Return angular wavenumbers, and remove r0 arg (leaving only rmin)
This commit is contained in:
parent
006833acf2
commit
6a56921c12
@ -28,7 +28,6 @@ def cylindrical_operator(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
r0: float,
|
||||
rmin: float,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
@ -51,8 +50,7 @@ def cylindrical_operator(
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
r0: Radius of curvature at x=0
|
||||
rmin: Radius at the left edge of the simulation domain
|
||||
rmin: Radius at the left edge of the simulation domain (minimum 'x')
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator
|
||||
@ -61,13 +59,7 @@ def cylindrical_operator(
|
||||
Dfx, Dfy = deriv_forward(dxes[0])
|
||||
Dbx, Dby = deriv_back(dxes[1])
|
||||
|
||||
ra = rmin + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0]) # Radius at Ex points
|
||||
rb = rmin + numpy.cumsum(dxes[0][0]) # Radius at Ey points
|
||||
ta = ra / r0
|
||||
tb = rb / r0
|
||||
|
||||
Ta = sparse.diags(vec(ta[:, None].repeat(dxes[0][1].size, axis=1)))
|
||||
Tb = sparse.diags(vec(tb[:, None].repeat(dxes[1][1].size, axis=1)))
|
||||
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
|
||||
|
||||
eps_parts = numpy.split(epsilon, 3)
|
||||
eps_x = sparse.diags(eps_parts[0])
|
||||
@ -103,10 +95,9 @@ def solve_modes(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
r0: float,
|
||||
rmin: float,
|
||||
mode_margin: int = 2,
|
||||
) -> tuple[vcfdfield_t, NDArray[numpy.complex64]]:
|
||||
) -> tuple[vcfdfield_t, NDArray[numpy.complex128]]:
|
||||
"""
|
||||
TODO: fixup
|
||||
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
|
||||
@ -118,12 +109,12 @@ def solve_modes(
|
||||
dxes: Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types.
|
||||
The first coordinate is assumed to be r, the second is y.
|
||||
epsilon: Dielectric constant
|
||||
r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
||||
rmin: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
||||
|
||||
Returns:
|
||||
e_xys: NDArray of vfdfield_t specifying fields. First dimension is mode number.
|
||||
wavenumbers: list of wavenumbers
|
||||
angular_wavenumbers: list of wavenumbers in 1/rad units.
|
||||
"""
|
||||
|
||||
#
|
||||
@ -131,15 +122,17 @@ def solve_modes(
|
||||
#
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
|
||||
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0=r0, rmin=rmin)
|
||||
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), rmin=rmin)
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
|
||||
e_xys = eigvecs[:, -(numpy.array(mode_numbers) + 1)].T
|
||||
keep_inds = -(numpy.array(mode_numbers) + 1)
|
||||
e_xys = eigvecs[:, keep_inds].T
|
||||
eigvals = eigvals[keep_inds]
|
||||
|
||||
#
|
||||
# Now solve for the eigenvector of the full operator, using the real operator's
|
||||
# eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
#
|
||||
A = cylindrical_operator(omega, dxes, epsilon, r0=r0, rmin=rmin)
|
||||
A = cylindrical_operator(omega, dxes, epsilon, rmin=rmin)
|
||||
for nn in range(len(mode_numbers)):
|
||||
eigvals[nn], e_xys[nn, :] = rayleigh_quotient_iteration(A, e_xys[nn, :])
|
||||
|
||||
@ -147,7 +140,15 @@ def solve_modes(
|
||||
wavenumbers = numpy.sqrt(eigvals)
|
||||
wavenumbers *= numpy.sign(numpy.real(wavenumbers))
|
||||
|
||||
return e_xys, wavenumbers
|
||||
# Wavenumbers assume the mode is at rmin, which is unlikely
|
||||
# Instead, return the wavenumber in inverse radians
|
||||
angular_wavenumbers = wavenumbers * rmin
|
||||
|
||||
order = angular_wavenumbers.argsort()[::-1]
|
||||
e_xys = e_xys[order]
|
||||
angular_wavenumbers = angular_wavenumbers[order]
|
||||
|
||||
return e_xys, angular_wavenumbers
|
||||
|
||||
|
||||
def solve_mode(
|
||||
@ -164,8 +165,9 @@ def solve_mode(
|
||||
**kwargs: passed to `solve_modes()`
|
||||
|
||||
Returns:
|
||||
(e_xy, wavenumber)
|
||||
(e_xy, angular_wavenumber)
|
||||
"""
|
||||
kwargs['mode_numbers'] = [mode_number]
|
||||
e_xys, wavenumbers = solve_modes(*args, **kwargs)
|
||||
return e_xys[0], wavenumbers[0]
|
||||
return e_xys[0], angular_wavenumbers[0]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user