparse matrix for performing the shift-with-mirror.
""" """
if len(shape) not in (2, 3): if len(shape) not in (2, 3):
raise Exception('Invalid shape: {}'.format(shape)) raise Exception(f'Invalid shape: {shape}')
if axis not in range(len(shape)): if axis not in range(len(shape)):
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape)) raise Exception(f'Invalid direction: {axis}, shape is {shape}')
if shift_distance >= shape[axis]: if shift_distance >= shape[axis]:
raise Exception('Shift ({}) is too large for axis {} of size {}'.format( raise Exception(f'Shift ({shift_distance}) is too large for axis {axis} of size {shape[axis]}')
shift_distance, axis, shape[axis]))
def mirrored_range(n: int, s: int) -> NDArray[numpy.int_]: def mirrored_range(n: int, s: int) -> NDArray[numpy.int_]:
v = numpy.arange(n) + s v = numpy.arange(n) + s
@ -82,8 +82,8 @@ def shift_with_mirror(
v = numpy.where(v < 0, - 1 - v, v) v = numpy.where(v < 0, - 1 - v, v)
return v return v
shifts = [shift_distance if a == axis else 0 for a in range(3)] shifts = [shift_distance if a == axis else 0 for a in range(len(shape))]
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts)] shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts, strict=True)]
ijk = numpy.meshgrid(*shifted_diags, indexing='ij') ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
n = numpy.prod(shape) n = numpy.prod(shape)
@ -97,7 +97,7 @@ def shift_with_mirror(
def deriv_forward( def deriv_forward(
dx_e: Sequence[NDArray[numpy.float_]], dx_e: Sequence[NDArray[floating | complexfloating]],
) -> list[sparse.spmatrix]: ) -> list[sparse.spmatrix]:
""" """
Utility operators for taking discretized derivatives (forward variant). Utility operators for taking discretized derivatives (forward variant).
@ -124,7 +124,7 @@ def deriv_forward(
def deriv_back( def deriv_back(
dx_h: Sequence[NDArray[numpy.float_]], dx_h: Sequence[NDArray[floating | complexfloating]],
) -> list[sparse.spmatrix]: ) -> list[sparse.spmatrix]:
""" """
Utility operators for taking discretized derivatives (backward variant). Utility operators for taking discretized derivatives (backward variant).
@ -198,7 +198,7 @@ def avg_forward(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
Sparse matrix for forward average operation. Sparse matrix for forward average operation.
""" """
if len(shape) not in (2, 3): if len(shape) not in (2, 3):
raise Exception('Invalid shape: {}'.format(shape)) raise Exception(f'Invalid shape: {shape}')
n = numpy.prod(shape) n = numpy.prod(shape)
return 0.5 * (sparse.eye(n) + shift_circ(axis, shape)) return 0.5 * (sparse.eye(n) + shift_circ(axis, shape))
@ -219,7 +219,7 @@ def avg_back(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
def curl_forward( def curl_forward(
dx_e: Sequence[NDArray[numpy.float_]], dx_e: Sequence[NDArray[floating | complexfloating]],
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" """
Curl operator for use with the E field. Curl operator for use with the E field.
@ -235,7 +235,7 @@ def curl_forward(
def curl_back( def curl_back(
dx_h: Sequence[NDArray[numpy.float_]], dx_h: Sequence[NDArray[floating | complexfloating]],
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" """
Curl operator for use with the H field. Curl operator for use with the H field.

View File

@ -1,26 +1,26 @@
""" """
Types shared across multiple submodules Types shared across multiple submodules
""" """
from typing import Sequence, Callable, MutableSequence from collections.abc import Sequence, Callable, MutableSequence
import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
from numpy import floating, complexfloating
# Field types # Field types
fdfield_t = NDArray[numpy.float_] fdfield_t = NDArray[floating]
"""Vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)""" """Vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)"""
vfdfield_t = NDArray[numpy.float_] vfdfield_t = NDArray[floating]
"""Linearized vector field (single vector of length 3*X*Y*Z)""" """Linearized vector field (single vector of length 3*X*Y*Z)"""
cfdfield_t = NDArray[numpy.complex_] cfdfield_t = NDArray[complexfloating]
"""Complex vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)""" """Complex vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)"""
vcfdfield_t = NDArray[numpy.complex_] vcfdfield_t = NDArray[complexfloating]
"""Linearized complex vector field (single vector of length 3*X*Y*Z)""" """Linearized complex vector field (single vector of length 3*X*Y*Z)"""
dx_lists_t = Sequence[Sequence[NDArray[numpy.float_]]] dx_lists_t = Sequence[Sequence[NDArray[floating | complexfloating]]]
""" """
'dxes' datastructure which contains grid cell width information in the following format: 'dxes' datastructure which contains grid cell width information in the following format:
@ -31,7 +31,7 @@ dx_lists_t = Sequence[Sequence[NDArray[numpy.float_]]]
and `dy_h[0]` is the y-width of the `y=0` cells, as used when calculating dH/dy, etc. and `dy_h[0]` is the y-width of the `y=0` cells, as used when calculating dH/dy, etc.
""" """
dx_lists_mut = MutableSequence[MutableSequence[NDArray[numpy.float_]]] dx_lists_mut = MutableSequence[MutableSequence[NDArray[floating | complexfloating]]]
"""Mutable version of `dx_lists_t`""" """Mutable version of `dx_lists_t`"""

View File

@ -4,7 +4,8 @@ and a 1D array representation of that field `[f_x0, f_x1, f_x2,... f_y0,... f_z0
Vectorized versions of the field use row-major (ie., C-style) ordering. Vectorized versions of the field use row-major (ie., C-style) ordering.
""" """
from typing import overload, Sequence from typing import overload
from collections.abc import Sequence
import numpy import numpy
from numpy.typing import ArrayLike from numpy.typing import ArrayLike
@ -27,14 +28,16 @@ def vec(f: cfdfield_t) -> vcfdfield_t:
def vec(f: ArrayLike) -> vfdfield_t | vcfdfield_t: def vec(f: ArrayLike) -> vfdfield_t | vcfdfield_t:
pass pass
def vec(f: fdfield_t | cfdfield_t | ArrayLike | None) -> vfdfield_t | vcfdfield_t | None: def vec(
f: fdfield_t | cfdfield_t | ArrayLike | None,
) -> vfdfield_t | vcfdfield_t | None:
""" """
Create a 1D ndarray from a 3D vector field which spans a 1-3D region. Create a 1D ndarray from a vector field which spans a 1-3D region.
Returns `None` if called with `f=None`. Returns `None` if called with `f=None`.
Args: Args:
f: A vector field, `[f_x, f_y, f_z]` where each `f_` component is a 1- to f: A vector field, e.g. `[f_x, f_y, f_z]` where each `f_` component is a 1- to
3-D ndarray (`f_*` should all be the same size). Doesn't fail with `f=None`. 3-D ndarray (`f_*` should all be the same size). Doesn't fail with `f=None`.
Returns: Returns:
@ -46,33 +49,38 @@ def vec(f: fdfield_t | cfdfield_t | ArrayLike | None) -> vfdfield_t | vcfdfield_
@overload @overload
def unvec(v: None, shape: Sequence[int]) -> None: def unvec(v: None, shape: Sequence[int], nvdim: int = 3) -> None:
pass pass
@overload @overload
def unvec(v: vfdfield_t, shape: Sequence[int]) -> fdfield_t: def unvec(v: vfdfield_t, shape: Sequence[int], nvdim: int = 3) -> fdfield_t:
pass pass
@overload @overload
def unvec(v: vcfdfield_t, shape: Sequence[int]) -> cfdfield_t: def unvec(v: vcfdfield_t, shape: Sequence[int], nvdim: int = 3) -> cfdfield_t:
pass pass
def unvec(v: vfdfield_t | vcfdfield_t | None, shape: Sequence[int]) -> fdfield_t | cfdfield_t | None: def unvec(
v: vfdfield_t | vcfdfield_t | None,
shape: Sequence[int],
nvdim: int = 3,
) -> fdfield_t | cfdfield_t | None:
""" """
Perform the inverse of vec(): take a 1D ndarray and output a 3D field Perform the inverse of vec(): take a 1D ndarray and output an `nvdim`-component field
of form `[f_x, f_y, f_z]` where each of `f_*` is a len(shape)-dimensional of form e.g. `[f_x, f_y, f_z]` (`nvdim=3`) where each of `f_*` is a len(shape)-dimensional
ndarray. ndarray.
Returns `None` if called with `v=None`. Returns `None` if called with `v=None`.
Args: Args:
v: 1D ndarray representing a 3D vector field of shape shape (or None) v: 1D ndarray representing a vector field of shape shape (or None)
shape: shape of the vector field shape: shape of the vector field
nvdim: Number of components in each vector
Returns: Returns:
`[f_x, f_y, f_z]` where each `f_` is a `len(shape)` dimensional ndarray (or `None`) `[f_x, f_y, f_z]` where each `f_` is a `len(shape)` dimensional ndarray (or `None`)
""" """
if v is None: if v is None:
return None return None
return v.reshape((3, *shape), order='C') return v.reshape((nvdim, *shape), order='C')

View File

@ -1,4 +1,4 @@
""" r"""
Utilities for running finite-difference time-domain (FDTD) simulations Utilities for running finite-difference time-domain (FDTD) simulations
See the discussion of `Maxwell's Equations` in `meanas.fdmath` for basic See the discussion of `Maxwell's Equations` in `meanas.fdmath` for basic
@ -11,9 +11,9 @@ Timestep
From the discussion of "Plane waves and the Dispersion relation" in `meanas.fdmath`, From the discussion of "Plane waves and the Dispersion relation" in `meanas.fdmath`,
we have we have
$$ c^2 \\Delta_t^2 = \\frac{\\Delta_t^2}{\\mu \\epsilon} < 1/(\\frac{1}{\\Delta_x^2} + \\frac{1}{\\Delta_y^2} + \\frac{1}{\\Delta_z^2}) $$ $$ c^2 \Delta_t^2 = \frac{\Delta_t^2}{\mu \epsilon} < 1/(\frac{1}{\Delta_x^2} + \frac{1}{\Delta_y^2} + \frac{1}{\Delta_z^2}) $$
or, if $\\Delta_x = \\Delta_y = \\Delta_z$, then $c \\Delta_t < \\frac{\\Delta_x}{\\sqrt{3}}$. or, if $\Delta_x = \Delta_y = \Delta_z$, then $c \Delta_t < \frac{\Delta_x}{\sqrt{3}}$.
Based on this, we can set Based on this, we can set
@ -27,81 +27,81 @@ Poynting Vector and Energy Conservation
Let Let
$$ \\begin{aligned} $$ \begin{aligned}
\\tilde{S}_{l, l', \\vec{r}} &=& &\\tilde{E}_{l, \\vec{r}} \\otimes \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\\\ \tilde{S}_{l, l', \vec{r}} &=& &\tilde{E}_{l, \vec{r}} \otimes \hat{H}_{l', \vec{r} + \frac{1}{2}} \\
&=& &\\vec{x} (\\tilde{E}^y_{l,m+1,n,p} \\hat{H}^z_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^z_{l,m+1,n,p} \\hat{H}^y_{l', \\vec{r} + \\frac{1}{2}}) \\\\ &=& &\vec{x} (\tilde{E}^y_{l,m+1,n,p} \hat{H}^z_{l',\vec{r} + \frac{1}{2}} - \tilde{E}^z_{l,m+1,n,p} \hat{H}^y_{l', \vec{r} + \frac{1}{2}}) \\
& &+ &\\vec{y} (\\tilde{E}^z_{l,m,n+1,p} \\hat{H}^x_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^x_{l,m,n+1,p} \\hat{H}^z_{l', \\vec{r} + \\frac{1}{2}}) \\\\ & &+ &\vec{y} (\tilde{E}^z_{l,m,n+1,p} \hat{H}^x_{l',\vec{r} + \frac{1}{2}} - \tilde{E}^x_{l,m,n+1,p} \hat{H}^z_{l', \vec{r} + \frac{1}{2}}) \\
& &+ &\\vec{z} (\\tilde{E}^x_{l,m,n,p+1} \\hat{H}^y_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^y_{l,m,n,p+1} \\hat{H}^z_{l', \\vec{r} + \\frac{1}{2}}) & &+ &\vec{z} (\tilde{E}^x_{l,m,n,p+1} \hat{H}^y_{l',\vec{r} + \frac{1}{2}} - \tilde{E}^y_{l,m,n,p+1} \hat{H}^z_{l', \vec{r} + \frac{1}{2}})
\\end{aligned} \end{aligned}
$$ $$
where $\\vec{r} = (m, n, p)$ and $\\otimes$ is a modified cross product where $\vec{r} = (m, n, p)$ and $\otimes$ is a modified cross product
in which the $\\tilde{E}$ terms are shifted as indicated. in which the $\tilde{E}$ terms are shifted as indicated.
By taking the divergence and rearranging terms, we can show that By taking the divergence and rearranging terms, we can show that
$$ $$
\\begin{aligned} \begin{aligned}
\\hat{\\nabla} \\cdot \\tilde{S}_{l, l', \\vec{r}} \hat{\nabla} \cdot \tilde{S}_{l, l', \vec{r}}
&= \\hat{\\nabla} \\cdot (\\tilde{E}_{l, \\vec{r}} \\otimes \\hat{H}_{l', \\vec{r} + \\frac{1}{2}}) \\\\ &= \hat{\nabla} \cdot (\tilde{E}_{l, \vec{r}} \otimes \hat{H}_{l', \vec{r} + \frac{1}{2}}) \\
&= \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l, \\vec{r}} - &= \hat{H}_{l', \vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l, \vec{r}} -
\\tilde{E}_{l, \\vec{r}} \\cdot \\hat{\\nabla} \\times \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\\\ \tilde{E}_{l, \vec{r}} \cdot \hat{\nabla} \times \hat{H}_{l', \vec{r} + \frac{1}{2}} \\
&= \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\cdot &= \hat{H}_{l', \vec{r} + \frac{1}{2}} \cdot
(-\\tilde{\\partial}_t \\mu_{\\vec{r} + \\frac{1}{2}} \\hat{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} - (-\tilde{\partial}_t \mu_{\vec{r} + \frac{1}{2}} \hat{H}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} -
\\hat{M}_{l, \\vec{r} + \\frac{1}{2}}) - \hat{M}_{l, \vec{r} + \frac{1}{2}}) -
\\tilde{E}_{l, \\vec{r}} \\cdot (\\hat{\\partial}_t \\tilde{\\epsilon}_{\\vec{r}} \\tilde{E}_{l'+\\frac{1}{2}, \\vec{r}} + \tilde{E}_{l, \vec{r}} \cdot (\hat{\partial}_t \tilde{\epsilon}_{\vec{r}} \tilde{E}_{l'+\frac{1}{2}, \vec{r}} +
\\tilde{J}_{l', \\vec{r}}) \\\\ \tilde{J}_{l', \vec{r}}) \\
&= \\hat{H}_{l'} \\cdot (-\\mu / \\Delta_t)(\\hat{H}_{l + \\frac{1}{2}} - \\hat{H}_{l - \\frac{1}{2}}) - &= \hat{H}_{l'} \cdot (-\mu / \Delta_t)(\hat{H}_{l + \frac{1}{2}} - \hat{H}_{l - \frac{1}{2}}) -
\\tilde{E}_l \\cdot (\\epsilon / \\Delta_t )(\\tilde{E}_{l'+\\frac{1}{2}} - \\tilde{E}_{l'-\\frac{1}{2}}) \tilde{E}_l \cdot (\epsilon / \Delta_t )(\tilde{E}_{l'+\frac{1}{2}} - \tilde{E}_{l'-\frac{1}{2}})
- \\hat{H}_{l'} \\cdot \\hat{M}_{l} - \\tilde{E}_l \\cdot \\tilde{J}_{l'} \\\\ - \hat{H}_{l'} \cdot \hat{M}_{l} - \tilde{E}_l \cdot \tilde{J}_{l'} \\
\\end{aligned} \end{aligned}
$$ $$
where in the last line the spatial subscripts have been dropped to emphasize where in the last line the spatial subscripts have been dropped to emphasize
the time subscripts $l, l'$, i.e. the time subscripts $l, l'$, i.e.
$$ $$
\\begin{aligned} \begin{aligned}
\\tilde{E}_l &= \\tilde{E}_{l, \\vec{r}} \\\\ \tilde{E}_l &= \tilde{E}_{l, \vec{r}} \\
\\hat{H}_l &= \\tilde{H}_{l, \\vec{r} + \\frac{1}{2}} \\\\ \hat{H}_l &= \tilde{H}_{l, \vec{r} + \frac{1}{2}} \\
\\tilde{\\epsilon} &= \\tilde{\\epsilon}_{\\vec{r}} \\\\ \tilde{\epsilon} &= \tilde{\epsilon}_{\vec{r}} \\
\\end{aligned} \end{aligned}
$$ $$
etc. etc.
For $l' = l + \\frac{1}{2}$ we get For $l' = l + \frac{1}{2}$ we get
$$ $$
\\begin{aligned} \begin{aligned}
\\hat{\\nabla} \\cdot \\tilde{S}_{l, l + \\frac{1}{2}} \hat{\nabla} \cdot \tilde{S}_{l, l + \frac{1}{2}}
&= \\hat{H}_{l + \\frac{1}{2}} \\cdot &= \hat{H}_{l + \frac{1}{2}} \cdot
(-\\mu / \\Delta_t)(\\hat{H}_{l + \\frac{1}{2}} - \\hat{H}_{l - \\frac{1}{2}}) - (-\mu / \Delta_t)(\hat{H}_{l + \frac{1}{2}} - \hat{H}_{l - \frac{1}{2}}) -
\\tilde{E}_l \\cdot (\\epsilon / \\Delta_t)(\\tilde{E}_{l+1} - \\tilde{E}_l) \tilde{E}_l \cdot (\epsilon / \Delta_t)(\tilde{E}_{l+1} - \tilde{E}_l)
- \\hat{H}_{l'} \\cdot \\hat{M}_l - \\tilde{E}_l \\cdot \\tilde{J}_{l + \\frac{1}{2}} \\\\ - \hat{H}_{l'} \cdot \hat{M}_l - \tilde{E}_l \cdot \tilde{J}_{l + \frac{1}{2}} \\
&= (-\\mu / \\Delta_t)(\\hat{H}^2_{l + \\frac{1}{2}} - \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}}) - &= (-\mu / \Delta_t)(\hat{H}^2_{l + \frac{1}{2}} - \hat{H}_{l + \frac{1}{2}} \cdot \hat{H}_{l - \frac{1}{2}}) -
(\\epsilon / \\Delta_t)(\\tilde{E}_{l+1} \\cdot \\tilde{E}_l - \\tilde{E}^2_l) (\epsilon / \Delta_t)(\tilde{E}_{l+1} \cdot \tilde{E}_l - \tilde{E}^2_l)
- \\hat{H}_{l'} \\cdot \\hat{M}_l - \\tilde{E}_l \\cdot \\tilde{J}_{l + \\frac{1}{2}} \\\\ - \hat{H}_{l'} \cdot \hat{M}_l - \tilde{E}_l \cdot \tilde{J}_{l + \frac{1}{2}} \\
&= -(\\mu \\hat{H}^2_{l + \\frac{1}{2}} &= -(\mu \hat{H}^2_{l + \frac{1}{2}}
+\\epsilon \\tilde{E}_{l+1} \\cdot \\tilde{E}_l) / \\Delta_t \\ \\ +\epsilon \tilde{E}_{l+1} \cdot \tilde{E}_l) / \Delta_t \\
+(\\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}} +(\mu \hat{H}_{l + \frac{1}{2}} \cdot \hat{H}_{l - \frac{1}{2}}
+\\epsilon \\tilde{E}^2_l) / \\Delta_t \\ \\ +\epsilon \tilde{E}^2_l) / \Delta_t \\
- \\hat{H}_{l+\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \hat{H}_{l+\frac{1}{2}} \cdot \hat{M}_l \\
- \\tilde{E}_l \\cdot \\tilde{J}_{l+\\frac{1}{2}} \\\\ - \tilde{E}_l \cdot \tilde{J}_{l+\frac{1}{2}} \\
\\end{aligned} \end{aligned}
$$ $$
and for $l' = l - \\frac{1}{2}$, and for $l' = l - \frac{1}{2}$,
$$ $$
\\begin{aligned} \begin{aligned}
\\hat{\\nabla} \\cdot \\tilde{S}_{l, l - \\frac{1}{2}} \hat{\nabla} \cdot \tilde{S}_{l, l - \frac{1}{2}}
&= (\\mu \\hat{H}^2_{l - \\frac{1}{2}} &= (\mu \hat{H}^2_{l - \frac{1}{2}}
+\\epsilon \\tilde{E}_{l-1} \\cdot \\tilde{E}_l) / \\Delta_t \\ \\ +\epsilon \tilde{E}_{l-1} \cdot \tilde{E}_l) / \Delta_t \\
-(\\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}} -(\mu \hat{H}_{l + \frac{1}{2}} \cdot \hat{H}_{l - \frac{1}{2}}
+\\epsilon \\tilde{E}^2_l) / \\Delta_t \\ \\ +\epsilon \tilde{E}^2_l) / \Delta_t \\
- \\hat{H}_{l-\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \hat{H}_{l-\frac{1}{2}} \cdot \hat{M}_l \\
- \\tilde{E}_l \\cdot \\tilde{J}_{l-\\frac{1}{2}} \\\\ - \tilde{E}_l \cdot \tilde{J}_{l-\frac{1}{2}} \\
\\end{aligned} \end{aligned}
$$ $$
These two results form the discrete time-domain analogue to Poynting's theorem. These two results form the discrete time-domain analogue to Poynting's theorem.
@ -109,25 +109,25 @@ They hint at the expressions for the energy, which can be calculated at the same
time-index as either the E or H field: time-index as either the E or H field:
$$ $$
\\begin{aligned} \begin{aligned}
U_l &= \\epsilon \\tilde{E}^2_l + \\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}} \\\\ U_l &= \epsilon \tilde{E}^2_l + \mu \hat{H}_{l + \frac{1}{2}} \cdot \hat{H}_{l - \frac{1}{2}} \\
U_{l + \\frac{1}{2}} &= \\epsilon \\tilde{E}_l \\cdot \\tilde{E}_{l + 1} + \\mu \\hat{H}^2_{l + \\frac{1}{2}} \\\\ U_{l + \frac{1}{2}} &= \epsilon \tilde{E}_l \cdot \tilde{E}_{l + 1} + \mu \hat{H}^2_{l + \frac{1}{2}} \\
\\end{aligned} \end{aligned}
$$ $$
Rewriting the Poynting theorem in terms of the energy expressions, Rewriting the Poynting theorem in terms of the energy expressions,
$$ $$
\\begin{aligned} \begin{aligned}
(U_{l+\\frac{1}{2}} - U_l) / \\Delta_t (U_{l+\frac{1}{2}} - U_l) / \Delta_t
&= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l + \\frac{1}{2}} \\ \\ &= -\hat{\nabla} \cdot \tilde{S}_{l, l + \frac{1}{2}} \\
- \\hat{H}_{l+\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \hat{H}_{l+\frac{1}{2}} \cdot \hat{M}_l \\
- \\tilde{E}_l \\cdot \\tilde{J}_{l+\\frac{1}{2}} \\\\ - \tilde{E}_l \cdot \tilde{J}_{l+\frac{1}{2}} \\
(U_l - U_{l-\\frac{1}{2}}) / \\Delta_t (U_l - U_{l-\frac{1}{2}}) / \Delta_t
&= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l - \\frac{1}{2}} \\ \\ &= -\hat{\nabla} \cdot \tilde{S}_{l, l - \frac{1}{2}} \\
- \\hat{H}_{l-\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \hat{H}_{l-\frac{1}{2}} \cdot \hat{M}_l \\
- \\tilde{E}_l \\cdot \\tilde{J}_{l-\\frac{1}{2}} \\\\ - \tilde{E}_l \cdot \tilde{J}_{l-\frac{1}{2}} \\
\\end{aligned} \end{aligned}
$$ $$
This result is exact and should practically hold to within numerical precision. No time- This result is exact and should practically hold to within numerical precision. No time-
@ -147,10 +147,10 @@ of the time-domain fields.
The Ricker wavelet (normalized second derivative of a Gaussian) is commonly used for the pulse The Ricker wavelet (normalized second derivative of a Gaussian) is commonly used for the pulse
shape. It can be written shape. It can be written
$$ f_r(t) = (1 - \\frac{1}{2} (\\omega (t - \\tau))^2) e^{-(\\frac{\\omega (t - \\tau)}{2})^2} $$ $$ f_r(t) = (1 - \frac{1}{2} (\omega (t - \tau))^2) e^{-(\frac{\omega (t - \tau)}{2})^2} $$
with $\\tau > \\frac{2 * \\pi}{\\omega}$ as a minimum delay to avoid a discontinuity at with $\tau > \frac{2 * \pi}{\omega}$ as a minimum delay to avoid a discontinuity at
t=0 (assuming the source is off for t<0 this gives $\\sim 10^{-3}$ error at t=0). t=0 (assuming the source is off for t<0 this gives $\sim 10^{-3}$ error at t=0).
@ -159,8 +159,22 @@ Boundary conditions
# TODO notes about boundaries / PMLs # TODO notes about boundaries / PMLs
""" """
from .base import maxwell_e, maxwell_h from .base import (
from .pml import cpml_params, updates_with_cpml maxwell_e as maxwell_e,
from .energy import (poynting, poynting_divergence, energy_hstep, energy_estep, maxwell_h as maxwell_h,
delta_energy_h2e, delta_energy_j) )
from .boundaries import conducting_boundary from .pml import (
cpml_params as cpml_params,
updates_with_cpml as updates_with_cpml,
)
from .energy import (
poynting as poynting,
poynting_divergence as poynting_divergence,
energy_hstep as energy_hstep,
energy_estep as energy_estep,
delta_energy_h2e as delta_energy_h2e,
delta_energy_j as delta_energy_j,
)
from .boundaries import (
conducting_boundary as conducting_boundary,
)

View File

@ -15,13 +15,17 @@ def conducting_boundary(
) -> tuple[fdfield_updater_t, fdfield_updater_t]: ) -> tuple[fdfield_updater_t, fdfield_updater_t]:
dirs = [0, 1, 2] dirs = [0, 1, 2]
if direction not in dirs: if direction not in dirs:
raise Exception('Invalid direction: {}'.format(direction)) raise Exception(f'Invalid direction: {direction}')
dirs.remove(direction) dirs.remove(direction)
u, v = dirs u, v = dirs
boundary_slice: list[Any]
shifted1_slice: list[Any]
shifted2_slice: list[Any]
if polarity < 0: if polarity < 0:
boundary_slice = [slice(None)] * 3 # type: list[Any] boundary_slice = [slice(None)] * 3
shifted1_slice = [slice(None)] * 3 # type: list[Any] shifted1_slice = [slice(None)] * 3
boundary_slice[direction] = 0 boundary_slice[direction] = 0
shifted1_slice[direction] = 1 shifted1_slice[direction] = 1
@ -42,7 +46,7 @@ def conducting_boundary(
if polarity > 0: if polarity > 0:
boundary_slice = [slice(None)] * 3 boundary_slice = [slice(None)] * 3
shifted1_slice = [slice(None)] * 3 shifted1_slice = [slice(None)] * 3
shifted2_slice = [slice(None)] * 3 # type: list[Any] shifted2_slice = [slice(None)] * 3
boundary_slice[direction] = -1 boundary_slice[direction] = -1
shifted1_slice[direction] = -2 shifted1_slice[direction] = -2
shifted2_slice[direction] = -3 shifted2_slice[direction] = -3
@ -64,4 +68,4 @@ def conducting_boundary(
return ep, hp return ep, hp
raise Exception('Bad polarity: {}'.format(polarity)) raise Exception(f'Bad polarity: {polarity}')

View File

@ -12,7 +12,7 @@ def poynting(
h: fdfield_t, h: fdfield_t,
dxes: dx_lists_t | None = None, dxes: dx_lists_t | None = None,
) -> fdfield_t: ) -> fdfield_t:
""" r"""
Calculate the poynting vector `S` ($S$). Calculate the poynting vector `S` ($S$).
This is the energy transfer rate (amount of energy `U` per `dt` transferred This is the energy transfer rate (amount of energy `U` per `dt` transferred
@ -44,16 +44,16 @@ def poynting(
The full relationship is The full relationship is
$$ $$
\\begin{aligned} \begin{aligned}
(U_{l+\\frac{1}{2}} - U_l) / \\Delta_t (U_{l+\frac{1}{2}} - U_l) / \Delta_t
&= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l + \\frac{1}{2}} \\ \\ &= -\hat{\nabla} \cdot \tilde{S}_{l, l + \frac{1}{2}} \\
- \\hat{H}_{l+\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \hat{H}_{l+\frac{1}{2}} \cdot \hat{M}_l \\
- \\tilde{E}_l \\cdot \\tilde{J}_{l+\\frac{1}{2}} \\\\ - \tilde{E}_l \cdot \tilde{J}_{l+\frac{1}{2}} \\
(U_l - U_{l-\\frac{1}{2}}) / \\Delta_t (U_l - U_{l-\frac{1}{2}}) / \Delta_t
&= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l - \\frac{1}{2}} \\ \\ &= -\hat{\nabla} \cdot \tilde{S}_{l, l - \frac{1}{2}} \\
- \\hat{H}_{l-\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \hat{H}_{l-\frac{1}{2}} \cdot \hat{M}_l \\
- \\tilde{E}_l \\cdot \\tilde{J}_{l-\\frac{1}{2}} \\\\ - \tilde{E}_l \cdot \tilde{J}_{l-\frac{1}{2}} \\
\\end{aligned} \end{aligned}
$$ $$
These equalities are exact and should practically hold to within numerical precision. These equalities are exact and should practically hold to within numerical precision.

167
meanas/fdtd/misc.py Normal file
View File

@ -0,0 +1,167 @@
from typing import Callable
from collections.abc import Sequence
import logging
import numpy
from numpy.typing import NDArray, ArrayLike
from numpy import pi
logger = logging.getLogger(__name__)
pulse_fn_t = Callable[[int | NDArray], tuple[float, float, float]]
def gaussian_packet(
wl: float,
dwl: float,
dt: float,
turn_on: float = 1e-10,
one_sided: bool = False,
) -> tuple[pulse_fn_t, float]:
"""
Gaussian pulse (or gaussian ramp) for FDTD excitation
exp(-a*t*t) ==> exp(-omega * omega / (4 * a)) [fourier, ignoring leading const.]
FWHM_time is 2 * sqrt(2 * log(2)) * sqrt(2 / a)
FWHM_omega is 2 * sqrt(2 * log(2)) * sqrt(2 * a) = 4 * sqrt(log(2) * a)
Args:
wl: wavelength
dwl: Gaussian's FWHM in wavelength space
dt: Timestep
turn_on: Max allowable amplitude at t=0
one_sided: If `True`, source amplitude never decreases after reaching max
Returns:
Source function: src(timestep) -> (envelope[tt], cos[... * tt], sin[... * tt])
Delay: number of initial timesteps for which envelope[tt] will be 0
"""
logger.warning('meanas.fdtd.misc functions are still very WIP!') # TODO
# dt * dw = 4 * ln(2)
omega = 2 * pi / wl
freq = 1 / wl
fwhm_omega = dwl * omega * omega / (2 * pi) # dwl -> d_omega (approx)
alpha = (fwhm_omega * fwhm_omega) * numpy.log(2) / 8
delay = numpy.sqrt(-numpy.log(turn_on) / alpha)
delay = numpy.ceil(delay * freq) / freq # force delay to integer number of periods to maintain phase
logger.info(f'src_time {2 * delay / dt}')
def source_phasor(ii: int | NDArray) -> tuple[float, float, float]:
t0 = ii * dt - delay
envelope = numpy.sqrt(numpy.sqrt(2 * alpha / pi)) * numpy.exp(-alpha * t0 * t0)
if one_sided and t0 > 0:
envelope = 1
cc = numpy.cos(omega * t0)
ss = numpy.sin(omega * t0)
return envelope, cc, ss
# nrm = numpy.exp(-omega * omega / alpha) / 2
return source_phasor, delay
def ricker_pulse(
wl: float,
dt: float,
turn_on: float = 1e-10,
) -> tuple[pulse_fn_t, float]:
"""
Ricker wavelet (second derivative of a gaussian pulse)
t0 = ii * dt - delay
R = w_peak * t0 / 2
f(t) = (1 - 2 * (pi * f_peak * t0) ** 2) * exp(-(pi * f_peak * t0)**2
= (1 - (w_peak * t0)**2 / 2 exp(-(w_peak * t0 / 2) **2)
= (1 - 2 * R * R) * exp(-R * R)
# NOTE: don't use cosine/sine for J, just for phasor readout
Args:
wl: wavelength
dt: Timestep
turn_on: Max allowable amplitude at t=0
Returns:
Source function: src(timestep) -> (envelope[tt], cos[... * tt], sin[... * tt])
Delay: number of initial timesteps for which envelope[tt] will be 0
"""
logger.warning('meanas.fdtd.misc functions are still very WIP!') # TODO
omega = 2 * pi / wl
freq = 1 / wl
r0 = omega / 2
from scipy.optimize import root_scalar
delay_results = root_scalar(lambda xx: (1 - omega * omega * tt * tt / 2) * numpy.exp(-omega * omega / 4 * tt * tt) - turn_on, x0=0, x1=-2 / omega)
delay = delay_results.root
delay = numpy.ceil(delay * freq) / freq # force delay to integer number of periods to maintain phase
def source_phasor(ii: int | NDArray) -> tuple[float, float, float]:
t0 = ii * dt - delay
rr = omega * t0 / 2
ff = (1 - 2 * rr * rr) * numpy.exp(-rr * rr)
cc = numpy.cos(omega * t0)
ss = numpy.sin(omega * t0)
return ff, cc, ss
return source_phasor, delay
def gaussian_beam(
xyz: list[NDArray],
center: ArrayLike,
waist_radius: float,
wl: float,
tilt: float = 0,
) -> NDArray[numpy.complex128]:
"""
Gaussian beam
(solution to paraxial Helmholtz equation)
Default (no tilt) corresponds to a beam propagating in the -z direction.
Args:
xyz: List of [[x0, x1, ...], [y0, ...], [z0, ...]] positions specifying grid
locations at which the field will be sampled.
center: [x, y, z] location of beam waist
waist_radius: Beam radius at the waist
wl: Wavelength
tilt: Rotation around y axis. Default (0) has beam propagating in -z direction.
"""
logger.warning('meanas.fdtd.misc functions are still very WIP!') # TODO
w0 = waist_radius
grids = numpy.asarray(numpy.meshgrid(*xyz, indexing='ij'))
grids -= numpy.asarray(center)[:, None, None, None]
rot = numpy.array([
[ numpy.cos(tilt), 0, numpy.sin(tilt)],
[ 0, 1, 0],
[-numpy.sin(tilt), 0, numpy.cos(tilt)],
])
xx, yy, zz = numpy.einsum('ij,jxyz->ixyz', rot, grids)
r2 = xx * xx + yy * yy
z2 = zz * zz
zr = pi * w0 * w0 / wl
zr2 = zr * zr
wz2 = w0 * w0 * (1 + z2 / zr2)
wz = numpy.sqrt(wz2) # == fwhm(z) / sqrt(2 * ln(2))
kk = 2 * pi / wl
Rz = zz * (1 + zr2 / z2)
gouy = numpy.arctan(zz / zr)
gaussian = w0 / wz * numpy.exp(-r2 / wz2) * numpy.exp(1j * (kk * zz + kk * r2 / 2 / Rz - gouy))
row = gaussian[:, :, gaussian.shape[2] // 2]
norm = numpy.sqrt((row * row.conj()).sum())
return gaussian / norm

View File

@ -7,7 +7,8 @@ PML implementations
""" """
# TODO retest pmls! # TODO retest pmls!
from typing import Callable, Sequence, Any from typing import Any
from collections.abc import Callable, Sequence
from copy import deepcopy from copy import deepcopy
import numpy import numpy
from numpy.typing import NDArray, DTypeLike from numpy.typing import NDArray, DTypeLike
@ -33,10 +34,10 @@ def cpml_params(
) -> dict[str, Any]: ) -> dict[str, Any]:
if axis not in range(3): if axis not in range(3):
raise Exception('Invalid axis: {}'.format(axis)) raise Exception(f'Invalid axis: {axis}')
if polarity not in (-1, 1): if polarity not in (-1, 1):
raise Exception('Invalid polarity: {}'.format(polarity)) raise Exception(f'Invalid polarity: {polarity}')
if thickness <= 2: if thickness <= 2:
raise Exception('It would be wise to have a pml with 4+ cells of thickness') raise Exception('It would be wise to have a pml with 4+ cells of thickness')
@ -111,7 +112,7 @@ def updates_with_cpml(
params_H: list[list[tuple[Any, Any, Any, Any]]] = deepcopy(params_E) params_H: list[list[tuple[Any, Any, Any, Any]]] = deepcopy(params_E)
for axis in range(3): for axis in range(3):
for pp, polarity in enumerate((-1, 1)): for pp, _polarity in enumerate((-1, 1)):
cpml_param = cpml_params[axis][pp] cpml_param = cpml_params[axis][pp]
if cpml_param is None: if cpml_param is None:
psi_E[axis][pp] = (None, None) psi_E[axis][pp] = (None, None)
@ -184,7 +185,7 @@ def updates_with_cpml(
def update_H( def update_H(
e: fdfield_t, e: fdfield_t,
h: fdfield_t, h: fdfield_t,
mu: fdfield_t = numpy.ones(3), mu: fdfield_t | tuple[int, int, int] = (1, 1, 1),
) -> None: ) -> None:
dyEx = Dfy(e[0]) dyEx = Dfy(e[0])
dzEx = Dfz(e[0]) dzEx = Dfz(e[0])

View File

@ -3,7 +3,8 @@
Test fixtures Test fixtures
""" """
from typing import Iterable, Any # ruff: noqa: ARG001
from typing import Any
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
import pytest # type: ignore import pytest # type: ignore
@ -20,18 +21,18 @@ FixtureRequest = Any
(5, 5, 5), (5, 5, 5),
# (7, 7, 7), # (7, 7, 7),
]) ])
def shape(request: FixtureRequest) -> Iterable[tuple[int, ...]]: def shape(request: FixtureRequest) -> tuple[int, ...]:
yield (3, *request.param) return (3, *request.param)
@pytest.fixture(scope='module', params=[1.0, 1.5]) @pytest.fixture(scope='module', params=[1.0, 1.5])
def epsilon_bg(request: FixtureRequest) -> Iterable[float]: def epsilon_bg(request: FixtureRequest) -> float:
yield request.param return request.param
@pytest.fixture(scope='module', params=[1.0, 2.5]) @pytest.fixture(scope='module', params=[1.0, 2.5])
def epsilon_fg(request: FixtureRequest) -> Iterable[float]: def epsilon_fg(request: FixtureRequest) -> float:
yield request.param return request.param
@pytest.fixture(scope='module', params=['center', '000', 'random']) @pytest.fixture(scope='module', params=['center', '000', 'random'])
@ -40,7 +41,7 @@ def epsilon(
shape: tuple[int, ...], shape: tuple[int, ...],
epsilon_bg: float, epsilon_bg: float,
epsilon_fg: float, epsilon_fg: float,
) -> Iterable[NDArray[numpy.float64]]: ) -> NDArray[numpy.float64]:
is3d = (numpy.array(shape) == 1).sum() == 0 is3d = (numpy.array(shape) == 1).sum() == 0
if is3d: if is3d:
if request.param == '000': if request.param == '000':
@ -60,17 +61,17 @@ def epsilon(
high=max(epsilon_bg, epsilon_fg), high=max(epsilon_bg, epsilon_fg),
size=shape) size=shape)
yield epsilon return epsilon
@pytest.fixture(scope='module', params=[1.0]) # 1.5 @pytest.fixture(scope='module', params=[1.0]) # 1.5
def j_mag(request: FixtureRequest) -> Iterable[float]: def j_mag(request: FixtureRequest) -> float:
yield request.param return request.param
@pytest.fixture(scope='module', params=[1.0, 1.5]) @pytest.fixture(scope='module', params=[1.0, 1.5])
def dx(request: FixtureRequest) -> Iterable[float]: def dx(request: FixtureRequest) -> float:
yield request.param return request.param
@pytest.fixture(scope='module', params=['uniform', 'centerbig']) @pytest.fixture(scope='module', params=['uniform', 'centerbig'])
@ -78,7 +79,7 @@ def dxes(
request: FixtureRequest, request: FixtureRequest,
shape: tuple[int, ...], shape: tuple[int, ...],
dx: float, dx: float,
) -> Iterable[list[list[NDArray[numpy.float64]]]]: ) -> list[list[NDArray[numpy.float64]]]:
if request.param == 'uniform': if request.param == 'uniform':
dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)] dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)]
elif request.param == 'centerbig': elif request.param == 'centerbig':
@ -90,5 +91,5 @@ def dxes(
dxe = [PRNG.uniform(low=1.0 * dx, high=1.1 * dx, size=s) for s in shape[1:]] dxe = [PRNG.uniform(low=1.0 * dx, high=1.1 * dx, size=s) for s in shape[1:]]
dxh = [(d + numpy.roll(d, -1)) / 2 for d in dxe] dxh = [(d + numpy.roll(d, -1)) / 2 for d in dxe]
dxes = [dxe, dxh] dxes = [dxe, dxh]
yield dxes return dxes

View File

@ -1,4 +1,4 @@
from typing import Iterable # ruff: noqa: ARG001
import dataclasses import dataclasses
import pytest # type: ignore import pytest # type: ignore
import numpy import numpy
@ -61,24 +61,24 @@ def test_poynting_planes(sim: 'FDResult') -> None:
# Also see conftest.py # Also see conftest.py
@pytest.fixture(params=[1 / 1500]) @pytest.fixture(params=[1 / 1500])
def omega(request: FixtureRequest) -> Iterable[float]: def omega(request: FixtureRequest) -> float:
yield request.param return request.param
@pytest.fixture(params=[None]) @pytest.fixture(params=[None])
def pec(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]: def pec(request: FixtureRequest) -> NDArray[numpy.float64] | None:
yield request.param return request.param
@pytest.fixture(params=[None]) @pytest.fixture(params=[None])
def pmc(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]: def pmc(request: FixtureRequest) -> NDArray[numpy.float64] | None:
yield request.param return request.param
#@pytest.fixture(scope='module', #@pytest.fixture(scope='module',
# params=[(25, 5, 5)]) # params=[(25, 5, 5)])
#def shape(request): #def shape(request: FixtureRequest):
# yield (3, *request.param) # return (3, *request.param)
@pytest.fixture(params=['diag']) # 'center' @pytest.fixture(params=['diag']) # 'center'
@ -86,7 +86,7 @@ def j_distribution(
request: FixtureRequest, request: FixtureRequest,
shape: tuple[int, ...], shape: tuple[int, ...],
j_mag: float, j_mag: float,
) -> Iterable[NDArray[numpy.float64]]: ) -> NDArray[numpy.float64]:
j = numpy.zeros(shape, dtype=complex) j = numpy.zeros(shape, dtype=complex)
center_mask = numpy.zeros(shape, dtype=bool) center_mask = numpy.zeros(shape, dtype=bool)
center_mask[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = True center_mask[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = True
@ -96,7 +96,7 @@ def j_distribution(
elif request.param == 'diag': elif request.param == 'diag':
j[numpy.roll(center_mask, [1, 1, 1], axis=(1, 2, 3))] = (1 + 1j) * j_mag j[numpy.roll(center_mask, [1, 1, 1], axis=(1, 2, 3))] = (1 + 1j) * j_mag
j[numpy.roll(center_mask, [-1, -1, -1], axis=(1, 2, 3))] = (1 - 1j) * j_mag j[numpy.roll(center_mask, [-1, -1, -1], axis=(1, 2, 3))] = (1 - 1j) * j_mag
yield j return j
@dataclasses.dataclass() @dataclasses.dataclass()
@ -145,7 +145,7 @@ def sim(
omega=omega, omega=omega,
dxes=dxes, dxes=dxes,
epsilon=eps_vec, epsilon=eps_vec,
matrix_solver_opts={'atol': 1e-15, 'tol': 1e-11}, matrix_solver_opts={'atol': 1e-15, 'rtol': 1e-11},
) )
e = unvec(e_vec, shape[1:]) e = unvec(e_vec, shape[1:])

View File

@ -1,4 +1,4 @@
from typing import Iterable # ruff: noqa: ARG001
import pytest # type: ignore import pytest # type: ignore
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
@ -44,30 +44,30 @@ def test_pml(sim: FDResult, src_polarity: int) -> None:
# Also see conftest.py # Also see conftest.py
@pytest.fixture(params=[1 / 1500]) @pytest.fixture(params=[1 / 1500])
def omega(request: FixtureRequest) -> Iterable[float]: def omega(request: FixtureRequest) -> float:
yield request.param return request.param
@pytest.fixture(params=[None]) @pytest.fixture(params=[None])
def pec(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]: def pec(request: FixtureRequest) -> NDArray[numpy.float64] | None:
yield request.param return request.param
@pytest.fixture(params=[None]) @pytest.fixture(params=[None])
def pmc(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]: def pmc(request: FixtureRequest) -> NDArray[numpy.float64] | None:
yield request.param return request.param
@pytest.fixture(params=[(30, 1, 1), @pytest.fixture(params=[(30, 1, 1),
(1, 30, 1), (1, 30, 1),
(1, 1, 30)]) (1, 1, 30)])
def shape(request: FixtureRequest) -> Iterable[tuple[int, ...]]: def shape(request: FixtureRequest) -> tuple[int, int, int]:
yield (3, *request.param) return (3, *request.param)
@pytest.fixture(params=[+1, -1]) @pytest.fixture(params=[+1, -1])
def src_polarity(request: FixtureRequest) -> Iterable[int]: def src_polarity(request: FixtureRequest) -> int:
yield request.param return request.param
@pytest.fixture() @pytest.fixture()
@ -78,7 +78,7 @@ def j_distribution(
dxes: dx_lists_mut, dxes: dx_lists_mut,
omega: float, omega: float,
src_polarity: int, src_polarity: int,
) -> Iterable[NDArray[numpy.complex128]]: ) -> NDArray[numpy.complex128]:
j = numpy.zeros(shape, dtype=complex) j = numpy.zeros(shape, dtype=complex)
dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis
@ -106,7 +106,7 @@ def j_distribution(
j = fdfd.waveguide_3d.compute_source(E=e, wavenumber=wavenumber_corrected, omega=omega, dxes=dxes, j = fdfd.waveguide_3d.compute_source(E=e, wavenumber=wavenumber_corrected, omega=omega, dxes=dxes,
axis=dim, polarity=src_polarity, slices=slices, epsilon=epsilon) axis=dim, polarity=src_polarity, slices=slices, epsilon=epsilon)
yield j return j
@pytest.fixture() @pytest.fixture()
@ -115,9 +115,9 @@ def epsilon(
shape: tuple[int, ...], shape: tuple[int, ...],
epsilon_bg: float, epsilon_bg: float,
epsilon_fg: float, epsilon_fg: float,
) -> Iterable[NDArray[numpy.float64]]: ) -> NDArray[numpy.float64]:
epsilon = numpy.full(shape, epsilon_fg, dtype=float) epsilon = numpy.full(shape, epsilon_fg, dtype=float)
yield epsilon return epsilon
@pytest.fixture(params=['uniform']) @pytest.fixture(params=['uniform'])
@ -127,7 +127,7 @@ def dxes(
dx: float, dx: float,
omega: float, omega: float,
epsilon_fg: float, epsilon_fg: float,
) -> Iterable[list[list[NDArray[numpy.float64]]]]: ) -> list[list[NDArray[numpy.float64]]]:
if request.param == 'uniform': if request.param == 'uniform':
dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)] dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)]
dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis
@ -141,7 +141,7 @@ def dxes(
epsilon_effective=epsilon_fg, epsilon_effective=epsilon_fg,
thickness=10, thickness=10,
) )
yield dxes return dxes
@pytest.fixture() @pytest.fixture()
@ -162,7 +162,7 @@ def sim(
omega=omega, omega=omega,
dxes=dxes, dxes=dxes,
epsilon=eps_vec, epsilon=eps_vec,
matrix_solver_opts={'atol': 1e-15, 'tol': 1e-11}, matrix_solver_opts={'atol': 1e-15, 'rtol': 1e-11},
) )
e = unvec(e_vec, shape[1:]) e = unvec(e_vec, shape[1:])

View File

@ -1,4 +1,5 @@
from typing import Iterable, Any # ruff: noqa: ARG001
from typing import Any
import dataclasses import dataclasses
import pytest # type: ignore import pytest # type: ignore
import numpy import numpy
@ -101,7 +102,7 @@ def test_poynting_divergence(sim: 'TDResult') -> None:
def test_poynting_planes(sim: 'TDResult') -> None: def test_poynting_planes(sim: 'TDResult') -> None:
mask = (sim.js[0] != 0).any(axis=0) mask = (sim.js[0] != 0).any(axis=0)
if mask.sum() > 1: if mask.sum() > 1:
pytest.skip('test_poynting_planes can only test single point sources, got {}'.format(mask.sum())) pytest.skip(f'test_poynting_planes can only test single point sources, got {mask.sum()}')
args: dict[str, Any] = { args: dict[str, Any] = {
'dxes': sim.dxes, 'dxes': sim.dxes,
@ -150,8 +151,8 @@ def test_poynting_planes(sim: 'TDResult') -> None:
@pytest.fixture(params=[0.3]) @pytest.fixture(params=[0.3])
def dt(request: FixtureRequest) -> Iterable[float]: def dt(request: FixtureRequest) -> float:
yield request.param return request.param
@dataclasses.dataclass() @dataclasses.dataclass()
@ -168,8 +169,8 @@ class TDResult:
@pytest.fixture(params=[(0, 4, 8)]) # (0,) @pytest.fixture(params=[(0, 4, 8)]) # (0,)
def j_steps(request: FixtureRequest) -> Iterable[tuple[int, ...]]: def j_steps(request: FixtureRequest) -> tuple[int, ...]:
yield request.param return request.param
@pytest.fixture(params=['center', 'random']) @pytest.fixture(params=['center', 'random'])
@ -177,7 +178,7 @@ def j_distribution(
request: FixtureRequest, request: FixtureRequest,
shape: tuple[int, ...], shape: tuple[int, ...],
j_mag: float, j_mag: float,
) -> Iterable[NDArray[numpy.float64]]: ) -> NDArray[numpy.float64]:
j = numpy.zeros(shape) j = numpy.zeros(shape)
if request.param == 'center': if request.param == 'center':
j[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = j_mag j[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = j_mag
@ -185,7 +186,7 @@ def j_distribution(
j[:, 0, 0, 0] = j_mag j[:, 0, 0, 0] = j_mag
elif request.param == 'random': elif request.param == 'random':
j[:] = PRNG.uniform(low=-j_mag, high=j_mag, size=shape) j[:] = PRNG.uniform(low=-j_mag, high=j_mag, size=shape)
yield j return j
@pytest.fixture() @pytest.fixture()
@ -199,9 +200,8 @@ def sim(
j_steps: tuple[int, ...], j_steps: tuple[int, ...],
) -> TDResult: ) -> TDResult:
is3d = (numpy.array(shape) == 1).sum() == 0 is3d = (numpy.array(shape) == 1).sum() == 0
if is3d: if is3d and dt != 0.3:
if dt != 0.3: pytest.skip('Skipping dt != 0.3 because test is 3D (for speed)')
pytest.skip('Skipping dt != 0.3 because test is 3D (for speed)')
sim = TDResult( sim = TDResult(
shape=shape, shape=shape,

View File

@ -1,5 +1,3 @@
from typing import Any
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
@ -10,22 +8,25 @@ PRNG = numpy.random.RandomState(12345)
def assert_fields_close( def assert_fields_close(
x: NDArray, x: NDArray,
y: NDArray, y: NDArray,
*args: Any,
**kwargs: Any,
) -> None:
numpy.testing.assert_allclose(
x, y, verbose=False, # type: ignore
err_msg='Fields did not match:\n{}\n{}'.format(numpy.moveaxis(x, -1, 0),
numpy.moveaxis(y, -1, 0)),
*args, *args,
**kwargs, **kwargs,
) -> None:
x_disp = numpy.moveaxis(x, -1, 0)
y_disp = numpy.moveaxis(y, -1, 0)
numpy.testing.assert_allclose(
x, # type: ignore
y, # type: ignore
*args,
verbose=False,
err_msg=f'Fields did not match:\n{x_disp}\n{y_disp}',
**kwargs,
) )
def assert_close( def assert_close(
x: NDArray, x: NDArray,
y: NDArray, y: NDArray,
*args: Any, *args,
**kwargs: Any, **kwargs,
) -> None: ) -> None:
numpy.testing.assert_allclose(x, y, *args, **kwargs) numpy.testing.assert_allclose(x, y, *args, **kwargs)

View File

@ -321,7 +321,6 @@ class _ToMarkdown:
"""Wrap URLs in Python-Markdown-compatible <angle brackets>.""" """Wrap URLs in Python-Markdown-compatible <angle brackets>."""
return re.sub(r'(?<![<"\'])(\s*)((?:http|ftp)s?://[^>)\s]+)(\s*)', r'\1<\2>\3', text) return re.sub(r'(?<![<"\'])(\s*)((?:http|ftp)s?://[^>)\s]+)(\s*)', r'\1<\2>\3', text)
import subprocess
class _MathPattern(InlineProcessor): class _MathPattern(InlineProcessor):
NAME = 'pdoc-math' NAME = 'pdoc-math'

View File

@ -39,8 +39,8 @@ include = [
] ]
dynamic = ["version"] dynamic = ["version"]
dependencies = [ dependencies = [
"numpy~=1.21", "numpy>=2.0",
"scipy", "scipy~=1.14",
] ]
@ -51,3 +51,48 @@ path = "meanas/__init__.py"
dev = ["pytest", "pdoc", "gridlock"] dev = ["pytest", "pdoc", "gridlock"]
examples = ["gridlock"] examples = ["gridlock"]
test = ["pytest"] test = ["pytest"]
[tool.ruff]
exclude = [
".git",
"dist",
]
line-length = 245
indent-width = 4
lint.dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
lint.select = [
"NPY", "E", "F", "W", "B", "ANN", "UP", "SLOT", "SIM", "LOG",
"C4", "ISC", "PIE", "PT", "RET", "TCH", "PTH", "INT",
"ARG", "PL", "R", "TRY",
"G010", "G101", "G201", "G202",
"Q002", "Q003", "Q004",
]
lint.ignore = [
#"ANN001", # No annotation
"ANN002", # *args
"ANN003", # **kwargs
"ANN401", # Any
"ANN101", # self: Self
"SIM108", # single-line if / else assignment
"RET504", # x=y+z; return x
"PIE790", # unnecessary pass
"ISC003", # non-implicit string concatenation
"C408", # dict(x=y) instead of {'x': y}
"PLR09", # Too many xxx
"PLR2004", # magic number
"PLC0414", # import x as x
"TRY003", # Long exception message
"TRY002", # Exception()
]
[[tool.mypy.overrides]]
module = [
"scipy",
"scipy.optimize",
"scipy.linalg",
"scipy.sparse",
"scipy.sparse.linalg",
]
ignore_missing_imports = true