forked from jan/opencl_fdtd
Compare commits
33 Commits
Author | SHA1 | Date | |
---|---|---|---|
d5fd78d493 | |||
fe2f4f4510 | |||
314e36a3cc | |||
a37df3a74f | |||
582dafbc2f | |||
385e2859a9 | |||
0f0f16e184 | |||
a76e741d32 | |||
60b70bb332 | |||
9cf50b1d88 | |||
65cc118392 | |||
f5a5a0ad04 | |||
5ffe547640 | |||
3ac20f6271 | |||
d8dc024626 | |||
cb471df182 | |||
f00c8b4a3e | |||
2b1d906665 | |||
1e874cb0c0 | |||
ea5e298023 | |||
1de6fb0e39 | |||
d0b303523e | |||
c8298d916f | |||
aab57412a5 | |||
a67009d1c8 | |||
6a03977a69 | |||
9772f47a34 | |||
6bd756c3d3 | |||
d02cd18403 | |||
c137da15b9 | |||
a85f547749 | |||
0d91f0d43e | |||
97d9901e4b |
8
.gitignore
vendored
8
.gitignore
vendored
@ -1,5 +1,9 @@
|
||||
.idea/
|
||||
__pycache__
|
||||
*.h5
|
||||
*.pyc
|
||||
|
||||
__pycache__
|
||||
*.py[cod]
|
||||
build/
|
||||
dist/
|
||||
*.egg-info/
|
||||
|
||||
|
10
README.md
10
README.md
@ -27,14 +27,16 @@ electromagnetic simulations on parallel compute hardware (mainly GPUs).
|
||||
* numpy
|
||||
* pyopencl
|
||||
* jinja2
|
||||
* [fdfd_tools](https://mpxd.net/code/jan/fdfd_tools)
|
||||
|
||||
Optional (used for examples):
|
||||
* dill (for file output)
|
||||
* [gridlock](https://mpxd.net/gogs/jan/gridlock)
|
||||
* [masque](https://mpxd.net/gogs/jan/masque)
|
||||
* [fdfd_tools](https://mpxd.net/gogs/jan/fdfd_tools)
|
||||
* [gridlock](https://mpxd.net/code/jan/gridlock)
|
||||
* [masque](https://mpxd.net/code/jan/masque)
|
||||
|
||||
To get the code, just clone this repository:
|
||||
```bash
|
||||
git clone https://mpxd.net/gogs/jan/opencl_fdtd.git
|
||||
git clone https://mpxd.net/code/jan/opencl_fdtd.git
|
||||
```
|
||||
|
||||
You can install the requirements and their dependencies easily with
|
||||
|
37
fdtd.py
37
fdtd.py
@ -6,12 +6,13 @@ See main() for simulation setup.
|
||||
|
||||
import sys
|
||||
import time
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
import lzma
|
||||
import lzma
|
||||
import dill
|
||||
|
||||
from fdtd.simulation import Simulation
|
||||
from opencl_fdtd import Simulation
|
||||
from masque import Pattern, shapes
|
||||
import gridlock
|
||||
import pcgen
|
||||
@ -20,6 +21,9 @@ import fdfd_tools
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern:
|
||||
"""
|
||||
@ -120,9 +124,13 @@ def main():
|
||||
eps=n_air**2,
|
||||
polygons=mask.as_polygons())
|
||||
|
||||
print('grid shape: {}'.format(grid.shape))
|
||||
logger.info('grid shape: {}'.format(grid.shape))
|
||||
# #### Create the simulation grid ####
|
||||
sim = Simulation(grid.grids, do_poynting=True, pml_thickness=8)
|
||||
pmls = [{'axis': a, 'polarity': p, 'thickness': pml_thickness}
|
||||
for a in 'xyz' for p in 'np']
|
||||
#bloch = [{'axis': a, 'real': 1, 'imag': 0} for a in 'x']
|
||||
bloch = []
|
||||
sim = Simulation(grid.grids, do_poynting=True, pmls=pmls, bloch_boundaries=bloch)
|
||||
|
||||
# Source parameters and function
|
||||
w = 2 * numpy.pi * dx / wl
|
||||
@ -133,31 +141,41 @@ def main():
|
||||
def field_source(i):
|
||||
t0 = i * sim.dt - delay
|
||||
return numpy.sin(w * t0) * numpy.exp(-alpha * t0**2)
|
||||
|
||||
|
||||
with open('sources.c', 'w') as f:
|
||||
f.write(sim.sources['E'])
|
||||
f.write('\n==========================================\n')
|
||||
f.write('\n====================H======================\n')
|
||||
f.write(sim.sources['H'])
|
||||
if sim.update_S:
|
||||
f.write('\n==========================================\n')
|
||||
f.write('\n=====================S=====================\n')
|
||||
f.write(sim.sources['S'])
|
||||
if bloch:
|
||||
f.write('\n=====================F=====================\n')
|
||||
f.write(sim.sources['F'])
|
||||
f.write('\n=====================G=====================\n')
|
||||
f.write(sim.sources['G'])
|
||||
|
||||
# #### Run a bunch of iterations ####
|
||||
# event = sim.whatever([prev_event]) indicates that sim.whatever should be queued
|
||||
# immediately and run once prev_event is finished.
|
||||
start = time.perf_counter()
|
||||
for t in range(max_t):
|
||||
sim.update_E([]).wait()
|
||||
e = sim.update_E([])
|
||||
if bloch:
|
||||
e = sim.update_F([e])
|
||||
e.wait()
|
||||
|
||||
ind = numpy.ravel_multi_index(tuple(grid.shape//2), dims=grid.shape, order='C') + numpy.prod(grid.shape)
|
||||
sim.E[ind] += field_source(t)
|
||||
e = sim.update_H([])
|
||||
if bloch:
|
||||
e = sim.update_G([e])
|
||||
if sim.update_S:
|
||||
e = sim.update_S([e])
|
||||
e.wait()
|
||||
|
||||
if t % 100 == 0:
|
||||
print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
||||
logger.info('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
||||
sys.stdout.flush()
|
||||
|
||||
with lzma.open('saved_simulation', 'wb') as f:
|
||||
@ -172,5 +190,6 @@ def main():
|
||||
d['S'] = unvec(sim.S.get())
|
||||
dill.dump(d, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
@ -1,78 +0,0 @@
|
||||
/*
|
||||
* Update E-field, including any PMLs.
|
||||
*
|
||||
* Template parameters:
|
||||
* common_header: Rendered contents of common.cl
|
||||
* pmls: [('x', 'n'), ('z', 'p'),...] list of pml axes and polarities
|
||||
* pml_thickness: Number of cells (integer)
|
||||
*
|
||||
* OpenCL args:
|
||||
* E, H, dt, eps, [p{01}e{np}, Psi_{xyz}{np}_E]
|
||||
*/
|
||||
|
||||
{{common_header}}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__global ftype *epsx = eps + XX;
|
||||
__global ftype *epsy = eps + YY;
|
||||
__global ftype *epsz = eps + ZZ;
|
||||
|
||||
{% if pmls -%}
|
||||
const int pml_thickness = {{pml_thickness}};
|
||||
{%- endif %}
|
||||
|
||||
/*
|
||||
* Precalclate derivatives
|
||||
*/
|
||||
ftype dHxy = Hx[i] - Hx[i + my];
|
||||
ftype dHxz = Hx[i] - Hx[i + mz];
|
||||
|
||||
ftype dHyx = Hy[i] - Hy[i + mx];
|
||||
ftype dHyz = Hy[i] - Hy[i + mz];
|
||||
|
||||
ftype dHzx = Hz[i] - Hz[i + mx];
|
||||
ftype dHzy = Hz[i] - Hz[i + my];
|
||||
|
||||
/*
|
||||
* PML Update
|
||||
*/
|
||||
// PML effects on E
|
||||
ftype pExi = 0;
|
||||
ftype pEyi = 0;
|
||||
ftype pEzi = 0;
|
||||
|
||||
{% for r, p in pmls -%}
|
||||
{%- set u, v = ['x', 'y', 'z'] | reject('equalto', r) -%}
|
||||
{%- set psi = 'Psi_' ~ r ~ p ~ '_E' -%}
|
||||
{%- if r != 'y' -%}
|
||||
{%- set se, sh = '-', '+' -%}
|
||||
{%- else -%}
|
||||
{%- set se, sh = '+', '-' -%}
|
||||
{%- endif -%}
|
||||
|
||||
{%- if p == 'n' %}
|
||||
|
||||
if ( {{r}} < pml_thickness ) {
|
||||
const size_t ir = {{r}}; // index into pml parameters
|
||||
|
||||
{%- elif p == 'p' %}
|
||||
|
||||
if ( s{{r}} > {{r}} && {{r}} >= s{{r}} - pml_thickness ) {
|
||||
const size_t ir = (s{{r}} - 1) - {{r}}; // index into pml parameters
|
||||
|
||||
{%- endif %}
|
||||
const size_t ip = {{v}} + {{u}} * s{{v}} + ir * s{{v}} * s{{u}}; // linear index into Psi
|
||||
{{psi ~ u}}[ip] = p0e{{p}}[ir] * {{psi ~ u}}[ip] + p1e{{p}}[ir] * dH{{v ~ r}};
|
||||
{{psi ~ v}}[ip] = p0e{{p}}[ir] * {{psi ~ v}}[ip] + p1e{{p}}[ir] * dH{{u ~ r}};
|
||||
pE{{u}}i {{se}}= {{psi ~ u}}[ip];
|
||||
pE{{v}}i {{sh}}= {{psi ~ v}}[ip];
|
||||
}
|
||||
{%- endfor %}
|
||||
|
||||
/*
|
||||
* Update E
|
||||
*/
|
||||
Ex[i] += dt / epsx[i] * (dHzy - dHyz + pExi);
|
||||
Ey[i] += dt / epsy[i] * (dHxz - dHzx + pEyi);
|
||||
Ez[i] += dt / epsz[i] * (dHyx - dHxy + pEzi);
|
@ -1,238 +0,0 @@
|
||||
"""
|
||||
Class for constructing and holding the basic FDTD operations and fields
|
||||
"""
|
||||
|
||||
from typing import List, Dict, Callable
|
||||
from collections import OrderedDict
|
||||
import numpy
|
||||
import jinja2
|
||||
import warnings
|
||||
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
from pyopencl.elementwise import ElementwiseKernel
|
||||
|
||||
from fdfd_tools import vec
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
# Create jinja2 env on module load
|
||||
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels'))
|
||||
|
||||
|
||||
class Simulation(object):
|
||||
"""
|
||||
Constructs and holds the basic FDTD operations and related fields
|
||||
"""
|
||||
E = None # type: List[pyopencl.array.Array]
|
||||
H = None # type: List[pyopencl.array.Array]
|
||||
S = None # type: List[pyopencl.array.Array]
|
||||
eps = None # type: List[pyopencl.array.Array]
|
||||
dt = None # type: float
|
||||
|
||||
arg_type = None # type: numpy.float32 or numpy.float64
|
||||
|
||||
context = None # type: pyopencl.Context
|
||||
queue = None # type: pyopencl.CommandQueue
|
||||
|
||||
update_E = None # type: Callable[[],pyopencl.Event]
|
||||
update_H = None # type: Callable[[],pyopencl.Event]
|
||||
update_S = None # type: Callable[[],pyopencl.Event]
|
||||
sources = None # type: Dict[str, str]
|
||||
|
||||
def __init__(self,
|
||||
epsilon: List[numpy.ndarray],
|
||||
dt: float = .99/numpy.sqrt(3),
|
||||
initial_E: List[numpy.ndarray] = None,
|
||||
initial_H: List[numpy.ndarray] = None,
|
||||
context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None,
|
||||
float_type: numpy.float32 or numpy.float64 = numpy.float32,
|
||||
pml_thickness: int = 10,
|
||||
pmls: List[List[str]] = None,
|
||||
do_poynting: bool = True):
|
||||
"""
|
||||
Initialize the simulation.
|
||||
|
||||
:param epsilon: List containing [eps_r,xx, eps_r,yy, eps_r,zz], where each element is a Yee-shifted ndarray
|
||||
spanning the simulation domain. Relative epsilon is used.
|
||||
:param dt: Time step. Default is the Courant factor.
|
||||
:param initial_E: Initial E-field (default is 0 everywhere). Same format as epsilon.
|
||||
:param initial_H: Initial H-field (default is 0 everywhere). Same format as epsilon.
|
||||
:param context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called.
|
||||
:param queue: pyOpenCL command queue. If not given, pyopencl.CommandQueue(context) is called.
|
||||
:param float_type: numpy.float32 or numpy.float64. Default numpy.float32.
|
||||
"""
|
||||
|
||||
if len(epsilon) != 3:
|
||||
Exception('Epsilon must be a list with length of 3')
|
||||
if not all((e.shape == epsilon[0].shape for e in epsilon[1:])):
|
||||
Exception('All epsilon grids must have the same shape. Shapes are {}', [e.shape for e in epsilon])
|
||||
|
||||
if context is None:
|
||||
self.context = pyopencl.create_some_context()
|
||||
else:
|
||||
self.context = context
|
||||
|
||||
if queue is None:
|
||||
self.queue = pyopencl.CommandQueue(self.context)
|
||||
else:
|
||||
self.queue = queue
|
||||
|
||||
if dt > .99/numpy.sqrt(3):
|
||||
warnings.warn('Warning: unstable dt: {}'.format(dt))
|
||||
elif dt <= 0:
|
||||
raise Exception('Invalid dt: {}'.format(dt))
|
||||
else:
|
||||
self.dt = dt
|
||||
|
||||
self.arg_type = float_type
|
||||
self.sources = {}
|
||||
self.eps = pyopencl.array.to_device(self.queue, vec(epsilon).astype(float_type))
|
||||
|
||||
if initial_E is None:
|
||||
self.E = pyopencl.array.zeros_like(self.eps)
|
||||
else:
|
||||
if len(initial_E) != 3:
|
||||
Exception('Initial_E must be a list of length 3')
|
||||
if not all((E.shape == epsilon[0].shape for E in initial_E)):
|
||||
Exception('Initial_E list elements must have same shape as epsilon elements')
|
||||
self.E = pyopencl.array.to_device(self.queue, vec(E).astype(float_type))
|
||||
|
||||
if initial_H is None:
|
||||
self.H = pyopencl.array.zeros_like(self.eps)
|
||||
else:
|
||||
if len(initial_H) != 3:
|
||||
Exception('Initial_H must be a list of length 3')
|
||||
if not all((H.shape == epsilon[0].shape for H in initial_H)):
|
||||
Exception('Initial_H list elements must have same shape as epsilon elements')
|
||||
self.H = pyopencl.array.to_device(self.queue, vec(H).astype(float_type))
|
||||
|
||||
if pmls is None:
|
||||
pmls = [[d, p] for d in 'xyz' for p in 'np']
|
||||
|
||||
ctype = type_to_C(self.arg_type)
|
||||
|
||||
def ptr(arg: str) -> str:
|
||||
return ctype + ' *' + arg
|
||||
|
||||
base_fields = OrderedDict()
|
||||
base_fields[ptr('E')] = self.E
|
||||
base_fields[ptr('H')] = self.H
|
||||
base_fields[ctype + ' dt'] = self.dt
|
||||
|
||||
eps_field = OrderedDict()
|
||||
eps_field[ptr('eps')] = self.eps
|
||||
|
||||
common_source = jinja_env.get_template('common.cl').render(
|
||||
ftype=ctype,
|
||||
shape=epsilon[0].shape,
|
||||
)
|
||||
jinja_args = {
|
||||
'common_header': common_source,
|
||||
'pml_thickness': pml_thickness,
|
||||
'pmls': pmls,
|
||||
'do_poynting': do_poynting,
|
||||
}
|
||||
E_source = jinja_env.get_template('update_e.cl').render(**jinja_args)
|
||||
H_source = jinja_env.get_template('update_h.cl').render(**jinja_args)
|
||||
|
||||
self.sources['E'] = E_source
|
||||
self.sources['H'] = H_source
|
||||
|
||||
if do_poynting:
|
||||
S_source = jinja_env.get_template('update_s.cl').render(**jinja_args)
|
||||
self.sources['S'] = S_source
|
||||
|
||||
self.oS = pyopencl.array.zeros(self.queue, self.E.shape + (2,), dtype=float_type)
|
||||
self.S = pyopencl.array.zeros_like(self.E)
|
||||
S_fields = OrderedDict()
|
||||
S_fields[ptr('oS')] = self.oS
|
||||
S_fields[ptr('S')] = self.S
|
||||
else:
|
||||
S_fields = OrderedDict()
|
||||
|
||||
'''
|
||||
PML
|
||||
'''
|
||||
m = (3.5, 1)
|
||||
sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(1.0) # TODO: epsilon_eff (not 1.0)
|
||||
alpha_max = 0 # TODO: Decide what to do about non-zero alpha
|
||||
|
||||
def par(x):
|
||||
sigma = ((x / pml_thickness) ** m[0]) * sigma_max
|
||||
alpha = ((1 - x / pml_thickness) ** m[1]) * alpha_max
|
||||
p0 = numpy.exp(-(sigma + alpha) * dt)
|
||||
p1 = sigma / (sigma + alpha) * (p0 - 1)
|
||||
return p0, p1
|
||||
|
||||
xen, xep, xhn, xhp = (numpy.arange(1, pml_thickness + 1, dtype=float_type)[::-1] for _ in range(4))
|
||||
xep -= 0.5
|
||||
xhn -= 0.5
|
||||
|
||||
pml_p_names = [['p' + a + eh + np for np in 'np' for a in '01'] for eh in 'eh']
|
||||
pml_e_fields = OrderedDict()
|
||||
pml_h_fields = OrderedDict()
|
||||
for ne, nh, pe, ph in zip(*pml_p_names, par(xen) + par(xep), par(xhn) + par(xhp)):
|
||||
pml_e_fields[ptr(ne)] = pyopencl.array.to_device(self.queue, pe)
|
||||
pml_h_fields[ptr(nh)] = pyopencl.array.to_device(self.queue, ph)
|
||||
|
||||
for pml in pmls:
|
||||
uv = 'xyz'.replace(pml[0], '')
|
||||
psi_base = 'Psi_' + ''.join(pml) + '_'
|
||||
psi_names = [[psi_base + eh + c for c in uv] for eh in 'EH']
|
||||
|
||||
psi_shape = list(epsilon[0].shape)
|
||||
psi_shape['xyz'.find(pml[0])] = pml_thickness
|
||||
|
||||
for ne, nh in zip(*psi_names):
|
||||
pml_e_fields[ptr(ne)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
|
||||
pml_h_fields[ptr(nh)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
|
||||
|
||||
self.pml_e_fields = pml_e_fields
|
||||
self.pml_h_fields = pml_h_fields
|
||||
|
||||
|
||||
'''
|
||||
Create operations
|
||||
'''
|
||||
E_args = OrderedDict()
|
||||
[E_args.update(d) for d in (base_fields, eps_field, pml_e_fields)]
|
||||
E_update = ElementwiseKernel(self.context, operation=E_source,
|
||||
arguments=', '.join(E_args.keys()))
|
||||
|
||||
H_args = OrderedDict()
|
||||
[H_args.update(d) for d in (base_fields, pml_h_fields, S_fields)]
|
||||
H_update = ElementwiseKernel(self.context, operation=H_source,
|
||||
arguments=', '.join(H_args.keys()))
|
||||
self.update_E = lambda e: E_update(*E_args.values(), wait_for=e)
|
||||
self.update_H = lambda e: H_update(*H_args.values(), wait_for=e)
|
||||
|
||||
if do_poynting:
|
||||
S_args = OrderedDict()
|
||||
[S_args.update(d) for d in (base_fields, S_fields)]
|
||||
S_update = ElementwiseKernel(self.context, operation=S_source,
|
||||
arguments=', '.join(S_args.keys()))
|
||||
|
||||
self.update_S = lambda e: S_update(*S_args.values(), wait_for=e)
|
||||
|
||||
|
||||
def type_to_C(float_type) -> str:
|
||||
"""
|
||||
Returns a string corresponding to the C equivalent of a numpy type.
|
||||
Only works for float16, float32, float64.
|
||||
|
||||
:param float_type: e.g. numpy.float32
|
||||
:return: string containing the corresponding C type (eg. 'double')
|
||||
"""
|
||||
if float_type == numpy.float16:
|
||||
arg_type = 'half'
|
||||
elif float_type == numpy.float32:
|
||||
arg_type = 'float'
|
||||
elif float_type == numpy.float64:
|
||||
arg_type = 'double'
|
||||
else:
|
||||
raise Exception('Unsupported type')
|
||||
return arg_type
|
5
opencl_fdtd/__init__.py
Normal file
5
opencl_fdtd/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
from .simulation import Simulation, type_to_C
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
version = '0.4'
|
@ -2,7 +2,7 @@
|
||||
/* Common code for E, H updates
|
||||
*
|
||||
* Template parameters:
|
||||
* ftype type name (e.g. float or double)
|
||||
* ftype type name (e.g. float or double)
|
||||
* shape list of 3 ints specifying shape of fields
|
||||
*/
|
||||
#}
|
||||
@ -73,12 +73,13 @@ __global ftype *Hz = H + ZZ;
|
||||
* the cell x_{+1} == 0 instead, ie. px = -(sx - 1) * dix .
|
||||
*/
|
||||
{% for r in 'xyz' %}
|
||||
int m{{r}} = -di{{r}};
|
||||
int p{{r}} = +di{{r}};
|
||||
int wrap_{{r}} = (s{{r}} - 1) * di{{r}};
|
||||
int m{{r}} = - (int) di{{r}};
|
||||
int p{{r}} = + (int) di{{r}};
|
||||
int wrap_{{r}} = (s{{r}} - 1) * (int) di{{r}};
|
||||
if ( {{r}} == 0 ) {
|
||||
m{{r}} = wrap_{{r}};
|
||||
} else if ( {{r}} == s{{r}} - 1 ) {
|
||||
}
|
||||
if ( {{r}} == s{{r}} - 1 ) {
|
||||
p{{r}} = -wrap_{{r}};
|
||||
}
|
||||
}
|
||||
{% endfor %}
|
107
opencl_fdtd/kernels/update_e.cl
Normal file
107
opencl_fdtd/kernels/update_e.cl
Normal file
@ -0,0 +1,107 @@
|
||||
/*
|
||||
* Update E-field, including any PMLs.
|
||||
*
|
||||
* Template parameters:
|
||||
* common_header: Rendered contents of common.cl
|
||||
* pmls: [{'axis': 'x', 'polarity': 'n', 'thickness': 8}, ...] list of pml dicts containing
|
||||
* axes, polarities, and thicknesses.
|
||||
* uniform_dx: If grid is uniform, uniform_dx should be the grid spacing.
|
||||
* Otherwise, uniform_dx should be False and [inv_dh{xyz}] arrays must be supplied as
|
||||
* OpenCL args.
|
||||
*
|
||||
* OpenCL args:
|
||||
* E, H, dt, eps, [p{012}e{np}, Psi_{xyz}{np}_E], [inv_dh{xyz}]
|
||||
*/
|
||||
|
||||
{{common_header}}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__global ftype *epsx = eps + XX;
|
||||
__global ftype *epsy = eps + YY;
|
||||
__global ftype *epsz = eps + ZZ;
|
||||
|
||||
|
||||
{%- if uniform_dx %}
|
||||
ftype inv_dx = 1.0 / {{uniform_dx}};
|
||||
ftype inv_dy = 1.0 / {{uniform_dx}};
|
||||
ftype inv_dz = 1.0 / {{uniform_dx}};
|
||||
{%- else %}
|
||||
ftype inv_dx = inv_dhx[x];
|
||||
ftype inv_dy = inv_dhy[y];
|
||||
ftype inv_dz = inv_dhz[z];
|
||||
{%- endif %}
|
||||
|
||||
|
||||
/*
|
||||
* Precalculate derivatives
|
||||
*/
|
||||
ftype dHxy = (Hx[i] - Hx[i + my]) * inv_dy;
|
||||
ftype dHxz = (Hx[i] - Hx[i + mz]) * inv_dz;
|
||||
|
||||
ftype dHyx = (Hy[i] - Hy[i + mx]) * inv_dx;
|
||||
ftype dHyz = (Hy[i] - Hy[i + mz]) * inv_dz;
|
||||
|
||||
ftype dHzx = (Hz[i] - Hz[i + mx]) * inv_dx;
|
||||
ftype dHzy = (Hz[i] - Hz[i + my]) * inv_dy;
|
||||
|
||||
{% for bloch in bloch_boundaries -%}
|
||||
{%- set r = bloch['axis'] -%}
|
||||
{%- set u, v = ['x', 'y', 'z'] | reject('equalto', r) -%}
|
||||
if ({{r}} == 0) {
|
||||
ftype bloch_im = {{bloch['real']}};
|
||||
ftype bloch_re = {{bloch['imag']}};
|
||||
dH{{u ~ r}} = bloch_re * dH{{v ~ r}} + bloch_im * (G{{u}}[i] - G{{u}}[i + m{{u}}]);
|
||||
dH{{v ~ r}} = bloch_re * dH{{v ~ r}} + bloch_im * (G{{v}}[i] - G{{v}}[i + m{{v}}]);
|
||||
}
|
||||
{%- endfor %}
|
||||
|
||||
|
||||
/*
|
||||
* PML Update
|
||||
*/
|
||||
// PML effects on E
|
||||
ftype pExi = 0;
|
||||
ftype pEyi = 0;
|
||||
ftype pEzi = 0;
|
||||
|
||||
{% for pml in pmls -%}
|
||||
{%- set r = pml['axis'] -%}
|
||||
{%- set p = pml['polarity'] -%}
|
||||
{%- set u, v = ['x', 'y', 'z'] | reject('equalto', r) -%}
|
||||
{%- set psi = 'Psi_' ~ r ~ p ~ '_E' -%}
|
||||
{%- if r != 'y' -%}
|
||||
{%- set se, sh = '-', '+' -%}
|
||||
{%- else -%}
|
||||
{%- set se, sh = '+', '-' -%}
|
||||
{%- endif -%}
|
||||
|
||||
int pml_{{r ~ p}}_thickness = {{pml['thickness']}};
|
||||
|
||||
{%- if p == 'n' %}
|
||||
|
||||
if ( {{r}} < pml_{{r ~ p}}_thickness ) {
|
||||
const size_t ir = {{r}}; // index into pml parameters
|
||||
|
||||
{%- elif p == 'p' %}
|
||||
|
||||
if ( s{{r}} > {{r}} && {{r}} >= s{{r}} - pml_{{r ~ p}}_thickness ) {
|
||||
const size_t ir = (s{{r}} - 1) - {{r}}; // index into pml parameters
|
||||
|
||||
{%- endif %}
|
||||
const size_t ip = {{v}} + {{u}} * s{{v}} + ir * s{{v}} * s{{u}}; // linear index into Psi
|
||||
dH{{v ~ r}} *= p{{r}}2e{{p}}[ir];
|
||||
dH{{u ~ r}} *= p{{r}}2e{{p}}[ir];
|
||||
{{psi ~ u}}[ip] = p{{r}}0e{{p}}[ir] * {{psi ~ u}}[ip] + p{{r}}1e{{p}}[ir] * dH{{v ~ r}};
|
||||
{{psi ~ v}}[ip] = p{{r}}0e{{p}}[ir] * {{psi ~ v}}[ip] + p{{r}}1e{{p}}[ir] * dH{{u ~ r}};
|
||||
pE{{u}}i {{se}}= {{psi ~ u}}[ip];
|
||||
pE{{v}}i {{sh}}= {{psi ~ v}}[ip];
|
||||
}
|
||||
{%- endfor %}
|
||||
|
||||
/*
|
||||
* Update E
|
||||
*/
|
||||
Ex[i] += dt / epsx[i] * (dHzy - dHyz + pExi);
|
||||
Ey[i] += dt / epsy[i] * (dHxz - dHzx + pEyi);
|
||||
Ez[i] += dt / epsz[i] * (dHyx - dHxy + pEzi);
|
@ -1,36 +1,58 @@
|
||||
/*
|
||||
* Update H-field, including any PMLs.
|
||||
* Also precalculate values for poynting vector if necessary.
|
||||
*
|
||||
*
|
||||
* Template parameters:
|
||||
* common_header: Rendered contents of common.cl
|
||||
* pmls: [('x', 'n'), ('z', 'p'),...] list of pml axes and polarities
|
||||
* pml_thickness: Number of cells (integer)
|
||||
* do_poynting: Whether to precalculate poynting vector components (boolean)
|
||||
* pmls: [{'axis': 'x', 'polarity': 'n', 'thickness': 8}, ...] list of pml dicts containing
|
||||
* axes, polarities, and thicknesses.
|
||||
* do_poynting: Whether to precalculate poynting vector components (boolean)
|
||||
* uniform_dx: If grid is uniform, uniform_dx should be the grid spacing.
|
||||
* Otherwise, uniform_dx should be False and [inv_de{xyz}] arrays must be supplied as
|
||||
* OpenCL args.
|
||||
*
|
||||
* OpenCL args:
|
||||
* E, H, dt, [p{01}h{np}, Psi_{xyz}{np}_H], [oS]
|
||||
* E, H, dt, [inv_de{xyz}], [p{xyz}{01}h{np}, Psi_{xyz}{np}_H], [oS]
|
||||
*/
|
||||
|
||||
{{common_header}}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
{% if pmls -%}
|
||||
const int pml_thickness = {{pml_thickness}};
|
||||
{%- endif %}
|
||||
|
||||
/*
|
||||
* Precalculate derivatives
|
||||
*/
|
||||
ftype dExy = Ex[i + py] - Ex[i];
|
||||
ftype dExz = Ex[i + pz] - Ex[i];
|
||||
{%- if uniform_dx %}
|
||||
ftype inv_dx = 1.0 / {{uniform_dx}};
|
||||
ftype inv_dy = 1.0 / {{uniform_dx}};
|
||||
ftype inv_dz = 1.0 / {{uniform_dx}};
|
||||
{%- else %}
|
||||
ftype inv_dx = inv_dex[x];
|
||||
ftype inv_dy = inv_dey[y];
|
||||
ftype inv_dz = inv_dez[z];
|
||||
{%- endif %}
|
||||
|
||||
ftype dEyx = Ey[i + px] - Ey[i];
|
||||
ftype dEyz = Ey[i + pz] - Ey[i];
|
||||
|
||||
ftype dEzx = Ez[i + px] - Ez[i];
|
||||
ftype dEzy = Ez[i + py] - Ez[i];
|
||||
ftype dExy = (Ex[i + py] - Ex[i]) * inv_dy;
|
||||
ftype dExz = (Ex[i + pz] - Ex[i]) * inv_dz;
|
||||
|
||||
ftype dEyx = (Ey[i + px] - Ey[i]) * inv_dx;
|
||||
ftype dEyz = (Ey[i + pz] - Ey[i]) * inv_dz;
|
||||
|
||||
ftype dEzx = (Ez[i + px] - Ez[i]) * inv_dx;
|
||||
ftype dEzy = (Ez[i + py] - Ez[i]) * inv_dy;
|
||||
|
||||
|
||||
{% for bloch in bloch_boundaries -%}
|
||||
{%- set r = bloch['axis'] -%}
|
||||
{%- set u, v = ['x', 'y', 'z'] | reject('equalto', r) -%}
|
||||
if ({{r}} == s{{r}} - 1) {
|
||||
ftype bloch_re = {{bloch['real']}};
|
||||
ftype bloch_im = {{bloch['imag']}};
|
||||
dE{{u ~ r}} = bloch_re * dE{{u ~ r}} + bloch_im * (F{{u}}[i + p{{u}}] - F{{u}}[i]);
|
||||
dE{{v ~ r}} = bloch_re * dE{{v ~ r}} + bloch_im * (F{{v}}[i + p{{v}}] - F{{v}}[i]);
|
||||
}
|
||||
{% endfor -%}
|
||||
|
||||
{%- if do_poynting %}
|
||||
|
||||
@ -49,6 +71,8 @@ ftype aEzy = Ez[i + py] + Ez[i];
|
||||
{%- endif %}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* PML Update
|
||||
*/
|
||||
@ -57,29 +81,35 @@ ftype pHxi = 0;
|
||||
ftype pHyi = 0;
|
||||
ftype pHzi = 0;
|
||||
|
||||
{%- for r, p in pmls -%}
|
||||
{% for pml in pmls -%}
|
||||
{%- set r = pml['axis'] -%}
|
||||
{%- set p = pml['polarity'] -%}
|
||||
{%- set u, v = ['x', 'y', 'z'] | reject('equalto', r) -%}
|
||||
{%- set psi = 'Psi_' ~ r ~ p ~ '_H' -%}
|
||||
{%- if r != 'y' -%}
|
||||
{%- set se, sh = '-', '+' -%}
|
||||
{%- else -%}
|
||||
{%- set se, sh = '+', '-' -%}
|
||||
{%- endif -%}
|
||||
{%- endif %}
|
||||
|
||||
int pml_{{r ~ p}}_thickness = {{pml['thickness']}};
|
||||
|
||||
{%- if p == 'n' %}
|
||||
|
||||
if ( {{r}} < pml_thickness ) {
|
||||
if ( {{r}} < pml_{{r ~ p}}_thickness ) {
|
||||
const size_t ir = {{r}}; // index into pml parameters
|
||||
|
||||
{%- elif p == 'p' %}
|
||||
|
||||
if ( s{{r}} > {{r}} && {{r}} >= s{{r}} - pml_thickness ) {
|
||||
if ( s{{r}} > {{r}} && {{r}} >= s{{r}} - pml_{{r ~ p}}_thickness ) {
|
||||
const size_t ir = (s{{r}} - 1) - {{r}}; // index into pml parameters
|
||||
|
||||
{%- endif %}
|
||||
const size_t ip = {{v}} + {{u}} * s{{v}} + ir * s{{v}} * s{{u}}; // linear index into Psi
|
||||
{{psi ~ u}}[ip] = p0h{{p}}[ir] * {{psi ~ u}}[ip] + p1h{{p}}[ir] * dE{{v ~ r}};
|
||||
{{psi ~ v}}[ip] = p0h{{p}}[ir] * {{psi ~ v}}[ip] + p1h{{p}}[ir] * dE{{u ~ r}};
|
||||
dE{{v ~ r}} *= p{{r}}2h{{p}}[ir];
|
||||
dE{{u ~ r}} *= p{{r}}2h{{p}}[ir];
|
||||
{{psi ~ u}}[ip] = p{{r}}0h{{p}}[ir] * {{psi ~ u}}[ip] + p{{r}}1h{{p}}[ir] * dE{{v ~ r}};
|
||||
{{psi ~ v}}[ip] = p{{r}}0h{{p}}[ir] * {{psi ~ v}}[ip] + p{{r}}1h{{p}}[ir] * dE{{u ~ r}};
|
||||
pH{{u}}i {{sh}}= {{psi ~ u}}[ip];
|
||||
pH{{v}}i {{se}}= {{psi ~ v}}[ip];
|
||||
}
|
||||
@ -96,9 +126,9 @@ ftype Hz_old = Hz[i];
|
||||
{%- endif %}
|
||||
|
||||
// H update equations
|
||||
Hx[i] -= dt * (dEzy - dEyz + pHxi);
|
||||
Hy[i] -= dt * (dExz - dEzx + pHyi);
|
||||
Hz[i] -= dt * (dEyx - dExy + pHzi);
|
||||
Hx[i] -= dt * (dEzy - dEyz - pHxi);
|
||||
Hy[i] -= dt * (dExz - dEzx - pHyi);
|
||||
Hz[i] -= dt * (dEyx - dExy - pHzi);
|
||||
|
||||
{% if do_poynting -%}
|
||||
// Average H across timesteps
|
32
opencl_fdtd/kernels/update_j.cl
Normal file
32
opencl_fdtd/kernels/update_j.cl
Normal file
@ -0,0 +1,32 @@
|
||||
/*
|
||||
* Update E-field from J field
|
||||
*
|
||||
* Template parameters:
|
||||
* common_header: Rendered contents of common.cl
|
||||
*
|
||||
* OpenCL args:
|
||||
* E, Jr, Ji, c, s, xmin, xmax, ymin, ymax, zmin, zmax
|
||||
*/
|
||||
|
||||
{{common_header}}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__global ftype *Jrx = Jr + XX;
|
||||
__global ftype *Jry = Jr + YY;
|
||||
__global ftype *Jrz = Jr + ZZ;
|
||||
__global ftype *Jix = Ji + XX;
|
||||
__global ftype *Jiy = Ji + YY;
|
||||
__global ftype *Jiz = Ji + ZZ;
|
||||
|
||||
|
||||
if (x < xmin || y < ymin || z < zmin) {
|
||||
PYOPENCL_ELWISE_CONTINUE;
|
||||
}
|
||||
if (x >= xmax || y >= ymax || z >= zmax) {
|
||||
PYOPENCL_ELWISE_CONTINUE;
|
||||
}
|
||||
|
||||
Ex[i] += c * Jrx[i] + s * Jix[i];
|
||||
Ey[i] += c * Jry[i] + s * Jiy[i];
|
||||
Ez[i] += c * Jrz[i] + s * Jiz[i];
|
@ -1,11 +1,11 @@
|
||||
/*
|
||||
* Update E-field, including any PMLs.
|
||||
*
|
||||
*
|
||||
* Template parameters:
|
||||
* common_header: Rendered contents of common.cl
|
||||
* pmls: [('x', 'n'), ('z', 'p'),...] list of pml axes and polarities
|
||||
* pml_thickness: Number of cells (integer)
|
||||
*
|
||||
*
|
||||
* OpenCL args:
|
||||
* E, H, dt, S, oS
|
||||
*/
|
||||
@ -17,12 +17,12 @@
|
||||
|
||||
/*
|
||||
* Calculate S from oS (pre-calculated components)
|
||||
*/
|
||||
*/
|
||||
__global ftype *Sx = S + XX;
|
||||
__global ftype *Sy = S + YY;
|
||||
__global ftype *Sz = S + ZZ;
|
||||
|
||||
// Use unscaled S components from H locations
|
||||
// Use unscaled S components from H locations
|
||||
__global ftype *oSxy = oS + 0 * field_size;
|
||||
__global ftype *oSyz = oS + 1 * field_size;
|
||||
__global ftype *oSzx = oS + 2 * field_size;
|
376
opencl_fdtd/simulation.py
Normal file
376
opencl_fdtd/simulation.py
Normal file
@ -0,0 +1,376 @@
|
||||
"""
|
||||
Class for constructing and holding the basic FDTD operations and fields
|
||||
"""
|
||||
|
||||
from typing import List, Dict, Callable
|
||||
from collections import OrderedDict
|
||||
import numpy
|
||||
import jinja2
|
||||
import warnings
|
||||
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
from pyopencl.elementwise import ElementwiseKernel
|
||||
|
||||
from fdfd_tools import vec
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
# Create jinja2 env on module load
|
||||
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels'))
|
||||
|
||||
|
||||
class Simulation(object):
|
||||
"""
|
||||
Constructs and holds the basic FDTD operations and related fields
|
||||
|
||||
After constructing this object, call the (update_E, update_H, update_S) members
|
||||
to perform FDTD updates on the stored (E, H, S) fields:
|
||||
|
||||
pmls = [{'axis': a, 'polarity': p} for a in 'xyz' for p in 'np']
|
||||
sim = Simulation(grid.grids, do_poynting=True, pmls=pmls)
|
||||
with open('sources.c', 'w') as f:
|
||||
f.write('{}'.format(sim.sources))
|
||||
|
||||
for t in range(max_t):
|
||||
sim.update_E([]).wait()
|
||||
|
||||
# Find the linear index for the center point, for Ey
|
||||
ind = numpy.ravel_multi_index(tuple(grid.shape//2), dims=grid.shape, order='C') + \
|
||||
numpy.prod(grid.shape) * 1
|
||||
# Perturb the field (i.e., add a soft current source)
|
||||
sim.E[ind] += numpy.sin(omega * t * sim.dt)
|
||||
event = sim.update_H([])
|
||||
if sim.update_S:
|
||||
event = sim.update_S([event])
|
||||
event.wait()
|
||||
|
||||
with lzma.open('saved_simulation', 'wb') as f:
|
||||
dill.dump(fdfd_tools.unvec(sim.E.get(), grid.shape), f)
|
||||
|
||||
Code in the form
|
||||
event2 = sim.update_H([event0, event1])
|
||||
indicates that the update_H operation should be prepared immediately, but wait for
|
||||
event0 and event1 to occur (i.e. previous operations to finish) before starting execution.
|
||||
event2 can then be used to prepare further operations to be run after update_H.
|
||||
"""
|
||||
E = None # type: pyopencl.array.Array
|
||||
H = None # type: pyopencl.array.Array
|
||||
S = None # type: pyopencl.array.Array
|
||||
eps = None # type: pyopencl.array.Array
|
||||
dt = None # type: float
|
||||
inv_dxes = None # type: List[pyopencl.array.Array]
|
||||
|
||||
arg_type = None # type: numpy.float32 or numpy.float64
|
||||
|
||||
context = None # type: pyopencl.Context
|
||||
queue = None # type: pyopencl.CommandQueue
|
||||
|
||||
update_E = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_H = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_S = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_J = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
sources = None # type: Dict[str, str]
|
||||
|
||||
def __init__(self,
|
||||
epsilon: List[numpy.ndarray],
|
||||
pmls: List[Dict[str, int or float]],
|
||||
bloch_boundaries: List[Dict[str, int or float]] = (),
|
||||
dxes: List[List[numpy.ndarray]] or float = None,
|
||||
dt: float = None,
|
||||
initial_fields: Dict[str, List[numpy.ndarray]] = None,
|
||||
context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None,
|
||||
float_type: numpy.float32 or numpy.float64 = numpy.float32,
|
||||
do_poynting: bool = True,
|
||||
do_fieldsrc: bool = False):
|
||||
"""
|
||||
Initialize the simulation.
|
||||
|
||||
:param epsilon: List containing [eps_r,xx, eps_r,yy, eps_r,zz], where each element is a Yee-shifted ndarray
|
||||
spanning the simulation domain. Relative epsilon is used.
|
||||
:param pmls: List of dicts with keys:
|
||||
'axis': One of 'x', 'y', 'z'.
|
||||
'direction': One of 'n', 'p'.
|
||||
'thickness': Number of layers, default 8.
|
||||
'epsilon_eff': Effective epsilon to match to. Default 1.0.
|
||||
'mu_eff': Effective mu to match to. Default 1.0.
|
||||
'ln_R_per_layer': Desired (ln(R) / thickness) value. Default -1.6.
|
||||
'm': Polynomial grading exponent. Default 3.5.
|
||||
'ma': Exponent for alpha. Default 1.
|
||||
:param bloch_boundaries: List of dicts with keys:
|
||||
'axis': One of 'x', 'y', 'z'.
|
||||
'real': Real part of bloch phase factor (i.e. real(exp(i * phase)))
|
||||
'imag': Imaginary part of bloch phase factor (i.e. imag(exp(i * phase)))
|
||||
:param dt: Time step. Default is min(dxes) * .99/sqrt(3).
|
||||
:param initial_fields: Dict with optional keys ('E', 'H', 'F', 'G') containing initial values for the
|
||||
specified fields (default is 0 everywhere). Fields have same format as epsilon.
|
||||
:param context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called.
|
||||
:param queue: pyOpenCL command queue. If not given, pyopencl.CommandQueue(context) is called.
|
||||
:param float_type: numpy.float32 or numpy.float64. Default numpy.float32.
|
||||
:param do_poynting: If true, enables calculation of the poynting vector, S.
|
||||
Poynting vector calculation adds the following computational burdens:
|
||||
* During update_H, ~6 extra additions/cell are performed in order to spatially
|
||||
average E and temporally average H. These quantities are multiplied
|
||||
(6 multiplications/cell) and then stored (6 writes/cell, cache-friendly).
|
||||
* update_S performs a discrete cross product using the precalculated products
|
||||
from update_H. This is not nice to the cache and similar to e.g. update_E
|
||||
in complexity.
|
||||
* GPU memory requirements are approximately doubled, since S and the intermediate
|
||||
products must be stored.
|
||||
"""
|
||||
if initial_fields is None:
|
||||
initial_fields = {}
|
||||
|
||||
self.shape = epsilon[0].shape
|
||||
self.arg_type = float_type
|
||||
self.sources = {}
|
||||
self._create_context(context, queue)
|
||||
self._create_eps(epsilon)
|
||||
|
||||
if dxes is None:
|
||||
dxes = 1.0
|
||||
|
||||
if isinstance(dxes, (float, int)):
|
||||
uniform_dx = dxes
|
||||
min_dx = dxes
|
||||
else:
|
||||
uniform_dx = False
|
||||
self.inv_dxes = [self._create_field(1 / dxn) for dxn in dxes[0] + dxes[1]]
|
||||
min_dx = min(min(dxn) for dxn in dxes[0] + dxes[1])
|
||||
|
||||
max_dt = min_dx * .99 / numpy.sqrt(3)
|
||||
|
||||
if dt is None:
|
||||
self.dt = max_dt
|
||||
elif dt > max_dt:
|
||||
warnings.warn('Warning: unstable dt: {}'.format(dt))
|
||||
elif dt <= 0:
|
||||
raise Exception('Invalid dt: {}'.format(dt))
|
||||
else:
|
||||
self.dt = dt
|
||||
|
||||
self.E = self._create_field(initial_fields.get('E', None))
|
||||
self.H = self._create_field(initial_fields.get('H', None))
|
||||
if bloch_boundaries:
|
||||
self.F = self._create_field(initial_fields.get('F', None))
|
||||
self.G = self._create_field(initial_fields.get('G', None))
|
||||
|
||||
for pml in pmls:
|
||||
pml.setdefault('thickness', 8)
|
||||
pml.setdefault('epsilon_eff', 1.0)
|
||||
pml.setdefault('mu_eff', 1.0)
|
||||
pml.setdefault('ln_R_per_layer', -1.6)
|
||||
pml.setdefault('m', 3.5)
|
||||
pml.setdefault('cfs_alpha', 0)
|
||||
pml.setdefault('ma', 1)
|
||||
|
||||
ctype = type_to_C(self.arg_type)
|
||||
|
||||
def ptr(arg: str) -> str:
|
||||
return ctype + ' *' + arg
|
||||
|
||||
base_fields = OrderedDict()
|
||||
base_fields[ptr('E')] = self.E
|
||||
base_fields[ptr('H')] = self.H
|
||||
base_fields[ctype + ' dt'] = self.dt
|
||||
if uniform_dx == False:
|
||||
inv_dx_names = ['inv_d' + eh + r for eh in 'eh' for r in 'xyz']
|
||||
for name, field in zip(inv_dx_names, self.inv_dxes):
|
||||
base_fields[ptr(name)] = field
|
||||
|
||||
eps_field = OrderedDict()
|
||||
eps_field[ptr('eps')] = self.eps
|
||||
|
||||
if bloch_boundaries:
|
||||
base_fields[ptr('F')] = self.F
|
||||
base_fields[ptr('G')] = self.G
|
||||
|
||||
bloch_fields = OrderedDict()
|
||||
bloch_fields[ptr('E')] = self.F
|
||||
bloch_fields[ptr('H')] = self.G
|
||||
bloch_fields[ctype + ' dt'] = self.dt
|
||||
bloch_fields[ptr('F')] = self.E
|
||||
bloch_fields[ptr('G')] = self.H
|
||||
|
||||
common_source = jinja_env.get_template('common.cl').render(
|
||||
ftype=ctype,
|
||||
shape=self.shape,
|
||||
)
|
||||
jinja_args = {
|
||||
'common_header': common_source,
|
||||
'pmls': pmls,
|
||||
'do_poynting': do_poynting,
|
||||
'bloch': bloch_boundaries,
|
||||
'uniform_dx': uniform_dx,
|
||||
}
|
||||
E_source = jinja_env.get_template('update_e.cl').render(**jinja_args)
|
||||
H_source = jinja_env.get_template('update_h.cl').render(**jinja_args)
|
||||
self.sources['E'] = E_source
|
||||
self.sources['H'] = H_source
|
||||
|
||||
if bloch_boundaries:
|
||||
bloch_args = jinja_args.copy()
|
||||
bloch_args['do_poynting'] = False
|
||||
bloch_args['bloch'] = [{'axis': b['axis'],
|
||||
'real': b['imag'],
|
||||
'imag': b['real']}
|
||||
for b in bloch_boundaries]
|
||||
F_source = jinja_env.get_template('update_e.cl').render(**bloch_args)
|
||||
G_source = jinja_env.get_template('update_h.cl').render(**bloch_args)
|
||||
self.sources['F'] = F_source
|
||||
self.sources['G'] = G_source
|
||||
|
||||
|
||||
S_fields = OrderedDict()
|
||||
if do_poynting:
|
||||
S_source = jinja_env.get_template('update_s.cl').render(**jinja_args)
|
||||
self.sources['S'] = S_source
|
||||
|
||||
self.oS = pyopencl.array.zeros(self.queue, self.E.shape + (2,), dtype=self.arg_type)
|
||||
self.S = pyopencl.array.zeros_like(self.E)
|
||||
S_fields[ptr('oS')] = self.oS
|
||||
S_fields[ptr('S')] = self.S
|
||||
|
||||
J_fields = OrderedDict()
|
||||
if do_fieldsrc:
|
||||
J_source = jinja_env.get_template('update_j.cl').render(**jinja_args)
|
||||
self.sources['J'] = J_source
|
||||
|
||||
self.Ji = pyopencl.array.zeros_like(self.E)
|
||||
self.Jr = pyopencl.array.zeros_like(self.E)
|
||||
J_fields[ptr('Jr')] = self.Jr
|
||||
J_fields[ptr('Ji')] = self.Ji
|
||||
|
||||
|
||||
'''
|
||||
PML
|
||||
'''
|
||||
pml_e_fields, pml_h_fields = self._create_pmls(pmls)
|
||||
if bloch_boundaries:
|
||||
pml_f_fields, pml_g_fields = self._create_pmls(pmls)
|
||||
|
||||
'''
|
||||
Create operations
|
||||
'''
|
||||
self.update_E = self._create_operation(E_source, (base_fields, eps_field, pml_e_fields))
|
||||
self.update_H = self._create_operation(H_source, (base_fields, pml_h_fields, S_fields))
|
||||
if do_poynting:
|
||||
self.update_S = self._create_operation(S_source, (base_fields, S_fields))
|
||||
if bloch_boundaries:
|
||||
self.update_F = self._create_operation(F_source, (bloch_fields, eps_field, pml_f_fields))
|
||||
self.update_G = self._create_operation(G_source, (bloch_fields, pml_g_fields))
|
||||
if do_fieldsrc:
|
||||
args = OrderedDict()
|
||||
[args.update(d) for d in (base_fields, J_fields)]
|
||||
var_args = [ctype + ' ' + v for v in 'cs'] + ['uint ' + r + m for r in 'xyz' for m in ('min', 'max')]
|
||||
update = ElementwiseKernel(self.context, operation=J_source,
|
||||
arguments=', '.join(list(args.keys()) + var_args))
|
||||
self.update_J = lambda e, *a: update(*args.values(), *a, wait_for=e)
|
||||
|
||||
|
||||
def _create_pmls(self, pmls):
|
||||
ctype = type_to_C(self.arg_type)
|
||||
def ptr(arg: str) -> str:
|
||||
return ctype + ' *' + arg
|
||||
|
||||
pml_e_fields = OrderedDict()
|
||||
pml_h_fields = OrderedDict()
|
||||
for pml in pmls:
|
||||
a = 'xyz'.find(pml['axis'])
|
||||
|
||||
sigma_max = -pml['ln_R_per_layer'] / 2 * (pml['m'] + 1)
|
||||
kappa_max = numpy.sqrt(pml['mu_eff'] * pml['epsilon_eff'])
|
||||
alpha_max = pml['cfs_alpha']
|
||||
|
||||
def par(x):
|
||||
scaling = (x / pml['thickness']) ** pml['m']
|
||||
sigma = scaling * sigma_max
|
||||
kappa = 1 + scaling * (kappa_max - 1)
|
||||
alpha = ((1 - x / pml['thickness']) ** pml['ma']) * alpha_max
|
||||
p0 = numpy.exp(-(sigma / kappa + alpha) * self.dt)
|
||||
p1 = sigma / (sigma + kappa * alpha) * (p0 - 1)
|
||||
p2 = 1 / kappa
|
||||
return p0, p1, p2
|
||||
|
||||
xe, xh = (numpy.arange(1, pml['thickness'] + 1, dtype=self.arg_type)[::-1] for _ in range(2))
|
||||
if pml['polarity'] == 'p':
|
||||
xe -= 0.5
|
||||
elif pml['polarity'] == 'n':
|
||||
xh -= 0.5
|
||||
|
||||
pml_p_names = [['p' + pml['axis'] + i + eh + pml['polarity'] for i in '012'] for eh in 'eh']
|
||||
for name_e, name_h, pe, ph in zip(pml_p_names[0], pml_p_names[1], par(xe), par(xh)):
|
||||
pml_e_fields[ptr(name_e)] = pyopencl.array.to_device(self.queue, pe)
|
||||
pml_h_fields[ptr(name_h)] = pyopencl.array.to_device(self.queue, ph)
|
||||
|
||||
uv = 'xyz'.replace(pml['axis'], '')
|
||||
psi_base = 'Psi_' + pml['axis'] + pml['polarity'] + '_'
|
||||
psi_names = [[psi_base + eh + c for c in uv] for eh in 'EH']
|
||||
|
||||
psi_shape = list(self.shape)
|
||||
psi_shape[a] = pml['thickness']
|
||||
|
||||
for ne, nh in zip(*psi_names):
|
||||
pml_e_fields[ptr(ne)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
|
||||
pml_h_fields[ptr(nh)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
|
||||
return pml_e_fields, pml_h_fields
|
||||
|
||||
def _create_operation(self, source, args_fields):
|
||||
args = OrderedDict()
|
||||
[args.update(d) for d in args_fields]
|
||||
update = ElementwiseKernel(self.context, operation=source,
|
||||
arguments=', '.join(args.keys()))
|
||||
return lambda e: update(*args.values(), wait_for=e)
|
||||
|
||||
def _create_context(self, context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None):
|
||||
if context is None:
|
||||
self.context = pyopencl.create_some_context()
|
||||
else:
|
||||
self.context = context
|
||||
|
||||
if queue is None:
|
||||
self.queue = pyopencl.CommandQueue(self.context)
|
||||
else:
|
||||
self.queue = queue
|
||||
|
||||
def _create_eps(self, epsilon: List[numpy.ndarray]):
|
||||
if len(epsilon) != 3:
|
||||
raise Exception('Epsilon must be a list with length of 3')
|
||||
if not all((e.shape == epsilon[0].shape for e in epsilon[1:])):
|
||||
raise Exception('All epsilon grids must have the same shape. Shapes are {}', [e.shape for e in epsilon])
|
||||
if not epsilon[0].shape == self.shape:
|
||||
raise Exception('Epsilon shape mismatch. Expected {}, got {}'.format(self.shape, epsilon[0].shape))
|
||||
self.eps = pyopencl.array.to_device(self.queue, vec(epsilon).astype(self.arg_type))
|
||||
|
||||
def _create_field(self, initial_value: List[numpy.ndarray] = None):
|
||||
if initial_value is None:
|
||||
return pyopencl.array.zeros_like(self.eps)
|
||||
else:
|
||||
if len(initial_value) != 3:
|
||||
Exception('Initial field value must be a list of length 3')
|
||||
if not all((f.shape == self.shape for f in initial_value)):
|
||||
Exception('Initial field list elements must have same shape as epsilon elements')
|
||||
return pyopencl.array.to_device(self.queue, vec(initial_value).astype(self.arg_type))
|
||||
|
||||
|
||||
def type_to_C(float_type) -> str:
|
||||
"""
|
||||
Returns a string corresponding to the C equivalent of a numpy type.
|
||||
Only works for float16, float32, float64.
|
||||
|
||||
:param float_type: e.g. numpy.float32
|
||||
:return: string containing the corresponding C type (eg. 'double')
|
||||
"""
|
||||
if float_type == numpy.float16:
|
||||
arg_type = 'half'
|
||||
elif float_type == numpy.float32:
|
||||
arg_type = 'float'
|
||||
elif float_type == numpy.float64:
|
||||
arg_type = 'double'
|
||||
else:
|
||||
raise Exception('Unsupported type')
|
||||
return arg_type
|
@ -2,7 +2,7 @@ numpy
|
||||
h5py
|
||||
pyopencl
|
||||
jinja2
|
||||
-e git+https://mpxd.net/gogs/jan/float_raster.git@release#egg=float_raster
|
||||
-e git+https://mpxd.net/gogs/jan/gridlock.git@release#egg=gridlock
|
||||
-e git+https://mpxd.net/gogs/jan/masque.git@release#egg=masque
|
||||
-e git+https://mpxd.net/gogs/jan/fdfd_tools.git@master#egg=fdfd_tools
|
||||
-e git+https://mpxd.net/code/jan/float_raster.git@release#egg=float_raster
|
||||
-e git+https://mpxd.net/code/jan/gridlock.git@release#egg=gridlock
|
||||
-e git+https://mpxd.net/code/jan/masque.git@release#egg=masque
|
||||
-e git+https://mpxd.net/code/jan/fdfd_tools.git@master#egg=fdfd_tools
|
||||
|
30
setup.py
Normal file
30
setup.py
Normal file
@ -0,0 +1,30 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
import opencl_fdtd
|
||||
|
||||
with open('README.md', 'r') as f:
|
||||
long_description = f.read()
|
||||
|
||||
setup(name='opencl_fdtd',
|
||||
version=opencl_fdtd.version,
|
||||
description='OpenCL FDTD solver',
|
||||
long_description=long_description,
|
||||
long_description_content_type='text/markdown',
|
||||
author='Jan Petykiewicz',
|
||||
author_email='anewusername@gmail.com',
|
||||
url='https://mpxd.net/code/jan/opencl_fdtd',
|
||||
packages=find_packages(),
|
||||
package_data={
|
||||
'opencl_fdfd': ['kernels/*']
|
||||
},
|
||||
install_requires=[
|
||||
'numpy',
|
||||
'pyopencl',
|
||||
'jinja2',
|
||||
'fdfd_tools>=0.3',
|
||||
],
|
||||
extras_require={
|
||||
},
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user