[fdfd.waveguide_cyl] Improve documentation and add auxiliary functions (e.g. exy2exyz)
This commit is contained in:
parent
234e8d7ac3
commit
1cb0cb2e4f
@ -1,13 +1,65 @@
|
||||
"""
|
||||
r"""
|
||||
Operators and helper functions for cylindrical waveguides with unchanging cross-section.
|
||||
|
||||
WORK IN PROGRESS, CURRENTLY BROKEN
|
||||
Waveguide operator is derived according to 10.1364/OL.33.001848.
|
||||
The curl equations in the complex coordinate system become
|
||||
|
||||
As the z-dependence is known, all the functions in this file assume a 2D grid
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta frac{E_y}{\tilde{t}_x} \\
|
||||
-\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \frac{1}{\hat{t}_x} \tilde{\partial}_x \tilde{t}_x E_z \\
|
||||
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
|
||||
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta \frac{H_y}{\hat{T}} \\
|
||||
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \{1}{\tilde{t}_x} \hat{\partial}_x \hat{t}_x} H_z \\
|
||||
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
where $t_x = 1 + \frac{\Delta_{x, m}}{R_0}$ is the grid spacing adjusted by the nominal radius $R0$.
|
||||
|
||||
Rewrite the last three equations as
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\imath \beta H_y &= \imath \omega \hat{t}_x \epsilon_{xx} E_x - \hat{t}_x \hat{\partial}_y H_z \\
|
||||
\imath \beta H_x &= -\imath \omega \hat{t}_x \epsilon_{yy} E_y - \hat{t}_x \hat{\partial}_x H_z \\
|
||||
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
The derivation then follows the same steps as the straight waveguide, leading to the eigenvalue problem
|
||||
|
||||
$$
|
||||
\beta^2 \begin{bmatrix} E_x \\
|
||||
E_y \end{bmatrix} =
|
||||
(\omega^2 \begin{bmatrix} T_b T_b \mu_{yy} \epsilon_{xx} & 0 \\
|
||||
0 & T_a T_a \mu_{xx} \epsilon_{yy} \end{bmatrix} +
|
||||
\begin{bmatrix} -T_b \mu_{yy} \hat{\partial}_y \\
|
||||
T_a \mu_{xx} \hat{\partial}_x \end{bmatrix} T_b \mu_{zz}^{-1}
|
||||
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
|
||||
\begin{bmatrix} \tilde{\partial}_x \\
|
||||
\tilde{\partial}_y \end{bmatrix} T_a \epsilon_{zz}^{-1}
|
||||
\begin{bmatrix} \hat{\partial}_x T_b \epsilon_{xx} & \hat{\partial}_y T_a \epsilon_{yy} \end{bmatrix})
|
||||
\begin{bmatrix} E_x \\
|
||||
E_y \end{bmatrix}
|
||||
$$
|
||||
|
||||
which resembles the straight waveguide eigenproblem with additonal $T_a$ and $T_b$ terms. These
|
||||
are diagonal matrices containing the $t_x$ values:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
T_a &= 1 + \frac{\Delta_{x, m }}{R_0}
|
||||
T_b &= 1 + \frac{\Delta_{x, m + \frac{1}{2} }}{R_0}
|
||||
\end{aligned}
|
||||
|
||||
|
||||
TODO: consider 10.1364/OE.20.021583 for an alternate approach
|
||||
$$
|
||||
|
||||
As in the straight waveguide case, all the functions in this file assume a 2D grid
|
||||
(i.e. `dxes = [[[dr_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dr_h_0, ...], [dy_h_0, ...]]]`).
|
||||
"""
|
||||
# TODO update module docs
|
||||
|
||||
from typing import Any, cast
|
||||
from collections.abc import Sequence
|
||||
import logging
|
||||
@ -30,13 +82,21 @@ def cylindrical_operator(
|
||||
epsilon: vfdfield_t,
|
||||
rmin: float,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
r"""
|
||||
Cylindrical coordinate waveguide operator of the form
|
||||
|
||||
(NOTE: See 10.1364/OL.33.001848)
|
||||
TODO: consider 10.1364/OE.20.021583
|
||||
|
||||
TODO
|
||||
$$
|
||||
(\omega^2 \begin{bmatrix} T_b T_b \mu_{yy} \epsilon_{xx} & 0 \\
|
||||
0 & T_a T_a \mu_{xx} \epsilon_{yy} \end{bmatrix} +
|
||||
\begin{bmatrix} -T_b \mu_{yy} \hat{\partial}_y \\
|
||||
T_a \mu_{xx} \hat{\partial}_x \end{bmatrix} T_b \mu_{zz}^{-1}
|
||||
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
|
||||
\begin{bmatrix} \tilde{\partial}_x \\
|
||||
\tilde{\partial}_y \end{bmatrix} T_a \epsilon_{zz}^{-1}
|
||||
\begin{bmatrix} \hat{\partial}_x T_b \epsilon_{xx} & \hat{\partial}_y T_a \epsilon_{yy} \end{bmatrix})
|
||||
\begin{bmatrix} E_x \\
|
||||
E_y \end{bmatrix}
|
||||
$$
|
||||
|
||||
for use with a field vector of the form `[E_r, E_y]`.
|
||||
|
||||
@ -46,11 +106,13 @@ def cylindrical_operator(
|
||||
which can then be solved for the eigenmodes of the system
|
||||
(an `exp(-i * wavenumber * theta)` theta-dependence is assumed for the fields).
|
||||
|
||||
(NOTE: See module docs and 10.1364/OL.33.001848)
|
||||
|
||||
Args:
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
rmin: Radius at the left edge of the simulation domain (minimum 'x')
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator
|
||||
@ -74,13 +136,6 @@ def cylindrical_operator(
|
||||
lin0 = sparse.vstack((-Tb @ Dby, Ta @ Dbx)) @ Tb @ sparse.hstack((-Dfy, Dfx))
|
||||
lin1 = sparse.vstack((Dfx, Dfy)) @ Ta @ eps_z_inv @ sparse.hstack((Dbx @ Tb @ eps_x,
|
||||
Dby @ Ta @ eps_y))
|
||||
# op = (
|
||||
# # E
|
||||
# omega * omega * mu_yx @ eps_xy
|
||||
# + mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx))
|
||||
# + sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
|
||||
# )
|
||||
|
||||
op = sq0 + lin0 + lin1
|
||||
return op
|
||||
|
||||
@ -94,7 +149,6 @@ def solve_modes(
|
||||
mode_margin: int = 2,
|
||||
) -> tuple[vcfdfield_t, NDArray[numpy.complex128]]:
|
||||
"""
|
||||
TODO: fixup
|
||||
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
|
||||
of the bent waveguide with the specified mode number.
|
||||
|
||||
@ -179,11 +233,13 @@ def linear_wavenumbers(
|
||||
and the mode's energy distribution.
|
||||
|
||||
Args:
|
||||
e_xys: Vectorized mode fields with shape [num_modes, 2 * x *y)
|
||||
angular_wavenumbers: Angular wavenumbers corresponding to the fields in `e_xys`
|
||||
e_xys: Vectorized mode fields with shape (num_modes, 2 * x *y)
|
||||
angular_wavenumbers: Wavenumbers assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. They should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
epsilon: Vectorized dielectric constant grid with shape (3, x, y)
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (minimum 'x')
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
|
||||
Returns:
|
||||
NDArray containing the calculated linear (1/distance) wavenumbers
|
||||
@ -206,3 +262,241 @@ def linear_wavenumbers(
|
||||
return lin_wavenumbers
|
||||
|
||||
|
||||
def exy2h(
|
||||
angular_wavenumber: complex,
|
||||
omega: float,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
epsilon: vfdfield_t,
|
||||
mu: vfdfield_t | None = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
into a vectorized H containing all three H components
|
||||
|
||||
Args:
|
||||
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. It should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representing the operator.
|
||||
"""
|
||||
e2hop = e2h(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, mu=mu)
|
||||
return e2hop @ exy2e(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon)
|
||||
|
||||
|
||||
def exy2e(
|
||||
angular_wavenumber: complex,
|
||||
omega: float,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
epsilon: vfdfield_t,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
into a vectorized E containing all three E components
|
||||
|
||||
Unlike the straight waveguide case, the H_z components do not cancel and must be calculated
|
||||
from E_x and E_y in order to then calculate E_z.
|
||||
|
||||
Args:
|
||||
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. It should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
|
||||
Returns:
|
||||
Sparse matrix representing the operator.
|
||||
"""
|
||||
Dfx, Dfy = deriv_forward(dxes[0])
|
||||
Dbx, Dby = deriv_back(dxes[1])
|
||||
wavenumber = angular_wavenumber / rmin
|
||||
|
||||
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
|
||||
Tai = sparse.diags_array(1 / Ta.diagonal())
|
||||
Tbi = sparse.diags_array(1 / Tb.diagonal())
|
||||
|
||||
epsilon_parts = numpy.split(epsilon, 3)
|
||||
epsilon_x, epsilon_y = (sparse.diags_array(epsi) for epsi in epsilon_parts[:2])
|
||||
epsilon_z_inv = sparse.diags_array(1 / epsilon_parts[2])
|
||||
|
||||
n_pts = dxes[0][0].size * dxes[0][1].size
|
||||
zeros = sparse.coo_array((n_pts, n_pts))
|
||||
keep_x = sparse.block_array([[sparse.eye_array(n_pts), None], [None, zeros]])
|
||||
keep_y = sparse.block_array([[zeros, None], [None, sparse.eye_array(n_pts)]])
|
||||
|
||||
mu_z = numpy.ones(n_pts)
|
||||
mu_z_inv = sparse.diags_array(1 / mu_z)
|
||||
exy2hz = 1 / (-1j * omega) * mu_z_inv @ sparse.hstack((Dfy, -Dfx))
|
||||
hxy2ez = 1 / (1j * omega) * epsilon_z_inv @ sparse.hstack((Dby, -Dbx))
|
||||
|
||||
exy2hy = Tb / (1j * wavenumber) @ (-1j * omega * sparse.hstack((epsilon_x, zeros)) - Dby @ exy2hz)
|
||||
exy2hx = Tb / (1j * wavenumber) @ ( 1j * omega * sparse.hstack((zeros, epsilon_y)) - Tai @ Dbx @ Tb @ exy2hz)
|
||||
|
||||
exy2ez = hxy2ez @ sparse.vstack((exy2hx, exy2hy))
|
||||
|
||||
op = sparse.vstack((sparse.eye_array(2 * n_pts),
|
||||
exy2ez))
|
||||
return op
|
||||
|
||||
|
||||
def e2h(
|
||||
angular_wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
mu: vfdfield_t | None = None
|
||||
) -> sparse.spmatrix:
|
||||
r"""
|
||||
Returns an operator which, when applied to a vectorized E eigenfield, produces
|
||||
the vectorized H eigenfield.
|
||||
|
||||
This operator is created directly from the initial coordinate-transformed equations:
|
||||
$$
|
||||
\begin{aligned}
|
||||
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta \frac{H_y}{\hat{T}} \\
|
||||
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \{1}{\tilde{t}_x} \hat{\partial}_x \hat{t}_x} H_z \\
|
||||
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Args:
|
||||
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. It should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
Dfx, Dfy = deriv_forward(dxes[0])
|
||||
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
|
||||
Tai = sparse.diags_array(1 / Ta.diagonal())
|
||||
Tbi = sparse.diags_array(1 / Tb.diagonal())
|
||||
|
||||
jB = 1j * angular_wavenumber / rmin
|
||||
op = sparse.block_array([[ None, -jB * Tai, -Dfy],
|
||||
[jB * Tbi, None, Tbi @ Dfx @ Ta],
|
||||
[ Dfy, -Dfx, None]]) / (-1j * omega)
|
||||
if mu is not None:
|
||||
op = sparse.diags_array(1 / mu) @ op
|
||||
return op
|
||||
|
||||
|
||||
def dxes2T(
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
|
||||
r"""
|
||||
Returns the $T_a$ and $T_b$ diagonal matrices which are used to apply the cylindrical
|
||||
coordinate transformation in various operators.
|
||||
|
||||
Args:
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
|
||||
Returns:
|
||||
Sparse matrix representations of the operators Ta and Tb
|
||||
"""
|
||||
ra = rmin + numpy.cumsum(dxes[0][0]) # Radius at Ey points
|
||||
rb = rmin + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0]) # Radius at Ex points
|
||||
ta = ra / rmin
|
||||
tb = rb / rmin
|
||||
|
||||
Ta = sparse.diags_array(vec(ta[:, None].repeat(dxes[0][1].size, axis=1)))
|
||||
Tb = sparse.diags_array(vec(tb[:, None].repeat(dxes[1][1].size, axis=1)))
|
||||
return Ta, Tb
|
||||
|
||||
|
||||
def normalized_fields_e(
|
||||
e_xy: ArrayLike,
|
||||
angular_wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
epsilon: vfdfield_t,
|
||||
mu: vfdfield_t | None = None,
|
||||
prop_phase: float = 0,
|
||||
) -> tuple[vcfdfield_t, vcfdfield_t]:
|
||||
"""
|
||||
Given a vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
returns normalized, vectorized E and H fields for the system.
|
||||
|
||||
Args:
|
||||
e_xy: Vector containing E_x and E_y fields
|
||||
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. It should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
|
||||
Default 0 (continuous propagation direction, i.e. dz->0).
|
||||
|
||||
Returns:
|
||||
`(e, h)`, where each field is vectorized, normalized,
|
||||
and contains all three vector components.
|
||||
"""
|
||||
e = exy2e(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon) @ e_xy
|
||||
h = exy2h(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon, mu=mu) @ e_xy
|
||||
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon,
|
||||
mu=mu, prop_phase=prop_phase)
|
||||
return e_norm, h_norm
|
||||
|
||||
|
||||
def _normalized_fields(
|
||||
e: vcfdfield_t,
|
||||
h: vcfdfield_t,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
epsilon: vfdfield_t,
|
||||
mu: vfdfield_t | None = None,
|
||||
prop_phase: float = 0,
|
||||
) -> tuple[vcfdfield_t, vcfdfield_t]:
|
||||
h *= -1
|
||||
# TODO documentation for normalized_fields
|
||||
shape = [s.size for s in dxes[0]]
|
||||
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
|
||||
|
||||
# Find time-averaged Sz and normalize to it
|
||||
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
|
||||
phase = numpy.exp(-1j * -prop_phase / 2)
|
||||
Sz_tavg = waveguide_2d.inner_product(e, h, dxes=dxes, prop_phase=prop_phase, conj_h=True).real # Note, using linear poynting vector
|
||||
assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}'
|
||||
|
||||
energy = numpy.real(epsilon * e.conj() * e)
|
||||
|
||||
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
|
||||
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
|
||||
|
||||
# Try to break symmetry to assign a consistent sign [experimental]
|
||||
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
|
||||
sign = numpy.sign(E_weighted[:,
|
||||
:max(shape[0] // 2, 1),
|
||||
:max(shape[1] // 2, 1)].real.sum())
|
||||
assert sign != 0
|
||||
|
||||
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
|
||||
|
||||
print('\nAAA\n', waveguide_2d.inner_product(e, h, dxes, prop_phase=prop_phase))
|
||||
e *= norm_factor
|
||||
h *= norm_factor
|
||||
print(f'{sign=} {norm_amplitude=} {norm_angle=} {prop_phase=}')
|
||||
print(waveguide_2d.inner_product(e, h, dxes, prop_phase=prop_phase))
|
||||
|
||||
return e, h
|
||||
|
Loading…
x
Reference in New Issue
Block a user