103 lines
3.6 KiB
Python
103 lines
3.6 KiB
Python
r"""
|
|
Tools for finite difference frequency-domain (FDFD) simulations and calculations.
|
|
|
|
These mostly involve picking a single frequency, then setting up and solving a
|
|
matrix equation (Ax=b) or eigenvalue problem.
|
|
|
|
|
|
Submodules:
|
|
|
|
- `operators`, `functional`: General FDFD problem setup.
|
|
- `solvers`: Solver interface and reference implementation.
|
|
- `scpml`: Stretched-coordinate perfectly matched layer (scpml) boundary conditions
|
|
- `waveguide_2d`: Operators and mode-solver for waveguides with constant cross-section.
|
|
- `waveguide_3d`: Functions for transforming `waveguide_2d` results into 3D.
|
|
|
|
|
|
================================================================
|
|
|
|
From the "Frequency domain" section of `meanas.fdmath`, we have
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\tilde{E}_{l, \vec{r}} &= \tilde{E}_{\vec{r}} e^{-\imath \omega l \Delta_t} \\
|
|
\tilde{H}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &= \tilde{H}_{\vec{r} + \frac{1}{2}} e^{-\imath \omega (l - \frac{1}{2}) \Delta_t} \\
|
|
\tilde{J}_{l, \vec{r}} &= \tilde{J}_{\vec{r}} e^{-\imath \omega (l - \frac{1}{2}) \Delta_t} \\
|
|
\tilde{M}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &= \tilde{M}_{\vec{r} + \frac{1}{2}} e^{-\imath \omega l \Delta_t} \\
|
|
\hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{\vec{r}})
|
|
-\Omega^2 \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} &= -\imath \Omega \tilde{J}_{\vec{r}} e^{\imath \omega \Delta_t / 2} \\
|
|
\Omega &= 2 \sin(\omega \Delta_t / 2) / \Delta_t
|
|
\end{aligned}
|
|
$$
|
|
|
|
resulting in
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\tilde{\partial}_t &\Rightarrow -\imath \Omega e^{-\imath \omega \Delta_t / 2}\\
|
|
\hat{\partial}_t &\Rightarrow -\imath \Omega e^{ \imath \omega \Delta_t / 2}\\
|
|
\end{aligned}
|
|
$$
|
|
|
|
Maxwell's equations are then
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\tilde{\nabla} \times \tilde{E}_{\vec{r}} &=
|
|
\imath \Omega e^{-\imath \omega \Delta_t / 2} \hat{B}_{\vec{r} + \frac{1}{2}}
|
|
- \hat{M}_{\vec{r} + \frac{1}{2}} \\
|
|
\hat{\nabla} \times \hat{H}_{\vec{r} + \frac{1}{2}} &=
|
|
-\imath \Omega e^{ \imath \omega \Delta_t / 2} \tilde{D}_{\vec{r}}
|
|
+ \tilde{J}_{\vec{r}} \\
|
|
\tilde{\nabla} \cdot \hat{B}_{\vec{r} + \frac{1}{2}} &= 0 \\
|
|
\hat{\nabla} \cdot \tilde{D}_{\vec{r}} &= \rho_{\vec{r}}
|
|
\end{aligned}
|
|
$$
|
|
|
|
With $\Delta_t \to 0$, this simplifies to
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\tilde{E}_{l, \vec{r}} &\to \tilde{E}_{\vec{r}} \\
|
|
\tilde{H}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &\to \tilde{H}_{\vec{r} + \frac{1}{2}} \\
|
|
\tilde{J}_{l, \vec{r}} &\to \tilde{J}_{\vec{r}} \\
|
|
\tilde{M}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &\to \tilde{M}_{\vec{r} + \frac{1}{2}} \\
|
|
\Omega &\to \omega \\
|
|
\tilde{\partial}_t &\to -\imath \omega \\
|
|
\hat{\partial}_t &\to -\imath \omega \\
|
|
\end{aligned}
|
|
$$
|
|
|
|
and then
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\tilde{\nabla} \times \tilde{E}_{\vec{r}} &=
|
|
\imath \omega \hat{B}_{\vec{r} + \frac{1}{2}}
|
|
- \hat{M}_{\vec{r} + \frac{1}{2}} \\
|
|
\hat{\nabla} \times \hat{H}_{\vec{r} + \frac{1}{2}} &=
|
|
-\imath \omega \tilde{D}_{\vec{r}}
|
|
+ \tilde{J}_{\vec{r}} \\
|
|
\end{aligned}
|
|
$$
|
|
|
|
$$
|
|
\hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{\vec{r}})
|
|
-\omega^2 \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} = -\imath \omega \tilde{J}_{\vec{r}} \\
|
|
$$
|
|
|
|
# TODO FDFD?
|
|
# TODO PML
|
|
|
|
|
|
"""
|
|
from . import (
|
|
solvers as solvers,
|
|
operators as operators,
|
|
functional as functional,
|
|
scpml as scpml,
|
|
waveguide_2d as waveguide_2d,
|
|
waveguide_3d as waveguide_3d,
|
|
)
|
|
# from . import farfield, bloch TODO
|