[waveguide_2d] Remove \gamma from docs in favor of just using \beta
This commit is contained in:
parent
651e255704
commit
53d5812b4a
@ -18,8 +18,8 @@ $$
|
||||
\begin{aligned}
|
||||
\nabla \times \vec{E}(x, y, z) &= -\imath \omega \mu \vec{H} \\
|
||||
\nabla \times \vec{H}(x, y, z) &= \imath \omega \epsilon \vec{E} \\
|
||||
\vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\gamma z} \\
|
||||
\vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\gamma z} \\
|
||||
\vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\imath \beta z} \\
|
||||
\vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\imath \beta z} \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
@ -40,56 +40,57 @@ Substituting in our expressions for $\vec{E}$, $\vec{H}$ and discretizing:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \gamma E_y \\
|
||||
-\imath \omega \mu_{yy} H_y &= -\gamma E_x - \tilde{\partial}_x E_z \\
|
||||
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta E_y \\
|
||||
-\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \tilde{\partial}_x E_z \\
|
||||
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
|
||||
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \gamma H_y \\
|
||||
\imath \omega \epsilon_{yy} E_y &= -\gamma H_x - \hat{\partial}_x H_z \\
|
||||
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta H_y \\
|
||||
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \hat{\partial}_x H_z \\
|
||||
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Rewrite the last three equations as
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\gamma H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
|
||||
\gamma H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
|
||||
\imath \beta H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
|
||||
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
|
||||
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Now apply $\gamma \tilde{\partial}_x$ to the last equation,
|
||||
then substitute in for $\gamma H_x$ and $\gamma H_y$:
|
||||
Now apply $\imath \beta \tilde{\partial}_x$ to the last equation,
|
||||
then substitute in for $\imath \beta H_x$ and $\imath \beta H_y$:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\gamma \tilde{\partial}_x \imath \omega E_z &= \gamma \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
|
||||
- \gamma \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||
\imath \beta \tilde{\partial}_x \imath \omega E_z &= \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
|
||||
- \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z)
|
||||
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
|
||||
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x)
|
||||
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y) \\
|
||||
\gamma \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
|
||||
\imath \beta \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
With a similar approach (but using $\gamma \tilde{\partial}_y$ instead), we can get
|
||||
With a similar approach (but using $\imath \beta \tilde{\partial}_y$ instead), we can get
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\gamma \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
|
||||
\imath \beta \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
We can combine this equation for $\gamma \tilde{\partial}_y E_z$ with
|
||||
We can combine this equation for $\imath \beta \tilde{\partial}_y E_z$ with
|
||||
the unused $\imath \omega \mu_{xx} H_x$ and $\imath \omega \mu_{yy} H_y$ equations to get
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{xx} \gamma H_x &= \gamma^2 E_y + \gamma \tilde{\partial}_y E_z \\
|
||||
-\imath \omega \mu_{xx} \gamma H_x &= \gamma^2 E_y + \tilde{\partial}_y (
|
||||
-\imath \omega \mu_{xx} \imath \beta H_x &= -\beta^2 E_y + \imath \beta \tilde{\partial}_y E_z \\
|
||||
-\imath \omega \mu_{xx} \imath \beta H_x &= -\beta^2 E_y + \tilde{\partial}_y (
|
||||
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||
)\\
|
||||
@ -100,25 +101,24 @@ and
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{yy} \gamma H_y &= -\gamma^2 E_x - \gamma \tilde{\partial}_x E_z \\
|
||||
-\imath \omega \mu_{yy} \gamma H_y &= -\gamma^2 E_x - \tilde{\partial}_x (
|
||||
-\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \imath \beta \tilde{\partial}_x E_z \\
|
||||
-\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \tilde{\partial}_x (
|
||||
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||
)\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
However, based on our rewritten equation for $\gamma H_x$ and the so-far unused
|
||||
However, based on our rewritten equation for $\imath \beta H_x$ and the so-far unused
|
||||
equation for $\imath \omega \mu_{zz} H_z$ we can also write
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{xx} (\gamma H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
|
||||
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||
+\imath \omega \mu_{xx} \hat{\partial}_x (
|
||||
\frac{1}{-\imath \omega \mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x)) \\
|
||||
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||
-\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||
-\imath \omega \mu_{xx} (\imath \beta H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
|
||||
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y + \imath \omega \mu_{xx} \hat{\partial}_x (
|
||||
\frac{1}{-\imath \omega \mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x)) \\
|
||||
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||
-\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
@ -126,7 +126,7 @@ and, similarly,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{yy} (\gamma H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
|
||||
-\imath \omega \mu_{yy} (\imath \beta H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
|
||||
+\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||
\end{aligned}
|
||||
$$
|
||||
@ -135,12 +135,12 @@ By combining both pairs of expressions, we get
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\gamma^2 E_x - \tilde{\partial}_x (
|
||||
\beta^2 E_x - \tilde{\partial}_x (
|
||||
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||
) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
|
||||
+\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||
\gamma^2 E_y + \tilde{\partial}_y (
|
||||
-\beta^2 E_y + \tilde{\partial}_y (
|
||||
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||
) &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||
@ -165,14 +165,13 @@ $$
|
||||
E_y \end{bmatrix}
|
||||
$$
|
||||
|
||||
where $\gamma = \imath\beta$. In the literature, $\beta$ is usually used to denote
|
||||
the lossless/real part of the propagation constant, but in `meanas` it is allowed to
|
||||
be complex.
|
||||
In the literature, $\beta$ is usually used to denote the lossless/real part of the propagation constant,
|
||||
but in `meanas` it is allowed to be complex.
|
||||
|
||||
An equivalent eigenvalue problem can be formed using the $H_x$ and $H_y$ fields, if those are more convenient.
|
||||
|
||||
Note that $E_z$ was never discretized, so $\gamma$ and $\beta$ will need adjustment
|
||||
to account for numerical dispersion if the result is introduced into a space with a discretized z-axis.
|
||||
Note that $E_z$ was never discretized, so $\beta$ will need adjustment to account for numerical dispersion
|
||||
if the result is introduced into a space with a discretized z-axis.
|
||||
|
||||
|
||||
"""
|
||||
|
Loading…
x
Reference in New Issue
Block a user