Compare commits
51 Commits
Author | SHA1 | Date | |
---|---|---|---|
777ecbc024 | |||
c4f8749941 | |||
cd5cc9eb83 | |||
99e8d32eb1 | |||
1cb0cb2e4f | |||
234e8d7ac3 | |||
83f4d87ad8 | |||
1987ee473a | |||
4afc6cf62e | |||
53d5812b4a | |||
651e255704 | |||
71c2bbfada | |||
6a56921c12 | |||
006833acf2 | |||
155f30068f | |||
7987dc796f | |||
829007c672 | |||
659566750f | |||
76701f593c | |||
4e3a163522 | |||
50f92e1cc8 | |||
b3c2fd391b | |||
c543868c0b | |||
e54735d9c6 | |||
4f2433320d | |||
47415a0beb | |||
e459b5e61f | |||
36431cd0e4 | |||
739e96df3d | |||
63e7cb949f | |||
c53a3c4d84 | |||
5dd9994e76 | |||
1021768e30 | |||
95e923d7b7 | |||
3f8802cb5f | |||
43bb0ba379 | |||
e19968bb9f | |||
43f038d761 | |||
d5fca741d1 | |||
ca94ad1b25 | |||
10f26c12b4 | |||
ee51c7db49 | |||
36bea6a593 | |||
b16b35d84a | |||
6f3ae5a64f | |||
99c22d572f | |||
2f00baf0c6 | |||
2712d96f2a | |||
dc3e733e7f | |||
95e3f71b40 | |||
639f88bba8 |
@ -46,20 +46,24 @@ def test0(solver=generic_solver):
|
||||
# #### Create the grid, mask, and draw the device ####
|
||||
grid = gridlock.Grid(edge_coords)
|
||||
epsilon = grid.allocate(n_air**2, dtype=numpy.float32)
|
||||
grid.draw_cylinder(epsilon,
|
||||
grid.draw_cylinder(
|
||||
epsilon,
|
||||
surface_normal=2,
|
||||
center=center,
|
||||
radius=max(radii),
|
||||
thickness=th,
|
||||
eps=n_ring**2,
|
||||
num_points=24)
|
||||
grid.draw_cylinder(epsilon,
|
||||
foreground=n_ring**2,
|
||||
num_points=24,
|
||||
)
|
||||
grid.draw_cylinder(
|
||||
epsilon,
|
||||
surface_normal=2,
|
||||
center=center,
|
||||
radius=min(radii),
|
||||
thickness=th*1.1,
|
||||
eps=n_air ** 2,
|
||||
num_points=24)
|
||||
foreground=n_air ** 2,
|
||||
num_points=24,
|
||||
)
|
||||
|
||||
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
|
||||
for a in (0, 1, 2):
|
||||
@ -71,9 +75,9 @@ def test0(solver=generic_solver):
|
||||
J[1][15, grid.shape[1]//2, grid.shape[2]//2] = 1
|
||||
|
||||
|
||||
'''
|
||||
Solve!
|
||||
'''
|
||||
#
|
||||
# Solve!
|
||||
#
|
||||
sim_args = {
|
||||
'omega': omega,
|
||||
'dxes': dxes,
|
||||
@ -87,9 +91,9 @@ def test0(solver=generic_solver):
|
||||
|
||||
E = unvec(x, grid.shape)
|
||||
|
||||
'''
|
||||
Plot results
|
||||
'''
|
||||
#
|
||||
# Plot results
|
||||
#
|
||||
pyplot.figure()
|
||||
pyplot.pcolor(numpy.real(E[1][:, :, grid.shape[2]//2]), cmap='seismic')
|
||||
pyplot.axis('equal')
|
||||
@ -122,7 +126,7 @@ def test1(solver=generic_solver):
|
||||
# #### Create the grid and draw the device ####
|
||||
grid = gridlock.Grid(edge_coords)
|
||||
epsilon = grid.allocate(n_air**2, dtype=numpy.float32)
|
||||
grid.draw_cuboid(epsilon, center=center, dimensions=[8e3, w, th], eps=n_wg**2)
|
||||
grid.draw_cuboid(epsilon, center=center, dimensions=[8e3, w, th], foreground=n_wg**2)
|
||||
|
||||
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
|
||||
for a in (0, 1, 2):
|
||||
@ -169,9 +173,9 @@ def test1(solver=generic_solver):
|
||||
# pcolor((numpy.abs(J3).sum(axis=2).sum(axis=0) > 0).astype(float).T)
|
||||
pyplot.show(block=True)
|
||||
|
||||
'''
|
||||
Solve!
|
||||
'''
|
||||
#
|
||||
# Solve!
|
||||
#
|
||||
sim_args = {
|
||||
'omega': omega,
|
||||
'dxes': dxes,
|
||||
@ -188,9 +192,9 @@ def test1(solver=generic_solver):
|
||||
|
||||
E = unvec(x, grid.shape)
|
||||
|
||||
'''
|
||||
Plot results
|
||||
'''
|
||||
#
|
||||
# Plot results
|
||||
#
|
||||
center = grid.pos2ind([0, 0, 0], None).astype(int)
|
||||
pyplot.figure()
|
||||
pyplot.subplot(2, 2, 1)
|
||||
@ -232,7 +236,7 @@ def test1(solver=generic_solver):
|
||||
pyplot.grid(alpha=0.6)
|
||||
pyplot.title('Overlap with mode')
|
||||
pyplot.show()
|
||||
print('Average overlap with mode:', sum(q)/len(q))
|
||||
print('Average overlap with mode:', sum(q[8:32])/len(q[8:32]))
|
||||
|
||||
|
||||
def module_available(name):
|
||||
|
@ -157,7 +157,8 @@ def main():
|
||||
e[1][tuple(grid.shape//2)] += field_source(t)
|
||||
update_H(e, h)
|
||||
|
||||
print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
||||
avg_rate = (t + 1)/(time.perf_counter() - start))
|
||||
print(f'iteration {t}: average {avg_rate} iterations per sec')
|
||||
sys.stdout.flush()
|
||||
|
||||
if t % 20 == 0:
|
||||
|
@ -3,7 +3,7 @@ import numpy
|
||||
from numpy.linalg import norm
|
||||
|
||||
from meanas.fdmath import vec, unvec
|
||||
from meanas.fdfd import waveguide_mode, functional, scpml
|
||||
from meanas.fdfd import waveguide_cyl, functional, scpml
|
||||
from meanas.fdfd.solvers import generic as generic_solver
|
||||
|
||||
import gridlock
|
||||
@ -37,29 +37,34 @@ def test1(solver=generic_solver):
|
||||
xyz_max = numpy.array([800, y_max, z_max]) + (pml_thickness + 2) * dx
|
||||
|
||||
# Coordinates of the edges of the cells.
|
||||
half_edge_coords = [numpy.arange(dx/2, m + dx/2, step=dx) for m in xyz_max]
|
||||
half_edge_coords = [numpy.arange(dx / 2, m + dx / 2, step=dx) for m in xyz_max]
|
||||
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
||||
edge_coords[0] = numpy.array([-dx, dx])
|
||||
|
||||
# #### Create the grid and draw the device ####
|
||||
grid = gridlock.Grid(edge_coords)
|
||||
epsilon = grid.allocate(n_air**2, dtype=numpy.float32)
|
||||
grid.draw_cuboid(epsilon, center=center, dimensions=[8e3, w, th], eps=n_wg**2)
|
||||
grid.draw_cuboid(epsilon, center=center, dimensions=[8e3, w, th], foreground=n_wg**2)
|
||||
|
||||
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
|
||||
for a in (1, 2):
|
||||
for p in (-1, 1):
|
||||
dxes = scmpl.stretch_with_scpml(dxes, omega=omega, axis=a, polarity=p,
|
||||
thickness=pml_thickness)
|
||||
dxes = scpml.stretch_with_scpml(
|
||||
dxes,
|
||||
omega=omega,
|
||||
axis=a,
|
||||
polarity=p,
|
||||
thickness=pml_thickness,
|
||||
)
|
||||
|
||||
wg_args = {
|
||||
'omega': omega,
|
||||
'dxes': [(d[1], d[2]) for d in dxes],
|
||||
'epsilon': vec(g.transpose([1, 2, 0]) for g in epsilon),
|
||||
'epsilon': vec(epsilon.transpose([0, 2, 3, 1])),
|
||||
'r0': r0,
|
||||
}
|
||||
|
||||
wg_results = waveguide_mode.solve_waveguide_mode_cylindrical(mode_number=0, **wg_args)
|
||||
wg_results = waveguide_cyl.solve_mode(mode_number=0, **wg_args)
|
||||
|
||||
E = wg_results['E']
|
||||
|
||||
@ -70,20 +75,17 @@ def test1(solver=generic_solver):
|
||||
'''
|
||||
Plot results
|
||||
'''
|
||||
def pcolor(v):
|
||||
def pcolor(fig, ax, v, title):
|
||||
vmax = numpy.max(numpy.abs(v))
|
||||
pyplot.pcolor(v.T, cmap='seismic', vmin=-vmax, vmax=vmax)
|
||||
pyplot.axis('equal')
|
||||
pyplot.colorbar()
|
||||
mappable = ax.pcolormesh(v.T, cmap='seismic', vmin=-vmax, vmax=vmax)
|
||||
ax.set_aspect('equal', adjustable='box')
|
||||
ax.set_title(title)
|
||||
ax.figure.colorbar(mappable)
|
||||
|
||||
pyplot.figure()
|
||||
pyplot.subplot(2, 2, 1)
|
||||
pcolor(numpy.real(E[0][:, :]))
|
||||
pyplot.subplot(2, 2, 2)
|
||||
pcolor(numpy.real(E[1][:, :]))
|
||||
pyplot.subplot(2, 2, 3)
|
||||
pcolor(numpy.real(E[2][:, :]))
|
||||
pyplot.subplot(2, 2, 4)
|
||||
fig, axes = pyplot.subplots(2, 2)
|
||||
pcolor(fig, axes[0][0], numpy.real(E[0]), 'Ex')
|
||||
pcolor(fig, axes[0][1], numpy.real(E[1]), 'Ey')
|
||||
pcolor(fig, axes[1][0], numpy.real(E[2]), 'Ez')
|
||||
pyplot.show()
|
||||
|
||||
|
||||
|
@ -11,7 +11,8 @@ __author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
try:
|
||||
with open(pathlib.Path(__file__).parent / 'README.md', 'r') as f:
|
||||
readme_path = pathlib.Path(__file__).parent / 'README.md'
|
||||
with readme_path.open('r') as f:
|
||||
__doc__ = f.read()
|
||||
except Exception:
|
||||
pass
|
||||
|
@ -1,12 +1,12 @@
|
||||
"""
|
||||
Solvers for eigenvalue / eigenvector problems
|
||||
"""
|
||||
from typing import Callable
|
||||
from collections.abc import Callable
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.linalg import norm
|
||||
from scipy import sparse # type: ignore
|
||||
import scipy.sparse.linalg as spalg # type: ignore
|
||||
from scipy import sparse
|
||||
import scipy.sparse.linalg as spalg
|
||||
|
||||
|
||||
def power_iteration(
|
||||
@ -25,8 +25,9 @@ def power_iteration(
|
||||
Returns:
|
||||
(Largest-magnitude eigenvalue, Corresponding eigenvector estimate)
|
||||
"""
|
||||
rng = numpy.random.default_rng()
|
||||
if guess_vector is None:
|
||||
v = numpy.random.rand(operator.shape[0]) + 1j * numpy.random.rand(operator.shape[0])
|
||||
v = rng.random(operator.shape[0]) + 1j * rng.random(operator.shape[0])
|
||||
else:
|
||||
v = guess_vector
|
||||
|
||||
|
@ -91,5 +91,12 @@ $$
|
||||
|
||||
|
||||
"""
|
||||
from . import solvers, operators, functional, scpml, waveguide_2d, waveguide_3d
|
||||
from . import (
|
||||
solvers as solvers,
|
||||
operators as operators,
|
||||
functional as functional,
|
||||
scpml as scpml,
|
||||
waveguide_2d as waveguide_2d,
|
||||
waveguide_3d as waveguide_3d,
|
||||
)
|
||||
# from . import farfield, bloch TODO
|
||||
|
@ -94,16 +94,17 @@ This module contains functions for generating and solving the
|
||||
|
||||
"""
|
||||
|
||||
from typing import Callable, Any, cast, Sequence
|
||||
from typing import Any, cast
|
||||
from collections.abc import Callable, Sequence
|
||||
import logging
|
||||
import numpy
|
||||
from numpy import pi, real, trace
|
||||
from numpy.fft import fftfreq
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
import scipy # type: ignore
|
||||
import scipy.optimize # type: ignore
|
||||
from scipy.linalg import norm # type: ignore
|
||||
import scipy.sparse.linalg as spalg # type: ignore
|
||||
import scipy
|
||||
import scipy.optimize
|
||||
from scipy.linalg import norm
|
||||
import scipy.sparse.linalg as spalg
|
||||
|
||||
from ..fdmath import fdfield_t, cfdfield_t
|
||||
|
||||
@ -114,7 +115,6 @@ logger = logging.getLogger(__name__)
|
||||
try:
|
||||
import pyfftw.interfaces.numpy_fft # type: ignore
|
||||
import pyfftw.interfaces # type: ignore
|
||||
import multiprocessing
|
||||
logger.info('Using pyfftw')
|
||||
|
||||
pyfftw.interfaces.cache.enable()
|
||||
@ -155,7 +155,7 @@ def generate_kmn(
|
||||
All are given in the xyz basis (e.g. `|k|[0,0,0] = norm(G_matrix @ k0)`).
|
||||
"""
|
||||
k0 = numpy.array(k0)
|
||||
G_matrix = numpy.array(G_matrix, copy=False)
|
||||
G_matrix = numpy.asarray(G_matrix)
|
||||
|
||||
Gi_grids = numpy.array(numpy.meshgrid(*(fftfreq(n, 1 / n) for n in shape[:3]), indexing='ij'))
|
||||
Gi = numpy.moveaxis(Gi_grids, 0, -1)
|
||||
@ -232,7 +232,7 @@ def maxwell_operator(
|
||||
Raveled conv(1/mu_k, ik x conv(1/eps_k, ik x h_mn)), returned
|
||||
and overwritten in-place of `h`.
|
||||
"""
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2))
|
||||
|
||||
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
|
||||
|
||||
@ -303,12 +303,12 @@ def hmn_2_exyz(
|
||||
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
|
||||
|
||||
def operator(h: NDArray[numpy.complex128]) -> cfdfield_t:
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2))
|
||||
d_xyz = (n * hin_m
|
||||
- m * hin_n) * k_mag # noqa: E128
|
||||
|
||||
# divide by epsilon
|
||||
return numpy.array([ei for ei in numpy.moveaxis(ifftn(d_xyz, axes=range(3)) / epsilon, 3, 0)]) # TODO avoid copy
|
||||
return numpy.moveaxis(ifftn(d_xyz, axes=range(3)) / epsilon, 3, 0)
|
||||
|
||||
return operator
|
||||
|
||||
@ -341,7 +341,7 @@ def hmn_2_hxyz(
|
||||
_k_mag, m, n = generate_kmn(k0, G_matrix, shape)
|
||||
|
||||
def operator(h: NDArray[numpy.complex128]) -> cfdfield_t:
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2))
|
||||
h_xyz = (m * hin_m
|
||||
+ n * hin_n) # noqa: E128
|
||||
return numpy.array([ifftn(hi) for hi in numpy.moveaxis(h_xyz, 3, 0)])
|
||||
@ -394,7 +394,7 @@ def inverse_maxwell_operator_approx(
|
||||
Returns:
|
||||
Raveled ik x conv(eps_k, ik x conv(mu_k, h_mn))
|
||||
"""
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2))
|
||||
|
||||
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
|
||||
|
||||
@ -538,7 +538,7 @@ def eigsolve(
|
||||
`(eigenvalues, eigenvectors)` where `eigenvalues[i]` corresponds to the
|
||||
vector `eigenvectors[i, :]`
|
||||
"""
|
||||
k0 = numpy.array(k0, copy=False)
|
||||
k0 = numpy.asarray(k0)
|
||||
|
||||
h_size = 2 * epsilon[0].size
|
||||
|
||||
@ -561,11 +561,12 @@ def eigsolve(
|
||||
prev_theta = 0.5
|
||||
D = numpy.zeros(shape=y_shape, dtype=complex)
|
||||
|
||||
rng = numpy.random.default_rng()
|
||||
Z: NDArray[numpy.complex128]
|
||||
if y0 is None:
|
||||
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
|
||||
Z = rng.random(y_shape) + 1j * rng.random(y_shape)
|
||||
else:
|
||||
Z = numpy.array(y0, copy=False).T
|
||||
Z = numpy.asarray(y0).T
|
||||
|
||||
while True:
|
||||
Z *= num_modes / norm(Z)
|
||||
@ -573,7 +574,7 @@ def eigsolve(
|
||||
try:
|
||||
U = numpy.linalg.inv(ZtZ)
|
||||
except numpy.linalg.LinAlgError:
|
||||
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
|
||||
Z = rng.random(y_shape) + 1j * rng.random(y_shape)
|
||||
continue
|
||||
|
||||
trace_U = real(trace(U))
|
||||
@ -646,8 +647,7 @@ def eigsolve(
|
||||
|
||||
Qi_memo: list[float | None] = [None, None]
|
||||
|
||||
def Qi_func(theta: float) -> float:
|
||||
nonlocal Qi_memo
|
||||
def Qi_func(theta: float, Qi_memo=Qi_memo, ZtZ=ZtZ, DtD=DtD, symZtD=symZtD) -> float: # noqa: ANN001
|
||||
if Qi_memo[0] == theta:
|
||||
return cast(float, Qi_memo[1])
|
||||
|
||||
@ -656,7 +656,7 @@ def eigsolve(
|
||||
Q = c * c * ZtZ + s * s * DtD + 2 * s * c * symZtD
|
||||
try:
|
||||
Qi = numpy.linalg.inv(Q)
|
||||
except numpy.linalg.LinAlgError:
|
||||
except numpy.linalg.LinAlgError as err:
|
||||
logger.info('taylor Qi')
|
||||
# if c or s small, taylor expand
|
||||
if c < 1e-4 * s and c != 0:
|
||||
@ -666,12 +666,12 @@ def eigsolve(
|
||||
ZtZi = numpy.linalg.inv(ZtZ)
|
||||
Qi = ZtZi / (c * c) - 2 * s / (c * c * c) * (ZtZi @ (ZtZi @ symZtD).conj().T)
|
||||
else:
|
||||
raise Exception('Inexplicable singularity in trace_func')
|
||||
raise Exception('Inexplicable singularity in trace_func') from err
|
||||
Qi_memo[0] = theta
|
||||
Qi_memo[1] = cast(float, Qi)
|
||||
return cast(float, Qi)
|
||||
|
||||
def trace_func(theta: float) -> float:
|
||||
def trace_func(theta: float, ZtAZ=ZtAZ, DtAD=DtAD, symZtAD=symZtAD) -> float: # noqa: ANN001
|
||||
c = numpy.cos(theta)
|
||||
s = numpy.sin(theta)
|
||||
Qi = Qi_func(theta)
|
||||
@ -680,15 +680,15 @@ def eigsolve(
|
||||
return numpy.abs(trace)
|
||||
|
||||
if False:
|
||||
def trace_deriv(theta):
|
||||
def trace_deriv(theta, sgn: int = sgn, ZtAZ=ZtAZ, DtAD=DtAD, symZtD=symZtD, symZtAD=symZtAD, ZtZ=ZtZ, DtD=DtD): # noqa: ANN001
|
||||
Qi = Qi_func(theta)
|
||||
c2 = numpy.cos(2 * theta)
|
||||
s2 = numpy.sin(2 * theta)
|
||||
F = -0.5*s2 * (ZtAZ - DtAD) + c2 * symZtAD
|
||||
F = -0.5 * s2 * (ZtAZ - DtAD) + c2 * symZtAD
|
||||
trace_deriv = _rtrace_AtB(Qi, F)
|
||||
|
||||
G = Qi @ F.conj().T @ Qi.conj().T
|
||||
H = -0.5*s2 * (ZtZ - DtD) + c2 * symZtD
|
||||
H = -0.5 * s2 * (ZtZ - DtD) + c2 * symZtD
|
||||
trace_deriv -= _rtrace_AtB(G, H)
|
||||
|
||||
trace_deriv *= 2
|
||||
@ -696,12 +696,12 @@ def eigsolve(
|
||||
|
||||
U_sZtD = U @ symZtD
|
||||
|
||||
dE = 2.0 * (_rtrace_AtB(U, symZtAD) -
|
||||
_rtrace_AtB(ZtAZU, U_sZtD))
|
||||
dE = 2.0 * (_rtrace_AtB(U, symZtAD)
|
||||
- _rtrace_AtB(ZtAZU, U_sZtD))
|
||||
|
||||
d2E = 2 * (_rtrace_AtB(U, DtAD) -
|
||||
_rtrace_AtB(ZtAZU, U @ (DtD - 4 * symZtD @ U_sZtD)) -
|
||||
4 * _rtrace_AtB(U, symZtAD @ U_sZtD))
|
||||
d2E = 2 * (_rtrace_AtB(U, DtAD)
|
||||
- _rtrace_AtB(ZtAZU, U @ (DtD - 4 * symZtD @ U_sZtD))
|
||||
- 4 * _rtrace_AtB(U, symZtAD @ U_sZtD))
|
||||
|
||||
# Newton-Raphson to find a root of the first derivative:
|
||||
theta = -dE / d2E
|
||||
@ -781,7 +781,7 @@ def linmin(x_guess, f0, df0, x_max, f_tol=0.1, df_tol=min(tolerance, 1e-6), x_to
|
||||
x_min, x_max, isave, dsave)
|
||||
for i in range(int(1e6)):
|
||||
if task != 'F':
|
||||
logging.info('search converged in {} iterations'.format(i))
|
||||
logging.info(f'search converged in {i} iterations')
|
||||
break
|
||||
fx = f(x, dfx)
|
||||
x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
|
||||
@ -799,3 +799,52 @@ def _rtrace_AtB(
|
||||
def _symmetrize(A: NDArray[numpy.complex128]) -> NDArray[numpy.complex128]:
|
||||
return (A + A.conj().T) * 0.5
|
||||
|
||||
|
||||
|
||||
def inner_product(eL, hL, eR, hR) -> complex:
|
||||
# assumes x-axis propagation
|
||||
|
||||
assert numpy.array_equal(eR.shape, hR.shape)
|
||||
assert numpy.array_equal(eL.shape, hL.shape)
|
||||
assert numpy.array_equal(eR.shape, eL.shape)
|
||||
|
||||
# Cross product, times 2 since it's <p | n>, then divide by 4. # TODO might want to abs() this?
|
||||
norm2R = (eR[1] * hR[2] - eR[2] * hR[1]).sum() / 2
|
||||
norm2L = (eL[1] * hL[2] - eL[2] * hL[1]).sum() / 2
|
||||
|
||||
# eRxhR_x = numpy.cross(eR.reshape(3, -1), hR.reshape(3, -1), axis=0).reshape(eR.shape)[0] / normR
|
||||
# logger.info(f'power {eRxhR_x.sum() / 2})
|
||||
|
||||
eR /= numpy.sqrt(norm2R)
|
||||
hR /= numpy.sqrt(norm2R)
|
||||
eL /= numpy.sqrt(norm2L)
|
||||
hL /= numpy.sqrt(norm2L)
|
||||
|
||||
# (eR x hL)[0] and (eL x hR)[0]
|
||||
eRxhL_x = eR[1] * hL[2] - eR[2] - hL[1]
|
||||
eLxhR_x = eL[1] * hR[2] - eL[2] - hR[1]
|
||||
|
||||
#return 1j * (eRxhL_x - eLxhR_x).sum() / numpy.sqrt(norm2R * norm2L)
|
||||
#return (eRxhL_x.sum() - eLxhR_x.sum()) / numpy.sqrt(norm2R * norm2L)
|
||||
return eRxhL_x.sum() - eLxhR_x.sum()
|
||||
|
||||
|
||||
def trq(eI, hI, eO, hO) -> tuple[complex, complex]:
|
||||
pp = inner_product(eO, hO, eI, hI)
|
||||
pn = inner_product(eO, hO, eI, -hI)
|
||||
np = inner_product(eO, -hO, eI, hI)
|
||||
nn = inner_product(eO, -hO, eI, -hI)
|
||||
|
||||
assert pp == -nn
|
||||
assert pn == -np
|
||||
|
||||
logger.info(f'''
|
||||
{pp=:4g} {pn=:4g}
|
||||
{nn=:4g} {np=:4g}
|
||||
{nn * pp / pn=:4g} {-np=:4g}
|
||||
''')
|
||||
|
||||
r = -pp / pn # -<Pp|Bp>/<Pn/Bp> = -(-pp) / (-pn)
|
||||
t = (np - nn * pp / pn) / 4
|
||||
|
||||
return t, r
|
||||
|
68
meanas/fdfd/eme.py
Normal file
68
meanas/fdfd/eme.py
Normal file
@ -0,0 +1,68 @@
|
||||
import numpy
|
||||
|
||||
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
|
||||
from .waveguide_2d import inner_product
|
||||
|
||||
|
||||
def get_tr(ehL, wavenumbers_L, ehR, wavenumbers_R, dxes: dx_lists_t):
|
||||
nL = len(wavenumbers_L)
|
||||
nR = len(wavenumbers_R)
|
||||
A12 = numpy.zeros((nL, nR), dtype=complex)
|
||||
A21 = numpy.zeros((nL, nR), dtype=complex)
|
||||
B11 = numpy.zeros((nL,), dtype=complex)
|
||||
for ll in range(nL):
|
||||
eL, hL = ehL[ll]
|
||||
B11[ll] = inner_product(eL, hL, dxes=dxes, conj_h=False)
|
||||
for rr in range(nR):
|
||||
eR, hR = ehR[rr]
|
||||
A12[ll, rr] = inner_product(eL, hR, dxes=dxes, conj_h=False) # TODO optimize loop?
|
||||
A21[ll, rr] = inner_product(eR, hL, dxes=dxes, conj_h=False)
|
||||
|
||||
# tt0 = 2 * numpy.linalg.pinv(A21 + numpy.conj(A12))
|
||||
tt0, _resid, _rank, _sing = numpy.linalg.lstsq(A21 + A12, numpy.diag(2 * B11), rcond=None)
|
||||
|
||||
U, st, V = numpy.linalg.svd(tt0)
|
||||
gain = st > 1
|
||||
st[gain] = 1 / st[gain]
|
||||
tt = U @ numpy.diag(st) @ V
|
||||
|
||||
# rr = 0.5 * (A21 - numpy.conj(A12)) @ tt
|
||||
rr = numpy.diag(0.5 / B11) @ (A21 - A12) @ tt
|
||||
|
||||
return tt, rr
|
||||
|
||||
|
||||
def get_abcd(eL_xys, wavenumbers_L, eR_xys, wavenumbers_R, **kwargs):
|
||||
t12, r12 = get_tr(eL_xys, wavenumbers_L, eR_xys, wavenumbers_R, **kwargs)
|
||||
t21, r21 = get_tr(eR_xys, wavenumbers_R, eL_xys, wavenumbers_L, **kwargs)
|
||||
t21i = numpy.linalg.pinv(t21)
|
||||
A = t12 - r21 @ t21i @ r12
|
||||
B = r21 @ t21i
|
||||
C = -t21i @ r12
|
||||
D = t21i
|
||||
return sparse.block_array(((A, B), (C, D)))
|
||||
|
||||
|
||||
def get_s(
|
||||
eL_xys,
|
||||
wavenumbers_L,
|
||||
eR_xys,
|
||||
wavenumbers_R,
|
||||
force_nogain: bool = False,
|
||||
force_reciprocal: bool = False,
|
||||
**kwargs):
|
||||
t12, r12 = get_tr(eL_xys, wavenumbers_L, eR_xys, wavenumbers_R, **kwargs)
|
||||
t21, r21 = get_tr(eR_xys, wavenumbers_R, eL_xys, wavenumbers_L, **kwargs)
|
||||
|
||||
ss = numpy.block([[r12, t12],
|
||||
[t21, r21]])
|
||||
|
||||
if force_nogain:
|
||||
# force S @ S.H diagonal
|
||||
U, sing, V = numpy.linalg.svd(ss)
|
||||
ss = numpy.diag(sing) @ U @ V
|
||||
|
||||
if force_reciprocal:
|
||||
ss = 0.5 * (ss + ss.T)
|
||||
|
||||
return ss
|
@ -1,7 +1,8 @@
|
||||
"""
|
||||
Functions for performing near-to-farfield transformation (and the reverse).
|
||||
"""
|
||||
from typing import Any, Sequence, cast
|
||||
from typing import Any, cast
|
||||
from collections.abc import Sequence
|
||||
import numpy
|
||||
from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift
|
||||
from numpy import pi
|
||||
|
@ -5,7 +5,7 @@ Functional versions of many FDFD operators. These can be useful for performing
|
||||
The functions generated here expect `cfdfield_t` inputs with shape (3, X, Y, Z),
|
||||
e.g. E = [E_x, E_y, E_z] where each (complex) component has shape (X, Y, Z)
|
||||
"""
|
||||
from typing import Callable
|
||||
from collections.abc import Callable
|
||||
import numpy
|
||||
|
||||
from ..fdmath import dx_lists_t, fdfield_t, cfdfield_t, cfdfield_updater_t
|
||||
@ -47,7 +47,6 @@ def e_full(
|
||||
|
||||
if mu is None:
|
||||
return op_1
|
||||
else:
|
||||
return op_mu
|
||||
|
||||
|
||||
@ -84,7 +83,6 @@ def eh_full(
|
||||
|
||||
if mu is None:
|
||||
return op_1
|
||||
else:
|
||||
return op_mu
|
||||
|
||||
|
||||
@ -116,7 +114,6 @@ def e2h(
|
||||
|
||||
if mu is None:
|
||||
return e2h_1_1
|
||||
else:
|
||||
return e2h_mu
|
||||
|
||||
|
||||
@ -151,7 +148,6 @@ def m2j(
|
||||
|
||||
if mu is None:
|
||||
return m2j_1
|
||||
else:
|
||||
return m2j_mu
|
||||
|
||||
|
||||
|
@ -28,7 +28,7 @@ The following operators are included:
|
||||
"""
|
||||
|
||||
import numpy
|
||||
import scipy.sparse as sparse # type: ignore
|
||||
from scipy import sparse
|
||||
|
||||
from ..fdmath import vec, dx_lists_t, vfdfield_t, vcfdfield_t
|
||||
from ..fdmath.operators import shift_with_mirror, shift_circ, curl_forward, curl_back
|
||||
@ -40,7 +40,7 @@ __author__ = 'Jan Petykiewicz'
|
||||
def e_full(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
epsilon: vfdfield_t | vcfdfield_t,
|
||||
mu: vfdfield_t | None = None,
|
||||
pec: vfdfield_t | None = None,
|
||||
pmc: vfdfield_t | None = None,
|
||||
@ -321,11 +321,11 @@ def poynting_e_cross(e: vcfdfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
shape = [len(dx) for dx in dxes[0]]
|
||||
|
||||
fx, fy, fz = [shift_circ(i, shape, 1) for i in range(3)]
|
||||
fx, fy, fz = (shift_circ(i, shape, 1) for i in range(3))
|
||||
|
||||
dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')]
|
||||
dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')]
|
||||
Ex, Ey, Ez = [ei * da for ei, da in zip(numpy.split(e, 3), dxag)]
|
||||
Ex, Ey, Ez = (ei * da for ei, da in zip(numpy.split(e, 3), dxag, strict=True))
|
||||
|
||||
block_diags = [[ None, fx @ -Ez, fx @ Ey],
|
||||
[ fy @ Ez, None, fy @ -Ex],
|
||||
@ -349,11 +349,11 @@ def poynting_h_cross(h: vcfdfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
shape = [len(dx) for dx in dxes[0]]
|
||||
|
||||
fx, fy, fz = [shift_circ(i, shape, 1) for i in range(3)]
|
||||
fx, fy, fz = (shift_circ(i, shape, 1) for i in range(3))
|
||||
|
||||
dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')]
|
||||
dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')]
|
||||
Hx, Hy, Hz = [sparse.diags(hi * db) for hi, db in zip(numpy.split(h, 3), dxbg)]
|
||||
Hx, Hy, Hz = (sparse.diags(hi * db) for hi, db in zip(numpy.split(h, 3), dxbg, strict=True))
|
||||
|
||||
P = (sparse.bmat(
|
||||
[[ None, -Hz @ fx, Hy @ fx],
|
||||
|
@ -2,7 +2,7 @@
|
||||
Functions for creating stretched coordinate perfectly matched layer (PML) absorbers.
|
||||
"""
|
||||
|
||||
from typing import Sequence, Callable
|
||||
from collections.abc import Sequence, Callable
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
|
@ -2,13 +2,14 @@
|
||||
Solvers and solver interface for FDFD problems.
|
||||
"""
|
||||
|
||||
from typing import Callable, Dict, Any, Optional
|
||||
from typing import Any
|
||||
from collections.abc import Callable
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.linalg import norm
|
||||
import scipy.sparse.linalg # type: ignore
|
||||
import scipy.sparse.linalg
|
||||
|
||||
from ..fdmath import dx_lists_t, vfdfield_t, vcfdfield_t
|
||||
from . import operators
|
||||
@ -34,16 +35,17 @@ def _scipy_qmr(
|
||||
Guess for solution (returned even if didn't converge)
|
||||
"""
|
||||
|
||||
'''
|
||||
Report on our progress
|
||||
'''
|
||||
#
|
||||
#Report on our progress
|
||||
#
|
||||
ii = 0
|
||||
|
||||
def log_residual(xk: ArrayLike) -> None:
|
||||
nonlocal ii
|
||||
ii += 1
|
||||
if ii % 100 == 0:
|
||||
logger.info('Solver residual at iteration {} : {}'.format(ii, norm(A @ xk - b)))
|
||||
cur_norm = norm(A @ xk - b) / norm(b)
|
||||
logger.info(f'Solver residual at iteration {ii} : {cur_norm}')
|
||||
|
||||
if 'callback' in kwargs:
|
||||
def augmented_callback(xk: ArrayLike) -> None:
|
||||
@ -54,10 +56,9 @@ def _scipy_qmr(
|
||||
else:
|
||||
kwargs['callback'] = log_residual
|
||||
|
||||
'''
|
||||
Run the actual solve
|
||||
'''
|
||||
|
||||
#
|
||||
# Run the actual solve
|
||||
#
|
||||
x, _ = scipy.sparse.linalg.qmr(A, b, **kwargs)
|
||||
return x
|
||||
|
||||
@ -67,12 +68,14 @@ def generic(
|
||||
dxes: dx_lists_t,
|
||||
J: vcfdfield_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
pec: Optional[vfdfield_t] = None,
|
||||
pmc: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
*,
|
||||
pec: vfdfield_t | None = None,
|
||||
pmc: vfdfield_t | None = None,
|
||||
adjoint: bool = False,
|
||||
matrix_solver: Callable[..., ArrayLike] = _scipy_qmr,
|
||||
matrix_solver_opts: Optional[Dict[str, Any]] = None,
|
||||
matrix_solver_opts: dict[str, Any] | None = None,
|
||||
E_guess: vcfdfield_t | None = None,
|
||||
) -> vcfdfield_t:
|
||||
"""
|
||||
Conjugate gradient FDFD solver using CSR sparse matrices.
|
||||
@ -99,6 +102,8 @@ def generic(
|
||||
which doesn't return convergence info and logs the residual
|
||||
every 100 iterations.
|
||||
matrix_solver_opts: Passed as kwargs to `matrix_solver(...)`
|
||||
E_guess: Guess at the solution E-field. `matrix_solver` must accept an
|
||||
`x0` argument with the same purpose.
|
||||
|
||||
Returns:
|
||||
E-field which solves the system.
|
||||
@ -119,6 +124,13 @@ def generic(
|
||||
A = Pl @ A0 @ Pr
|
||||
b = Pl @ b0
|
||||
|
||||
if E_guess is not None:
|
||||
if adjoint:
|
||||
x0 = Pr.H @ E_guess
|
||||
else:
|
||||
x0 = Pl @ E_guess
|
||||
matrix_solver_opts['x0'] = x0
|
||||
|
||||
x = matrix_solver(A.tocsr(), b, **matrix_solver_opts)
|
||||
|
||||
if adjoint:
|
||||
|
@ -18,8 +18,8 @@ $$
|
||||
\begin{aligned}
|
||||
\nabla \times \vec{E}(x, y, z) &= -\imath \omega \mu \vec{H} \\
|
||||
\nabla \times \vec{H}(x, y, z) &= \imath \omega \epsilon \vec{E} \\
|
||||
\vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\gamma z} \\
|
||||
\vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\gamma z} \\
|
||||
\vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\imath \beta z} \\
|
||||
\vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\imath \beta z} \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
@ -40,56 +40,57 @@ Substituting in our expressions for $\vec{E}$, $\vec{H}$ and discretizing:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \gamma E_y \\
|
||||
-\imath \omega \mu_{yy} H_y &= -\gamma E_x - \tilde{\partial}_x E_z \\
|
||||
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta E_y \\
|
||||
-\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \tilde{\partial}_x E_z \\
|
||||
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
|
||||
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \gamma H_y \\
|
||||
\imath \omega \epsilon_{yy} E_y &= -\gamma H_x - \hat{\partial}_x H_z \\
|
||||
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta H_y \\
|
||||
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \hat{\partial}_x H_z \\
|
||||
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Rewrite the last three equations as
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\gamma H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
|
||||
\gamma H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
|
||||
\imath \beta H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
|
||||
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
|
||||
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Now apply $\gamma \tilde{\partial}_x$ to the last equation,
|
||||
then substitute in for $\gamma H_x$ and $\gamma H_y$:
|
||||
Now apply $\imath \beta \tilde{\partial}_x$ to the last equation,
|
||||
then substitute in for $\imath \beta H_x$ and $\imath \beta H_y$:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\gamma \tilde{\partial}_x \imath \omega E_z &= \gamma \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
|
||||
- \gamma \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||
\imath \beta \tilde{\partial}_x \imath \omega E_z &= \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
|
||||
- \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z)
|
||||
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
|
||||
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x)
|
||||
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y) \\
|
||||
\gamma \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
\imath \beta \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
With a similar approach (but using $\gamma \tilde{\partial}_y$ instead), we can get
|
||||
With a similar approach (but using $\imath \beta \tilde{\partial}_y$ instead), we can get
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\gamma \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
\imath \beta \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
We can combine this equation for $\gamma \tilde{\partial}_y E_z$ with
|
||||
We can combine this equation for $\imath \beta \tilde{\partial}_y E_z$ with
|
||||
the unused $\imath \omega \mu_{xx} H_x$ and $\imath \omega \mu_{yy} H_y$ equations to get
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{xx} \gamma H_x &= \gamma^2 E_y + \gamma \tilde{\partial}_y E_z \\
|
||||
-\imath \omega \mu_{xx} \gamma H_x &= \gamma^2 E_y + \tilde{\partial}_y (
|
||||
-\imath \omega \mu_{xx} \imath \beta H_x &= -\beta^2 E_y + \imath \beta \tilde{\partial}_y E_z \\
|
||||
-\imath \omega \mu_{xx} \imath \beta H_x &= -\beta^2 E_y + \tilde{\partial}_y (
|
||||
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||
)\\
|
||||
@ -100,22 +101,21 @@ and
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{yy} \gamma H_y &= -\gamma^2 E_x - \gamma \tilde{\partial}_x E_z \\
|
||||
-\imath \omega \mu_{yy} \gamma H_y &= -\gamma^2 E_x - \tilde{\partial}_x (
|
||||
-\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \imath \beta \tilde{\partial}_x E_z \\
|
||||
-\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \tilde{\partial}_x (
|
||||
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||
)\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
However, based on our rewritten equation for $\gamma H_x$ and the so-far unused
|
||||
However, based on our rewritten equation for $\imath \beta H_x$ and the so-far unused
|
||||
equation for $\imath \omega \mu_{zz} H_z$ we can also write
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{xx} (\gamma H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
|
||||
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||
+\imath \omega \mu_{xx} \hat{\partial}_x (
|
||||
-\imath \omega \mu_{xx} (\imath \beta H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
|
||||
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y + \imath \omega \mu_{xx} \hat{\partial}_x (
|
||||
\frac{1}{-\imath \omega \mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x)) \\
|
||||
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||
-\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||
@ -126,7 +126,7 @@ and, similarly,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{yy} (\gamma H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
|
||||
-\imath \omega \mu_{yy} (\imath \beta H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
|
||||
+\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||
\end{aligned}
|
||||
$$
|
||||
@ -135,12 +135,12 @@ By combining both pairs of expressions, we get
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\gamma^2 E_x - \tilde{\partial}_x (
|
||||
\beta^2 E_x - \tilde{\partial}_x (
|
||||
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||
) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
|
||||
+\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||
\gamma^2 E_y + \tilde{\partial}_y (
|
||||
-\beta^2 E_y + \tilde{\partial}_y (
|
||||
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||
) &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||
@ -165,27 +165,27 @@ $$
|
||||
E_y \end{bmatrix}
|
||||
$$
|
||||
|
||||
where $\gamma = \imath\beta$. In the literature, $\beta$ is usually used to denote
|
||||
the lossless/real part of the propagation constant, but in `meanas` it is allowed to
|
||||
be complex.
|
||||
In the literature, $\beta$ is usually used to denote the lossless/real part of the propagation constant,
|
||||
but in `meanas` it is allowed to be complex.
|
||||
|
||||
An equivalent eigenvalue problem can be formed using the $H_x$ and $H_y$ fields, if those are more convenient.
|
||||
|
||||
Note that $E_z$ was never discretized, so $\gamma$ and $\beta$ will need adjustment
|
||||
to account for numerical dispersion if the result is introduced into a space with a discretized z-axis.
|
||||
Note that $E_z$ was never discretized, so $\beta$ will need adjustment to account for numerical dispersion
|
||||
if the result is introduced into a space with a discretized z-axis.
|
||||
|
||||
|
||||
"""
|
||||
# TODO update module docs
|
||||
|
||||
from typing import Any
|
||||
from collections.abc import Sequence
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.linalg import norm
|
||||
import scipy.sparse as sparse # type: ignore
|
||||
from scipy import sparse
|
||||
|
||||
from ..fdmath.operators import deriv_forward, deriv_back, cross
|
||||
from ..fdmath import unvec, dx_lists_t, vfdfield_t, vcfdfield_t
|
||||
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
|
||||
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
||||
|
||||
|
||||
@ -253,7 +253,8 @@ def operator_e(
|
||||
mu_yx = sparse.diags(numpy.hstack((mu_parts[1], mu_parts[0])))
|
||||
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
||||
|
||||
op = (omega * omega * mu_yx @ eps_xy
|
||||
op = (
|
||||
omega * omega * mu_yx @ eps_xy
|
||||
+ mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx))
|
||||
+ sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
|
||||
)
|
||||
@ -321,7 +322,8 @@ def operator_h(
|
||||
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
|
||||
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
||||
|
||||
op = (omega * omega * eps_yx @ mu_xy
|
||||
op = (
|
||||
omega * omega * eps_yx @ mu_xy
|
||||
+ eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx))
|
||||
+ sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
|
||||
)
|
||||
@ -411,18 +413,13 @@ def _normalized_fields(
|
||||
shape = [s.size for s in dxes[0]]
|
||||
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
|
||||
|
||||
E = unvec(e, shape)
|
||||
H = unvec(h, shape)
|
||||
|
||||
# Find time-averaged Sz and normalize to it
|
||||
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
|
||||
phase = numpy.exp(-1j * -prop_phase / 2)
|
||||
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0]
|
||||
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
|
||||
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
|
||||
assert Sz_tavg > 0, 'Found a mode propagating in the wrong direction! Sz_tavg={}'.format(Sz_tavg)
|
||||
Sz_tavg = inner_product(e, h, dxes=dxes, prop_phase=prop_phase, conj_h=True).real
|
||||
assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}'
|
||||
|
||||
energy = epsilon * e.conj() * e
|
||||
energy = numpy.real(epsilon * e.conj() * e)
|
||||
|
||||
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
|
||||
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
|
||||
@ -432,6 +429,7 @@ def _normalized_fields(
|
||||
sign = numpy.sign(E_weighted[:,
|
||||
:max(shape[0] // 2, 1),
|
||||
:max(shape[1] // 2, 1)].real.sum())
|
||||
assert sign != 0
|
||||
|
||||
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
|
||||
|
||||
@ -532,10 +530,37 @@ def exy2e(
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
r"""
|
||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
into a vectorized E containing all three E components
|
||||
|
||||
From the operator derivation (see module docs), we have
|
||||
|
||||
$$
|
||||
\imath \omega \epsilon_{zz} E_z = \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||
$$
|
||||
|
||||
as well as the intermediate equations
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\imath \beta H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
|
||||
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Combining these, we get
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
E_z &= \frac{1}{- \omega \beta \epsilon_{zz}} ((
|
||||
\hat{\partial}_y \hat{\partial}_x H_z
|
||||
-\hat{\partial}_x \hat{\partial}_y H_z)
|
||||
+ \imath \omega (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y))
|
||||
&= \frac{1}{\imath \beta \epsilon_{zz}} (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
|
||||
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
|
||||
@ -718,8 +743,111 @@ def e_err(
|
||||
return float(norm(op) / norm(e))
|
||||
|
||||
|
||||
def sensitivity(
|
||||
e_norm: vcfdfield_t,
|
||||
h_norm: vcfdfield_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: vfdfield_t | None = None,
|
||||
) -> vcfdfield_t:
|
||||
r"""
|
||||
Given a waveguide structure (`dxes`, `epsilon`, `mu`) and mode fields
|
||||
(`e_norm`, `h_norm`, `wavenumber`, `omega`), calculates the sensitivity of the wavenumber
|
||||
$\beta$ to changes in the dielectric structure $\epsilon$.
|
||||
|
||||
The output is a vector of the same size as `vec(epsilon)`, with each element specifying the
|
||||
sensitivity of `wavenumber` to changes in the corresponding element in `vec(epsilon)`, i.e.
|
||||
|
||||
$$sens_{i} = \frac{\partial\beta}{\partial\epsilon_i}$$
|
||||
|
||||
An adjoint approach is used to calculate the sensitivity; the derivation is provided here:
|
||||
|
||||
Starting with the eigenvalue equation
|
||||
|
||||
$$\beta^2 E_{xy} = A_E E_{xy}$$
|
||||
|
||||
where $A_E$ is the waveguide operator from `operator_e()`, and $E_{xy} = \begin{bmatrix} E_x \\
|
||||
E_y \end{bmatrix}$,
|
||||
we can differentiate with respect to one of the $\epsilon$ elements (i.e. at one Yee grid point), $\epsilon_i$:
|
||||
|
||||
$$
|
||||
(2 \beta) \partial_{\epsilon_i}(\beta) E_{xy} + \beta^2 \partial_{\epsilon_i} E_{xy}
|
||||
= \partial_{\epsilon_i}(A_E) E_{xy} + A_E \partial_{\epsilon_i} E_{xy}
|
||||
$$
|
||||
|
||||
We then multiply by $H_{yx}^\star = \begin{bmatrix}H_y^\star \\ -H_x^\star \end{bmatrix}$ from the left:
|
||||
|
||||
$$
|
||||
(2 \beta) \partial_{\epsilon_i}(\beta) H_{yx}^\star E_{xy} + \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy}
|
||||
= H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} + H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy}
|
||||
$$
|
||||
|
||||
However, $H_{yx}^\star$ is actually a left-eigenvector of $A_E$. This can be verified by inspecting
|
||||
the form of `operator_h` ($A_H$) and comparing its conjugate transpose to `operator_e` ($A_E$). Also, note
|
||||
$H_{yx}^\star \cdot E_{xy} = H^\star \times E$ recalls the mode orthogonality relation. See doi:10.5194/ars-9-85-201
|
||||
for a similar approach. Therefore,
|
||||
|
||||
$$
|
||||
H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy} = \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy}
|
||||
$$
|
||||
|
||||
and we can simplify to
|
||||
|
||||
$$
|
||||
\partial_{\epsilon_i}(\beta)
|
||||
= \frac{1}{2 \beta} \frac{H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} }{H_{yx}^\star E_{xy}}
|
||||
$$
|
||||
|
||||
This expression can be quickly calculated for all $i$ by writing out the various terms of
|
||||
$\partial_{\epsilon_i} A_E$ and recognizing that the vector-matrix-vector products (i.e. scalars)
|
||||
$sens_i = \vec{v}_{left} \partial_{\epsilon_i} (\epsilon_{xyz}) \vec{v}_{right}$, indexed by $i$, can be expressed as
|
||||
elementwise multiplications $\vec{sens} = \vec{v}_{left} \star \vec{v}_{right}$
|
||||
|
||||
|
||||
Args:
|
||||
e_norm: Normalized, vectorized E_xyz field for the mode. E.g. as returned by `normalized_fields_e`.
|
||||
h_norm: Normalized, vectorized H_xyz field for the mode. E.g. as returned by `normalized_fields_e`.
|
||||
wavenumber: Propagation constant for the mode. The z-axis is assumed to be continuous (i.e. without numerical dispersion).
|
||||
omega: The angular frequency of the system.
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
if mu is None:
|
||||
mu = numpy.ones_like(epsilon)
|
||||
|
||||
Dfx, Dfy = deriv_forward(dxes[0])
|
||||
Dbx, Dby = deriv_back(dxes[1])
|
||||
|
||||
eps_x, eps_y, eps_z = numpy.split(epsilon, 3)
|
||||
eps_xy = sparse.diags(numpy.hstack((eps_x, eps_y)))
|
||||
eps_z_inv = sparse.diags(1 / eps_z)
|
||||
|
||||
mu_x, mu_y, _mu_z = numpy.split(mu, 3)
|
||||
mu_yx = sparse.diags(numpy.hstack((mu_y, mu_x)))
|
||||
|
||||
da_exxhyy = vec(dxes[1][0][:, None] * dxes[0][1][None, :])
|
||||
da_eyyhxx = vec(dxes[1][1][None, :] * dxes[0][0][:, None])
|
||||
ev_xy = numpy.concatenate(numpy.split(e_norm, 3)[:2]) * numpy.concatenate([da_exxhyy, da_eyyhxx])
|
||||
hx, hy, hz = numpy.split(h_norm, 3)
|
||||
hv_yx_conj = numpy.conj(numpy.concatenate([hy, -hx]))
|
||||
|
||||
sens_xy1 = (hv_yx_conj @ (omega * omega * mu_yx)) * ev_xy
|
||||
sens_xy2 = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby))) * ev_xy
|
||||
sens_z = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ (-eps_z_inv * eps_z_inv)) * (sparse.hstack((Dbx, Dby)) @ eps_xy @ ev_xy)
|
||||
norm = hv_yx_conj @ ev_xy
|
||||
|
||||
sens_tot = numpy.concatenate([sens_xy1 + sens_xy2, sens_z]) / (2 * wavenumber * norm)
|
||||
return sens_tot
|
||||
|
||||
|
||||
def solve_modes(
|
||||
mode_numbers: list[int],
|
||||
mode_numbers: Sequence[int],
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
@ -740,32 +868,38 @@ def solve_modes(
|
||||
ability to find the correct mode. Default 2.
|
||||
|
||||
Returns:
|
||||
e_xys: list of vfdfield_t specifying fields
|
||||
e_xys: NDArray of vfdfield_t specifying fields. First dimension is mode number.
|
||||
wavenumbers: list of wavenumbers
|
||||
"""
|
||||
|
||||
'''
|
||||
Solve for the largest-magnitude eigenvalue of the real operator
|
||||
'''
|
||||
#
|
||||
# Solve for the largest-magnitude eigenvalue of the real operator
|
||||
#
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
mu_real = None if mu is None else numpy.real(mu)
|
||||
A_r = operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), mu_real)
|
||||
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
|
||||
e_xys = eigvecs[:, -(numpy.array(mode_numbers) + 1)]
|
||||
keep_inds = -(numpy.array(mode_numbers) + 1)
|
||||
e_xys = eigvecs[:, keep_inds].T
|
||||
eigvals = eigvals[keep_inds]
|
||||
|
||||
'''
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
#
|
||||
# Now solve for the eigenvector of the full operator, using the real operator's
|
||||
# eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
#
|
||||
A = operator_e(omega, dxes, epsilon, mu)
|
||||
for nn in range(len(mode_numbers)):
|
||||
eigvals[nn], e_xys[:, nn] = rayleigh_quotient_iteration(A, e_xys[:, nn])
|
||||
eigvals[nn], e_xys[nn, :] = rayleigh_quotient_iteration(A, e_xys[nn, :])
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumbers = numpy.sqrt(eigvals)
|
||||
wavenumbers *= numpy.sign(numpy.real(wavenumbers))
|
||||
|
||||
order = wavenumbers.argsort()[::-1]
|
||||
e_xys = e_xys[order]
|
||||
wavenumbers = wavenumbers[order]
|
||||
|
||||
return e_xys, wavenumbers
|
||||
|
||||
|
||||
@ -787,4 +921,38 @@ def solve_mode(
|
||||
"""
|
||||
kwargs['mode_numbers'] = [mode_number]
|
||||
e_xys, wavenumbers = solve_modes(*args, **kwargs)
|
||||
return e_xys[:, 0], wavenumbers[0]
|
||||
return e_xys[0], wavenumbers[0]
|
||||
|
||||
|
||||
def inner_product( # TODO documentation
|
||||
e1: vcfdfield_t,
|
||||
h2: vcfdfield_t,
|
||||
dxes: dx_lists_t,
|
||||
prop_phase: float = 0,
|
||||
conj_h: bool = False,
|
||||
trapezoid: bool = False,
|
||||
) -> complex:
|
||||
|
||||
shape = [s.size for s in dxes[0]]
|
||||
|
||||
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
|
||||
phase = numpy.exp(-1j * -prop_phase / 2)
|
||||
|
||||
E1 = unvec(e1, shape)
|
||||
H2 = unvec(h2, shape) * phase
|
||||
|
||||
if conj_h:
|
||||
H2 = numpy.conj(H2)
|
||||
|
||||
# Find time-averaged Sz and normalize to it
|
||||
dxes_real = [[numpy.real(dxyz) for dxyz in dxeh] for dxeh in dxes]
|
||||
if trapezoid:
|
||||
Sz_a = numpy.trapezoid(numpy.trapezoid(E1[0] * H2[1], numpy.cumsum(dxes_real[0][1])), numpy.cumsum(dxes_real[1][0]))
|
||||
Sz_b = numpy.trapezoid(numpy.trapezoid(E1[1] * H2[0], numpy.cumsum(dxes_real[0][0])), numpy.cumsum(dxes_real[1][1]))
|
||||
else:
|
||||
Sz_a = E1[0] * H2[1] * dxes_real[1][0][:, None] * dxes_real[0][1][None, :]
|
||||
Sz_b = E1[1] * H2[0] * dxes_real[0][0][:, None] * dxes_real[1][1][None, :]
|
||||
Sz = 0.5 * (Sz_a.sum() - Sz_b.sum())
|
||||
return Sz
|
||||
|
||||
|
||||
|
@ -4,9 +4,11 @@ Tools for working with waveguide modes in 3D domains.
|
||||
This module relies heavily on `waveguide_2d` and mostly just transforms
|
||||
its parameters into 2D equivalents and expands the results back into 3D.
|
||||
"""
|
||||
from typing import Sequence, Any
|
||||
from typing import Any
|
||||
from collections.abc import Sequence
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
from numpy import complexfloating
|
||||
|
||||
from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, cfdfield_t
|
||||
from . import operators, waveguide_2d
|
||||
@ -21,7 +23,7 @@ def solve_mode(
|
||||
slices: Sequence[slice],
|
||||
epsilon: fdfield_t,
|
||||
mu: fdfield_t | None = None,
|
||||
) -> dict[str, complex | NDArray[numpy.float_]]:
|
||||
) -> dict[str, complex | NDArray[complexfloating]]:
|
||||
"""
|
||||
Given a 3D grid, selects a slice from the grid and attempts to
|
||||
solve for an eigenmode propagating through that slice.
|
||||
@ -40,8 +42,8 @@ def solve_mode(
|
||||
Returns:
|
||||
```
|
||||
{
|
||||
'E': list[NDArray[numpy.float_]],
|
||||
'H': list[NDArray[numpy.float_]],
|
||||
'E': NDArray[complexfloating],
|
||||
'H': NDArray[complexfloating],
|
||||
'wavenumber': complex,
|
||||
}
|
||||
```
|
||||
@ -51,9 +53,9 @@ def solve_mode(
|
||||
|
||||
slices = tuple(slices)
|
||||
|
||||
'''
|
||||
Solve the 2D problem in the specified plane
|
||||
'''
|
||||
#
|
||||
# Solve the 2D problem in the specified plane
|
||||
#
|
||||
# Define rotation to set z as propagation direction
|
||||
order = numpy.roll(range(3), 2 - axis)
|
||||
reverse_order = numpy.roll(range(3), axis - 2)
|
||||
@ -71,9 +73,10 @@ def solve_mode(
|
||||
}
|
||||
e_xy, wavenumber_2d = waveguide_2d.solve_mode(mode_number, **args_2d)
|
||||
|
||||
'''
|
||||
Apply corrections and expand to 3D
|
||||
'''
|
||||
#
|
||||
# Apply corrections and expand to 3D
|
||||
#
|
||||
|
||||
# Correct wavenumber to account for numerical dispersion.
|
||||
wavenumber = 2 / dx_prop * numpy.arcsin(wavenumber_2d * dx_prop / 2)
|
||||
|
||||
|
@ -1,31 +1,102 @@
|
||||
"""
|
||||
r"""
|
||||
Operators and helper functions for cylindrical waveguides with unchanging cross-section.
|
||||
|
||||
WORK IN PROGRESS, CURRENTLY BROKEN
|
||||
Waveguide operator is derived according to 10.1364/OL.33.001848.
|
||||
The curl equations in the complex coordinate system become
|
||||
|
||||
As the z-dependence is known, all the functions in this file assume a 2D grid
|
||||
$$
|
||||
\begin{aligned}
|
||||
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta frac{E_y}{\tilde{t}_x} \\
|
||||
-\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \frac{1}{\hat{t}_x} \tilde{\partial}_x \tilde{t}_x E_z \\
|
||||
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
|
||||
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta \frac{H_y}{\hat{T}} \\
|
||||
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \{1}{\tilde{t}_x} \hat{\partial}_x \hat{t}_x} H_z \\
|
||||
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
where $t_x = 1 + \frac{\Delta_{x, m}}{R_0}$ is the grid spacing adjusted by the nominal radius $R0$.
|
||||
|
||||
Rewrite the last three equations as
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\imath \beta H_y &= \imath \omega \hat{t}_x \epsilon_{xx} E_x - \hat{t}_x \hat{\partial}_y H_z \\
|
||||
\imath \beta H_x &= -\imath \omega \hat{t}_x \epsilon_{yy} E_y - \hat{t}_x \hat{\partial}_x H_z \\
|
||||
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
The derivation then follows the same steps as the straight waveguide, leading to the eigenvalue problem
|
||||
|
||||
$$
|
||||
\beta^2 \begin{bmatrix} E_x \\
|
||||
E_y \end{bmatrix} =
|
||||
(\omega^2 \begin{bmatrix} T_b T_b \mu_{yy} \epsilon_{xx} & 0 \\
|
||||
0 & T_a T_a \mu_{xx} \epsilon_{yy} \end{bmatrix} +
|
||||
\begin{bmatrix} -T_b \mu_{yy} \hat{\partial}_y \\
|
||||
T_a \mu_{xx} \hat{\partial}_x \end{bmatrix} T_b \mu_{zz}^{-1}
|
||||
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
|
||||
\begin{bmatrix} \tilde{\partial}_x \\
|
||||
\tilde{\partial}_y \end{bmatrix} T_a \epsilon_{zz}^{-1}
|
||||
\begin{bmatrix} \hat{\partial}_x T_b \epsilon_{xx} & \hat{\partial}_y T_a \epsilon_{yy} \end{bmatrix})
|
||||
\begin{bmatrix} E_x \\
|
||||
E_y \end{bmatrix}
|
||||
$$
|
||||
|
||||
which resembles the straight waveguide eigenproblem with additonal $T_a$ and $T_b$ terms. These
|
||||
are diagonal matrices containing the $t_x$ values:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
T_a &= 1 + \frac{\Delta_{x, m }}{R_0}
|
||||
T_b &= 1 + \frac{\Delta_{x, m + \frac{1}{2} }}{R_0}
|
||||
\end{aligned}
|
||||
|
||||
|
||||
TODO: consider 10.1364/OE.20.021583 for an alternate approach
|
||||
$$
|
||||
|
||||
As in the straight waveguide case, all the functions in this file assume a 2D grid
|
||||
(i.e. `dxes = [[[dr_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dr_h_0, ...], [dy_h_0, ...]]]`).
|
||||
"""
|
||||
# TODO update module docs
|
||||
from typing import Any, cast
|
||||
from collections.abc import Sequence
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
import scipy.sparse as sparse # type: ignore
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from scipy import sparse
|
||||
|
||||
from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, vfdfield_t, cfdfield_t
|
||||
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
|
||||
from ..fdmath.operators import deriv_forward, deriv_back
|
||||
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
||||
from . import waveguide_2d
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def cylindrical_operator(
|
||||
omega: complex,
|
||||
omega: float,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
r0: float,
|
||||
rmin: float,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
r"""
|
||||
Cylindrical coordinate waveguide operator of the form
|
||||
|
||||
TODO
|
||||
$$
|
||||
(\omega^2 \begin{bmatrix} T_b T_b \mu_{yy} \epsilon_{xx} & 0 \\
|
||||
0 & T_a T_a \mu_{xx} \epsilon_{yy} \end{bmatrix} +
|
||||
\begin{bmatrix} -T_b \mu_{yy} \hat{\partial}_y \\
|
||||
T_a \mu_{xx} \hat{\partial}_x \end{bmatrix} T_b \mu_{zz}^{-1}
|
||||
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
|
||||
\begin{bmatrix} \tilde{\partial}_x \\
|
||||
\tilde{\partial}_y \end{bmatrix} T_a \epsilon_{zz}^{-1}
|
||||
\begin{bmatrix} \hat{\partial}_x T_b \epsilon_{xx} & \hat{\partial}_y T_a \epsilon_{yy} \end{bmatrix})
|
||||
\begin{bmatrix} E_x \\
|
||||
E_y \end{bmatrix}
|
||||
$$
|
||||
|
||||
for use with a field vector of the form `[E_r, E_y]`.
|
||||
|
||||
@ -35,12 +106,13 @@ def cylindrical_operator(
|
||||
which can then be solved for the eigenmodes of the system
|
||||
(an `exp(-i * wavenumber * theta)` theta-dependence is assumed for the fields).
|
||||
|
||||
(NOTE: See module docs and 10.1364/OL.33.001848)
|
||||
|
||||
Args:
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator
|
||||
@ -49,46 +121,34 @@ def cylindrical_operator(
|
||||
Dfx, Dfy = deriv_forward(dxes[0])
|
||||
Dbx, Dby = deriv_back(dxes[1])
|
||||
|
||||
rx = r0 + numpy.cumsum(dxes[0][0])
|
||||
ry = r0 + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0])
|
||||
tx = rx / r0
|
||||
ty = ry / r0
|
||||
|
||||
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
|
||||
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
|
||||
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
|
||||
|
||||
eps_parts = numpy.split(epsilon, 3)
|
||||
eps_x = sparse.diags(eps_parts[0])
|
||||
eps_y = sparse.diags(eps_parts[1])
|
||||
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
||||
|
||||
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
|
||||
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
|
||||
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
|
||||
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
|
||||
b0 = Dbx @ Ty @ Dfy
|
||||
b1 = Dby @ Ty @ Dfx
|
||||
|
||||
diag = sparse.block_diag
|
||||
eps_x = sparse.diags_array(eps_parts[0])
|
||||
eps_y = sparse.diags_array(eps_parts[1])
|
||||
eps_z_inv = sparse.diags_array(1 / eps_parts[2])
|
||||
|
||||
omega2 = omega * omega
|
||||
diag = sparse.block_diag
|
||||
|
||||
op = (
|
||||
(omega2 * diag((Tx, Ty)) + pa) @ diag((a0, a1))
|
||||
- (sparse.bmat(((None, Ty), (Tx, None))) + pb / omega2) @ diag((b0, b1))
|
||||
)
|
||||
sq0 = omega2 * diag((Tb @ Tb @ eps_x,
|
||||
Ta @ Ta @ eps_y))
|
||||
lin0 = sparse.vstack((-Tb @ Dby, Ta @ Dbx)) @ Tb @ sparse.hstack((-Dfy, Dfx))
|
||||
lin1 = sparse.vstack((Dfx, Dfy)) @ Ta @ eps_z_inv @ sparse.hstack((Dbx @ Tb @ eps_x,
|
||||
Dby @ Ta @ eps_y))
|
||||
op = sq0 + lin0 + lin1
|
||||
return op
|
||||
|
||||
|
||||
def solve_mode(
|
||||
mode_number: int,
|
||||
omega: complex,
|
||||
def solve_modes(
|
||||
mode_numbers: Sequence[int],
|
||||
omega: float,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
r0: float,
|
||||
) -> dict[str, complex | cfdfield_t]:
|
||||
rmin: float,
|
||||
mode_margin: int = 2,
|
||||
) -> tuple[vcfdfield_t, NDArray[numpy.complex128]]:
|
||||
"""
|
||||
TODO: fixup
|
||||
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
|
||||
of the bent waveguide with the specified mode number.
|
||||
|
||||
@ -98,48 +158,345 @@ def solve_mode(
|
||||
dxes: Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types.
|
||||
The first coordinate is assumed to be r, the second is y.
|
||||
epsilon: Dielectric constant
|
||||
r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||
rmin: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
||||
|
||||
Returns:
|
||||
```
|
||||
{
|
||||
'E': list[NDArray[numpy.complex_]],
|
||||
'H': list[NDArray[numpy.complex_]],
|
||||
'wavenumber': complex,
|
||||
}
|
||||
```
|
||||
e_xys: NDArray of vfdfield_t specifying fields. First dimension is mode number.
|
||||
angular_wavenumbers: list of wavenumbers in 1/rad units.
|
||||
"""
|
||||
|
||||
'''
|
||||
Solve for the largest-magnitude eigenvalue of the real operator
|
||||
'''
|
||||
#
|
||||
# Solve for the largest-magnitude eigenvalue of the real operator
|
||||
#
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
|
||||
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0)
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3)
|
||||
e_xy = eigvecs[:, -(mode_number + 1)]
|
||||
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), rmin=rmin)
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
|
||||
keep_inds = -(numpy.array(mode_numbers) + 1)
|
||||
e_xys = eigvecs[:, keep_inds].T
|
||||
eigvals = eigvals[keep_inds]
|
||||
|
||||
'''
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
A = cylindrical_operator(omega, dxes, epsilon, r0)
|
||||
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
|
||||
#
|
||||
# Now solve for the eigenvector of the full operator, using the real operator's
|
||||
# eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
#
|
||||
A = cylindrical_operator(omega, dxes, epsilon, rmin=rmin)
|
||||
for nn in range(len(mode_numbers)):
|
||||
eigvals[nn], e_xys[nn, :] = rayleigh_quotient_iteration(A, e_xys[nn, :])
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumber = numpy.sqrt(eigval)
|
||||
wavenumber *= numpy.sign(numpy.real(wavenumber))
|
||||
wavenumbers = numpy.sqrt(eigvals)
|
||||
wavenumbers *= numpy.sign(numpy.real(wavenumbers))
|
||||
|
||||
# TODO: Perform correction on wavenumber to account for numerical dispersion.
|
||||
# Wavenumbers assume the mode is at rmin, which is unlikely
|
||||
# Instead, return the wavenumber in inverse radians
|
||||
angular_wavenumbers = wavenumbers * cast(complex, rmin)
|
||||
|
||||
shape = [d.size for d in dxes[0]]
|
||||
e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1])))
|
||||
fields = {
|
||||
'wavenumber': wavenumber,
|
||||
'E': unvec(e_xy, shape),
|
||||
# 'E': unvec(e, shape),
|
||||
# 'H': unvec(h, shape),
|
||||
}
|
||||
order = angular_wavenumbers.argsort()[::-1]
|
||||
e_xys = e_xys[order]
|
||||
angular_wavenumbers = angular_wavenumbers[order]
|
||||
|
||||
return fields
|
||||
return e_xys, angular_wavenumbers
|
||||
|
||||
|
||||
def solve_mode(
|
||||
mode_number: int,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
) -> tuple[vcfdfield_t, complex]:
|
||||
"""
|
||||
Wrapper around `solve_modes()` that solves for a single mode.
|
||||
|
||||
Args:
|
||||
mode_number: 0-indexed mode number to solve for
|
||||
*args: passed to `solve_modes()`
|
||||
**kwargs: passed to `solve_modes()`
|
||||
|
||||
Returns:
|
||||
(e_xy, angular_wavenumber)
|
||||
"""
|
||||
kwargs['mode_numbers'] = [mode_number]
|
||||
e_xys, angular_wavenumbers = solve_modes(*args, **kwargs)
|
||||
return e_xys[0], angular_wavenumbers[0]
|
||||
|
||||
|
||||
def linear_wavenumbers(
|
||||
e_xys: vcfdfield_t,
|
||||
angular_wavenumbers: ArrayLike,
|
||||
epsilon: vfdfield_t,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
) -> NDArray[numpy.complex128]:
|
||||
"""
|
||||
Calculate linear wavenumbers (1/distance) based on angular wavenumbers (1/rad)
|
||||
and the mode's energy distribution.
|
||||
|
||||
Args:
|
||||
e_xys: Vectorized mode fields with shape (num_modes, 2 * x *y)
|
||||
angular_wavenumbers: Wavenumbers assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. They should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
epsilon: Vectorized dielectric constant grid with shape (3, x, y)
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
|
||||
Returns:
|
||||
NDArray containing the calculated linear (1/distance) wavenumbers
|
||||
"""
|
||||
angular_wavenumbers = numpy.asarray(angular_wavenumbers)
|
||||
mode_radii = numpy.empty_like(angular_wavenumbers, dtype=float)
|
||||
|
||||
wavenumbers = numpy.empty_like(angular_wavenumbers)
|
||||
shape2d = (len(dxes[0][0]), len(dxes[0][1]))
|
||||
epsilon2d = unvec(epsilon, shape2d)[:2]
|
||||
grid_radii = rmin + numpy.cumsum(dxes[0][0])
|
||||
for ii in range(angular_wavenumbers.size):
|
||||
efield = unvec(e_xys[ii], shape2d, 2)
|
||||
energy = numpy.real((efield * efield.conj()) * epsilon2d)
|
||||
energy_vs_x = energy.sum(axis=(0, 2))
|
||||
mode_radii[ii] = (grid_radii * energy_vs_x).sum() / energy_vs_x.sum()
|
||||
|
||||
logger.info(f'{mode_radii=}')
|
||||
lin_wavenumbers = angular_wavenumbers / mode_radii
|
||||
return lin_wavenumbers
|
||||
|
||||
|
||||
def exy2h(
|
||||
angular_wavenumber: complex,
|
||||
omega: float,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
epsilon: vfdfield_t,
|
||||
mu: vfdfield_t | None = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
into a vectorized H containing all three H components
|
||||
|
||||
Args:
|
||||
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. It should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representing the operator.
|
||||
"""
|
||||
e2hop = e2h(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, mu=mu)
|
||||
return e2hop @ exy2e(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon)
|
||||
|
||||
|
||||
def exy2e(
|
||||
angular_wavenumber: complex,
|
||||
omega: float,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
epsilon: vfdfield_t,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
into a vectorized E containing all three E components
|
||||
|
||||
Unlike the straight waveguide case, the H_z components do not cancel and must be calculated
|
||||
from E_x and E_y in order to then calculate E_z.
|
||||
|
||||
Args:
|
||||
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. It should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
|
||||
Returns:
|
||||
Sparse matrix representing the operator.
|
||||
"""
|
||||
Dfx, Dfy = deriv_forward(dxes[0])
|
||||
Dbx, Dby = deriv_back(dxes[1])
|
||||
wavenumber = angular_wavenumber / rmin
|
||||
|
||||
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
|
||||
Tai = sparse.diags_array(1 / Ta.diagonal())
|
||||
Tbi = sparse.diags_array(1 / Tb.diagonal())
|
||||
|
||||
epsilon_parts = numpy.split(epsilon, 3)
|
||||
epsilon_x, epsilon_y = (sparse.diags_array(epsi) for epsi in epsilon_parts[:2])
|
||||
epsilon_z_inv = sparse.diags_array(1 / epsilon_parts[2])
|
||||
|
||||
n_pts = dxes[0][0].size * dxes[0][1].size
|
||||
zeros = sparse.coo_array((n_pts, n_pts))
|
||||
keep_x = sparse.block_array([[sparse.eye_array(n_pts), None], [None, zeros]])
|
||||
keep_y = sparse.block_array([[zeros, None], [None, sparse.eye_array(n_pts)]])
|
||||
|
||||
mu_z = numpy.ones(n_pts)
|
||||
mu_z_inv = sparse.diags_array(1 / mu_z)
|
||||
exy2hz = 1 / (-1j * omega) * mu_z_inv @ sparse.hstack((Dfy, -Dfx))
|
||||
hxy2ez = 1 / (1j * omega) * epsilon_z_inv @ sparse.hstack((Dby, -Dbx))
|
||||
|
||||
exy2hy = Tb / (1j * wavenumber) @ (-1j * omega * sparse.hstack((epsilon_x, zeros)) - Dby @ exy2hz)
|
||||
exy2hx = Tb / (1j * wavenumber) @ ( 1j * omega * sparse.hstack((zeros, epsilon_y)) - Tai @ Dbx @ Tb @ exy2hz)
|
||||
|
||||
exy2ez = hxy2ez @ sparse.vstack((exy2hx, exy2hy))
|
||||
|
||||
op = sparse.vstack((sparse.eye_array(2 * n_pts),
|
||||
exy2ez))
|
||||
return op
|
||||
|
||||
|
||||
def e2h(
|
||||
angular_wavenumber: complex,
|
||||
omega: float,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
mu: vfdfield_t | None = None
|
||||
) -> sparse.spmatrix:
|
||||
r"""
|
||||
Returns an operator which, when applied to a vectorized E eigenfield, produces
|
||||
the vectorized H eigenfield.
|
||||
|
||||
This operator is created directly from the initial coordinate-transformed equations:
|
||||
$$
|
||||
\begin{aligned}
|
||||
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta \frac{H_y}{\hat{T}} \\
|
||||
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \{1}{\tilde{t}_x} \hat{\partial}_x \hat{t}_x} H_z \\
|
||||
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Args:
|
||||
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. It should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
Dfx, Dfy = deriv_forward(dxes[0])
|
||||
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
|
||||
Tai = sparse.diags_array(1 / Ta.diagonal())
|
||||
Tbi = sparse.diags_array(1 / Tb.diagonal())
|
||||
|
||||
jB = 1j * angular_wavenumber / rmin
|
||||
op = sparse.block_array([[ None, -jB * Tai, -Dfy],
|
||||
[jB * Tbi, None, Tbi @ Dfx @ Ta],
|
||||
[ Dfy, -Dfx, None]]) / (-1j * omega)
|
||||
if mu is not None:
|
||||
op = sparse.diags_array(1 / mu) @ op
|
||||
return op
|
||||
|
||||
|
||||
def dxes2T(
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
|
||||
r"""
|
||||
Returns the $T_a$ and $T_b$ diagonal matrices which are used to apply the cylindrical
|
||||
coordinate transformation in various operators.
|
||||
|
||||
Args:
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
|
||||
Returns:
|
||||
Sparse matrix representations of the operators Ta and Tb
|
||||
"""
|
||||
ra = rmin + numpy.cumsum(dxes[0][0]) # Radius at Ey points
|
||||
rb = rmin + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0]) # Radius at Ex points
|
||||
ta = ra / rmin
|
||||
tb = rb / rmin
|
||||
|
||||
Ta = sparse.diags_array(vec(ta[:, None].repeat(dxes[0][1].size, axis=1)))
|
||||
Tb = sparse.diags_array(vec(tb[:, None].repeat(dxes[1][1].size, axis=1)))
|
||||
return Ta, Tb
|
||||
|
||||
|
||||
def normalized_fields_e(
|
||||
e_xy: ArrayLike,
|
||||
angular_wavenumber: complex,
|
||||
omega: float,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
epsilon: vfdfield_t,
|
||||
mu: vfdfield_t | None = None,
|
||||
prop_phase: float = 0,
|
||||
) -> tuple[vcfdfield_t, vcfdfield_t]:
|
||||
"""
|
||||
Given a vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
returns normalized, vectorized E and H fields for the system.
|
||||
|
||||
Args:
|
||||
e_xy: Vector containing E_x and E_y fields
|
||||
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
|
||||
`exp(-i * angular_wavenumber * theta)`. It should satisfy
|
||||
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
|
||||
Default 0 (continuous propagation direction, i.e. dz->0).
|
||||
|
||||
Returns:
|
||||
`(e, h)`, where each field is vectorized, normalized,
|
||||
and contains all three vector components.
|
||||
"""
|
||||
e = exy2e(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon) @ e_xy
|
||||
h = exy2h(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon, mu=mu) @ e_xy
|
||||
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon,
|
||||
mu=mu, prop_phase=prop_phase)
|
||||
return e_norm, h_norm
|
||||
|
||||
|
||||
def _normalized_fields(
|
||||
e: vcfdfield_t,
|
||||
h: vcfdfield_t,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
rmin: float,
|
||||
epsilon: vfdfield_t,
|
||||
mu: vfdfield_t | None = None,
|
||||
prop_phase: float = 0,
|
||||
) -> tuple[vcfdfield_t, vcfdfield_t]:
|
||||
h *= -1
|
||||
# TODO documentation for normalized_fields
|
||||
shape = [s.size for s in dxes[0]]
|
||||
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
|
||||
|
||||
# Find time-averaged Sz and normalize to it
|
||||
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
|
||||
phase = numpy.exp(-1j * -prop_phase / 2)
|
||||
Sz_tavg = waveguide_2d.inner_product(e, h, dxes=dxes, prop_phase=prop_phase, conj_h=True).real # Note, using linear poynting vector
|
||||
assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}'
|
||||
|
||||
energy = numpy.real(epsilon * e.conj() * e)
|
||||
|
||||
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
|
||||
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
|
||||
|
||||
# Try to break symmetry to assign a consistent sign [experimental]
|
||||
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
|
||||
sign = numpy.sign(E_weighted[:,
|
||||
:max(shape[0] // 2, 1),
|
||||
:max(shape[1] // 2, 1)].real.sum())
|
||||
assert sign != 0
|
||||
|
||||
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
|
||||
|
||||
print('\nAAA\n', waveguide_2d.inner_product(e, h, dxes, prop_phase=prop_phase))
|
||||
e *= norm_factor
|
||||
h *= norm_factor
|
||||
print(f'{sign=} {norm_amplitude=} {norm_angle=} {prop_phase=}')
|
||||
print(waveguide_2d.inner_product(e, h, dxes, prop_phase=prop_phase))
|
||||
|
||||
return e, h
|
||||
|
@ -741,8 +741,24 @@ the true values can be multiplied back in after the simulation is complete if no
|
||||
normalized results are needed.
|
||||
"""
|
||||
|
||||
from .types import fdfield_t, vfdfield_t, cfdfield_t, vcfdfield_t, dx_lists_t, dx_lists_mut
|
||||
from .types import fdfield_updater_t, cfdfield_updater_t
|
||||
from .vectorization import vec, unvec
|
||||
from . import operators, functional, types, vectorization
|
||||
from .types import (
|
||||
fdfield_t as fdfield_t,
|
||||
vfdfield_t as vfdfield_t,
|
||||
cfdfield_t as cfdfield_t,
|
||||
vcfdfield_t as vcfdfield_t,
|
||||
dx_lists_t as dx_lists_t,
|
||||
dx_lists_mut as dx_lists_mut,
|
||||
fdfield_updater_t as fdfield_updater_t,
|
||||
cfdfield_updater_t as cfdfield_updater_t,
|
||||
)
|
||||
from .vectorization import (
|
||||
vec as vec,
|
||||
unvec as unvec,
|
||||
)
|
||||
from . import (
|
||||
operators as operators,
|
||||
functional as functional,
|
||||
types as types,
|
||||
vectorization as vectorization,
|
||||
)
|
||||
|
||||
|
@ -3,16 +3,18 @@ Math functions for finite difference simulations
|
||||
|
||||
Basic discrete calculus etc.
|
||||
"""
|
||||
from typing import Sequence, Callable
|
||||
from typing import TypeVar
|
||||
from collections.abc import Sequence, Callable
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
from numpy import floating, complexfloating
|
||||
|
||||
from .types import fdfield_t, fdfield_updater_t
|
||||
|
||||
|
||||
def deriv_forward(
|
||||
dx_e: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
|
||||
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (backward variant).
|
||||
@ -36,7 +38,7 @@ def deriv_forward(
|
||||
|
||||
|
||||
def deriv_back(
|
||||
dx_h: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
|
||||
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (forward variant).
|
||||
@ -59,9 +61,12 @@ def deriv_back(
|
||||
return derivs
|
||||
|
||||
|
||||
TT = TypeVar('TT', bound='NDArray[floating | complexfloating]')
|
||||
|
||||
|
||||
def curl_forward(
|
||||
dx_e: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
) -> fdfield_updater_t:
|
||||
dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
|
||||
) -> Callable[[TT], TT]:
|
||||
r"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
@ -75,7 +80,7 @@ def curl_forward(
|
||||
"""
|
||||
Dx, Dy, Dz = deriv_forward(dx_e)
|
||||
|
||||
def ce_fun(e: fdfield_t) -> fdfield_t:
|
||||
def ce_fun(e: TT) -> TT:
|
||||
output = numpy.empty_like(e)
|
||||
output[0] = Dy(e[2])
|
||||
output[1] = Dz(e[0])
|
||||
@ -89,8 +94,8 @@ def curl_forward(
|
||||
|
||||
|
||||
def curl_back(
|
||||
dx_h: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
) -> fdfield_updater_t:
|
||||
dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
|
||||
) -> Callable[[TT], TT]:
|
||||
r"""
|
||||
Create a function which takes the backward curl of a field.
|
||||
|
||||
@ -104,7 +109,7 @@ def curl_back(
|
||||
"""
|
||||
Dx, Dy, Dz = deriv_back(dx_h)
|
||||
|
||||
def ch_fun(h: fdfield_t) -> fdfield_t:
|
||||
def ch_fun(h: TT) -> TT:
|
||||
output = numpy.empty_like(h)
|
||||
output[0] = Dy(h[2])
|
||||
output[1] = Dz(h[0])
|
||||
@ -118,7 +123,7 @@ def curl_back(
|
||||
|
||||
|
||||
def curl_forward_parts(
|
||||
dx_e: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
|
||||
) -> Callable:
|
||||
Dx, Dy, Dz = deriv_forward(dx_e)
|
||||
|
||||
@ -131,7 +136,7 @@ def curl_forward_parts(
|
||||
|
||||
|
||||
def curl_back_parts(
|
||||
dx_h: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
|
||||
) -> Callable:
|
||||
Dx, Dy, Dz = deriv_back(dx_h)
|
||||
|
||||
|
@ -3,10 +3,11 @@ Matrix operators for finite difference simulations
|
||||
|
||||
Basic discrete calculus etc.
|
||||
"""
|
||||
from typing import Sequence
|
||||
from collections.abc import Sequence
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
import scipy.sparse as sparse # type: ignore
|
||||
from numpy import floating, complexfloating
|
||||
from scipy import sparse
|
||||
|
||||
from .types import vfdfield_t
|
||||
|
||||
@ -29,12 +30,12 @@ def shift_circ(
|
||||
Sparse matrix for performing the circular shift.
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
raise Exception(f'Invalid shape: {shape}')
|
||||
if axis not in range(len(shape)):
|
||||
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
||||
raise Exception(f'Invalid direction: {axis}, shape is {shape}')
|
||||
|
||||
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
|
||||
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)]
|
||||
shifts = [abs(shift_distance) if a == axis else 0 for a in range(len(shape))]
|
||||
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts, strict=True)]
|
||||
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
|
||||
|
||||
n = numpy.prod(shape)
|
||||
@ -69,12 +70,11 @@ def shift_with_mirror(
|
||||
Sparse matrix for performing the shift-with-mirror.
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
raise Exception(f'Invalid shape: {shape}')
|
||||
if axis not in range(len(shape)):
|
||||
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
||||
raise Exception(f'Invalid direction: {axis}, shape is {shape}')
|
||||
if shift_distance >= shape[axis]:
|
||||
raise Exception('Shift ({}) is too large for axis {} of size {}'.format(
|
||||
shift_distance, axis, shape[axis]))
|
||||
raise Exception(f'Shift ({shift_distance}) is too large for axis {axis} of size {shape[axis]}')
|
||||
|
||||
def mirrored_range(n: int, s: int) -> NDArray[numpy.int_]:
|
||||
v = numpy.arange(n) + s
|
||||
@ -82,8 +82,8 @@ def shift_with_mirror(
|
||||
v = numpy.where(v < 0, - 1 - v, v)
|
||||
return v
|
||||
|
||||
shifts = [shift_distance if a == axis else 0 for a in range(3)]
|
||||
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts)]
|
||||
shifts = [shift_distance if a == axis else 0 for a in range(len(shape))]
|
||||
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts, strict=True)]
|
||||
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
|
||||
|
||||
n = numpy.prod(shape)
|
||||
@ -97,7 +97,7 @@ def shift_with_mirror(
|
||||
|
||||
|
||||
def deriv_forward(
|
||||
dx_e: Sequence[NDArray[numpy.float_]],
|
||||
dx_e: Sequence[NDArray[floating | complexfloating]],
|
||||
) -> list[sparse.spmatrix]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (forward variant).
|
||||
@ -124,7 +124,7 @@ def deriv_forward(
|
||||
|
||||
|
||||
def deriv_back(
|
||||
dx_h: Sequence[NDArray[numpy.float_]],
|
||||
dx_h: Sequence[NDArray[floating | complexfloating]],
|
||||
) -> list[sparse.spmatrix]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (backward variant).
|
||||
@ -198,7 +198,7 @@ def avg_forward(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
|
||||
Sparse matrix for forward average operation.
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
raise Exception(f'Invalid shape: {shape}')
|
||||
|
||||
n = numpy.prod(shape)
|
||||
return 0.5 * (sparse.eye(n) + shift_circ(axis, shape))
|
||||
@ -219,7 +219,7 @@ def avg_back(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
|
||||
|
||||
|
||||
def curl_forward(
|
||||
dx_e: Sequence[NDArray[numpy.float_]],
|
||||
dx_e: Sequence[NDArray[floating | complexfloating]],
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
@ -235,7 +235,7 @@ def curl_forward(
|
||||
|
||||
|
||||
def curl_back(
|
||||
dx_h: Sequence[NDArray[numpy.float_]],
|
||||
dx_h: Sequence[NDArray[floating | complexfloating]],
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
@ -1,26 +1,26 @@
|
||||
"""
|
||||
Types shared across multiple submodules
|
||||
"""
|
||||
from typing import Sequence, Callable, MutableSequence
|
||||
import numpy
|
||||
from collections.abc import Sequence, Callable, MutableSequence
|
||||
from numpy.typing import NDArray
|
||||
from numpy import floating, complexfloating
|
||||
|
||||
|
||||
# Field types
|
||||
fdfield_t = NDArray[numpy.float_]
|
||||
fdfield_t = NDArray[floating]
|
||||
"""Vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)"""
|
||||
|
||||
vfdfield_t = NDArray[numpy.float_]
|
||||
vfdfield_t = NDArray[floating]
|
||||
"""Linearized vector field (single vector of length 3*X*Y*Z)"""
|
||||
|
||||
cfdfield_t = NDArray[numpy.complex_]
|
||||
cfdfield_t = NDArray[complexfloating]
|
||||
"""Complex vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)"""
|
||||
|
||||
vcfdfield_t = NDArray[numpy.complex_]
|
||||
vcfdfield_t = NDArray[complexfloating]
|
||||
"""Linearized complex vector field (single vector of length 3*X*Y*Z)"""
|
||||
|
||||
|
||||
dx_lists_t = Sequence[Sequence[NDArray[numpy.float_]]]
|
||||
dx_lists_t = Sequence[Sequence[NDArray[floating | complexfloating]]]
|
||||
"""
|
||||
'dxes' datastructure which contains grid cell width information in the following format:
|
||||
|
||||
@ -31,7 +31,7 @@ dx_lists_t = Sequence[Sequence[NDArray[numpy.float_]]]
|
||||
and `dy_h[0]` is the y-width of the `y=0` cells, as used when calculating dH/dy, etc.
|
||||
"""
|
||||
|
||||
dx_lists_mut = MutableSequence[MutableSequence[NDArray[numpy.float_]]]
|
||||
dx_lists_mut = MutableSequence[MutableSequence[NDArray[floating | complexfloating]]]
|
||||
"""Mutable version of `dx_lists_t`"""
|
||||
|
||||
|
||||
|
@ -4,7 +4,8 @@ and a 1D array representation of that field `[f_x0, f_x1, f_x2,... f_y0,... f_z0
|
||||
Vectorized versions of the field use row-major (ie., C-style) ordering.
|
||||
"""
|
||||
|
||||
from typing import overload, Sequence
|
||||
from typing import overload
|
||||
from collections.abc import Sequence
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
@ -27,14 +28,16 @@ def vec(f: cfdfield_t) -> vcfdfield_t:
|
||||
def vec(f: ArrayLike) -> vfdfield_t | vcfdfield_t:
|
||||
pass
|
||||
|
||||
def vec(f: fdfield_t | cfdfield_t | ArrayLike | None) -> vfdfield_t | vcfdfield_t | None:
|
||||
def vec(
|
||||
f: fdfield_t | cfdfield_t | ArrayLike | None,
|
||||
) -> vfdfield_t | vcfdfield_t | None:
|
||||
"""
|
||||
Create a 1D ndarray from a 3D vector field which spans a 1-3D region.
|
||||
Create a 1D ndarray from a vector field which spans a 1-3D region.
|
||||
|
||||
Returns `None` if called with `f=None`.
|
||||
|
||||
Args:
|
||||
f: A vector field, `[f_x, f_y, f_z]` where each `f_` component is a 1- to
|
||||
f: A vector field, e.g. `[f_x, f_y, f_z]` where each `f_` component is a 1- to
|
||||
3-D ndarray (`f_*` should all be the same size). Doesn't fail with `f=None`.
|
||||
|
||||
Returns:
|
||||
@ -46,33 +49,38 @@ def vec(f: fdfield_t | cfdfield_t | ArrayLike | None) -> vfdfield_t | vcfdfield_
|
||||
|
||||
|
||||
@overload
|
||||
def unvec(v: None, shape: Sequence[int]) -> None:
|
||||
def unvec(v: None, shape: Sequence[int], nvdim: int = 3) -> None:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def unvec(v: vfdfield_t, shape: Sequence[int]) -> fdfield_t:
|
||||
def unvec(v: vfdfield_t, shape: Sequence[int], nvdim: int = 3) -> fdfield_t:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def unvec(v: vcfdfield_t, shape: Sequence[int]) -> cfdfield_t:
|
||||
def unvec(v: vcfdfield_t, shape: Sequence[int], nvdim: int = 3) -> cfdfield_t:
|
||||
pass
|
||||
|
||||
def unvec(v: vfdfield_t | vcfdfield_t | None, shape: Sequence[int]) -> fdfield_t | cfdfield_t | None:
|
||||
def unvec(
|
||||
v: vfdfield_t | vcfdfield_t | None,
|
||||
shape: Sequence[int],
|
||||
nvdim: int = 3,
|
||||
) -> fdfield_t | cfdfield_t | None:
|
||||
"""
|
||||
Perform the inverse of vec(): take a 1D ndarray and output a 3D field
|
||||
of form `[f_x, f_y, f_z]` where each of `f_*` is a len(shape)-dimensional
|
||||
Perform the inverse of vec(): take a 1D ndarray and output an `nvdim`-component field
|
||||
of form e.g. `[f_x, f_y, f_z]` (`nvdim=3`) where each of `f_*` is a len(shape)-dimensional
|
||||
ndarray.
|
||||
|
||||
Returns `None` if called with `v=None`.
|
||||
|
||||
Args:
|
||||
v: 1D ndarray representing a 3D vector field of shape shape (or None)
|
||||
v: 1D ndarray representing a vector field of shape shape (or None)
|
||||
shape: shape of the vector field
|
||||
nvdim: Number of components in each vector
|
||||
|
||||
Returns:
|
||||
`[f_x, f_y, f_z]` where each `f_` is a `len(shape)` dimensional ndarray (or `None`)
|
||||
"""
|
||||
if v is None:
|
||||
return None
|
||||
return v.reshape((3, *shape), order='C')
|
||||
return v.reshape((nvdim, *shape), order='C')
|
||||
|
||||
|
@ -159,8 +159,22 @@ Boundary conditions
|
||||
# TODO notes about boundaries / PMLs
|
||||
"""
|
||||
|
||||
from .base import maxwell_e, maxwell_h
|
||||
from .pml import cpml_params, updates_with_cpml
|
||||
from .energy import (poynting, poynting_divergence, energy_hstep, energy_estep,
|
||||
delta_energy_h2e, delta_energy_j)
|
||||
from .boundaries import conducting_boundary
|
||||
from .base import (
|
||||
maxwell_e as maxwell_e,
|
||||
maxwell_h as maxwell_h,
|
||||
)
|
||||
from .pml import (
|
||||
cpml_params as cpml_params,
|
||||
updates_with_cpml as updates_with_cpml,
|
||||
)
|
||||
from .energy import (
|
||||
poynting as poynting,
|
||||
poynting_divergence as poynting_divergence,
|
||||
energy_hstep as energy_hstep,
|
||||
energy_estep as energy_estep,
|
||||
delta_energy_h2e as delta_energy_h2e,
|
||||
delta_energy_j as delta_energy_j,
|
||||
)
|
||||
from .boundaries import (
|
||||
conducting_boundary as conducting_boundary,
|
||||
)
|
||||
|
@ -15,13 +15,17 @@ def conducting_boundary(
|
||||
) -> tuple[fdfield_updater_t, fdfield_updater_t]:
|
||||
dirs = [0, 1, 2]
|
||||
if direction not in dirs:
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
raise Exception(f'Invalid direction: {direction}')
|
||||
dirs.remove(direction)
|
||||
u, v = dirs
|
||||
|
||||
boundary_slice: list[Any]
|
||||
shifted1_slice: list[Any]
|
||||
shifted2_slice: list[Any]
|
||||
|
||||
if polarity < 0:
|
||||
boundary_slice = [slice(None)] * 3 # type: list[Any]
|
||||
shifted1_slice = [slice(None)] * 3 # type: list[Any]
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
boundary_slice[direction] = 0
|
||||
shifted1_slice[direction] = 1
|
||||
|
||||
@ -42,7 +46,7 @@ def conducting_boundary(
|
||||
if polarity > 0:
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
shifted2_slice = [slice(None)] * 3 # type: list[Any]
|
||||
shifted2_slice = [slice(None)] * 3
|
||||
boundary_slice[direction] = -1
|
||||
shifted1_slice[direction] = -2
|
||||
shifted2_slice[direction] = -3
|
||||
@ -64,4 +68,4 @@ def conducting_boundary(
|
||||
|
||||
return ep, hp
|
||||
|
||||
raise Exception('Bad polarity: {}'.format(polarity))
|
||||
raise Exception(f'Bad polarity: {polarity}')
|
||||
|
@ -7,7 +7,8 @@ PML implementations
|
||||
"""
|
||||
# TODO retest pmls!
|
||||
|
||||
from typing import Callable, Sequence, Any
|
||||
from typing import Any
|
||||
from collections.abc import Callable, Sequence
|
||||
from copy import deepcopy
|
||||
import numpy
|
||||
from numpy.typing import NDArray, DTypeLike
|
||||
@ -33,10 +34,10 @@ def cpml_params(
|
||||
) -> dict[str, Any]:
|
||||
|
||||
if axis not in range(3):
|
||||
raise Exception('Invalid axis: {}'.format(axis))
|
||||
raise Exception(f'Invalid axis: {axis}')
|
||||
|
||||
if polarity not in (-1, 1):
|
||||
raise Exception('Invalid polarity: {}'.format(polarity))
|
||||
raise Exception(f'Invalid polarity: {polarity}')
|
||||
|
||||
if thickness <= 2:
|
||||
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
|
||||
@ -111,7 +112,7 @@ def updates_with_cpml(
|
||||
params_H: list[list[tuple[Any, Any, Any, Any]]] = deepcopy(params_E)
|
||||
|
||||
for axis in range(3):
|
||||
for pp, polarity in enumerate((-1, 1)):
|
||||
for pp, _polarity in enumerate((-1, 1)):
|
||||
cpml_param = cpml_params[axis][pp]
|
||||
if cpml_param is None:
|
||||
psi_E[axis][pp] = (None, None)
|
||||
@ -184,7 +185,7 @@ def updates_with_cpml(
|
||||
def update_H(
|
||||
e: fdfield_t,
|
||||
h: fdfield_t,
|
||||
mu: fdfield_t = numpy.ones(3),
|
||||
mu: fdfield_t | tuple[int, int, int] = (1, 1, 1),
|
||||
) -> None:
|
||||
dyEx = Dfy(e[0])
|
||||
dzEx = Dfz(e[0])
|
||||
|
@ -3,7 +3,8 @@
|
||||
Test fixtures
|
||||
|
||||
"""
|
||||
from typing import Iterable, Any
|
||||
# ruff: noqa: ARG001
|
||||
from typing import Any
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
import pytest # type: ignore
|
||||
@ -20,18 +21,18 @@ FixtureRequest = Any
|
||||
(5, 5, 5),
|
||||
# (7, 7, 7),
|
||||
])
|
||||
def shape(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
|
||||
yield (3, *request.param)
|
||||
def shape(request: FixtureRequest) -> tuple[int, ...]:
|
||||
return (3, *request.param)
|
||||
|
||||
|
||||
@pytest.fixture(scope='module', params=[1.0, 1.5])
|
||||
def epsilon_bg(request: FixtureRequest) -> Iterable[float]:
|
||||
yield request.param
|
||||
def epsilon_bg(request: FixtureRequest) -> float:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(scope='module', params=[1.0, 2.5])
|
||||
def epsilon_fg(request: FixtureRequest) -> Iterable[float]:
|
||||
yield request.param
|
||||
def epsilon_fg(request: FixtureRequest) -> float:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(scope='module', params=['center', '000', 'random'])
|
||||
@ -40,7 +41,7 @@ def epsilon(
|
||||
shape: tuple[int, ...],
|
||||
epsilon_bg: float,
|
||||
epsilon_fg: float,
|
||||
) -> Iterable[NDArray[numpy.float64]]:
|
||||
) -> NDArray[numpy.float64]:
|
||||
is3d = (numpy.array(shape) == 1).sum() == 0
|
||||
if is3d:
|
||||
if request.param == '000':
|
||||
@ -60,17 +61,17 @@ def epsilon(
|
||||
high=max(epsilon_bg, epsilon_fg),
|
||||
size=shape)
|
||||
|
||||
yield epsilon
|
||||
return epsilon
|
||||
|
||||
|
||||
@pytest.fixture(scope='module', params=[1.0]) # 1.5
|
||||
def j_mag(request: FixtureRequest) -> Iterable[float]:
|
||||
yield request.param
|
||||
def j_mag(request: FixtureRequest) -> float:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(scope='module', params=[1.0, 1.5])
|
||||
def dx(request: FixtureRequest) -> Iterable[float]:
|
||||
yield request.param
|
||||
def dx(request: FixtureRequest) -> float:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(scope='module', params=['uniform', 'centerbig'])
|
||||
@ -78,7 +79,7 @@ def dxes(
|
||||
request: FixtureRequest,
|
||||
shape: tuple[int, ...],
|
||||
dx: float,
|
||||
) -> Iterable[list[list[NDArray[numpy.float64]]]]:
|
||||
) -> list[list[NDArray[numpy.float64]]]:
|
||||
if request.param == 'uniform':
|
||||
dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)]
|
||||
elif request.param == 'centerbig':
|
||||
@ -90,5 +91,5 @@ def dxes(
|
||||
dxe = [PRNG.uniform(low=1.0 * dx, high=1.1 * dx, size=s) for s in shape[1:]]
|
||||
dxh = [(d + numpy.roll(d, -1)) / 2 for d in dxe]
|
||||
dxes = [dxe, dxh]
|
||||
yield dxes
|
||||
return dxes
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Iterable
|
||||
# ruff: noqa: ARG001
|
||||
import dataclasses
|
||||
import pytest # type: ignore
|
||||
import numpy
|
||||
@ -61,24 +61,24 @@ def test_poynting_planes(sim: 'FDResult') -> None:
|
||||
# Also see conftest.py
|
||||
|
||||
@pytest.fixture(params=[1 / 1500])
|
||||
def omega(request: FixtureRequest) -> Iterable[float]:
|
||||
yield request.param
|
||||
def omega(request: FixtureRequest) -> float:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[None])
|
||||
def pec(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
|
||||
yield request.param
|
||||
def pec(request: FixtureRequest) -> NDArray[numpy.float64] | None:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[None])
|
||||
def pmc(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
|
||||
yield request.param
|
||||
def pmc(request: FixtureRequest) -> NDArray[numpy.float64] | None:
|
||||
return request.param
|
||||
|
||||
|
||||
#@pytest.fixture(scope='module',
|
||||
# params=[(25, 5, 5)])
|
||||
#def shape(request):
|
||||
# yield (3, *request.param)
|
||||
#def shape(request: FixtureRequest):
|
||||
# return (3, *request.param)
|
||||
|
||||
|
||||
@pytest.fixture(params=['diag']) # 'center'
|
||||
@ -86,7 +86,7 @@ def j_distribution(
|
||||
request: FixtureRequest,
|
||||
shape: tuple[int, ...],
|
||||
j_mag: float,
|
||||
) -> Iterable[NDArray[numpy.float64]]:
|
||||
) -> NDArray[numpy.float64]:
|
||||
j = numpy.zeros(shape, dtype=complex)
|
||||
center_mask = numpy.zeros(shape, dtype=bool)
|
||||
center_mask[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = True
|
||||
@ -96,7 +96,7 @@ def j_distribution(
|
||||
elif request.param == 'diag':
|
||||
j[numpy.roll(center_mask, [1, 1, 1], axis=(1, 2, 3))] = (1 + 1j) * j_mag
|
||||
j[numpy.roll(center_mask, [-1, -1, -1], axis=(1, 2, 3))] = (1 - 1j) * j_mag
|
||||
yield j
|
||||
return j
|
||||
|
||||
|
||||
@dataclasses.dataclass()
|
||||
@ -145,7 +145,7 @@ def sim(
|
||||
omega=omega,
|
||||
dxes=dxes,
|
||||
epsilon=eps_vec,
|
||||
matrix_solver_opts={'atol': 1e-15, 'tol': 1e-11},
|
||||
matrix_solver_opts={'atol': 1e-15, 'rtol': 1e-11},
|
||||
)
|
||||
e = unvec(e_vec, shape[1:])
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Iterable
|
||||
# ruff: noqa: ARG001
|
||||
import pytest # type: ignore
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
@ -44,30 +44,30 @@ def test_pml(sim: FDResult, src_polarity: int) -> None:
|
||||
# Also see conftest.py
|
||||
|
||||
@pytest.fixture(params=[1 / 1500])
|
||||
def omega(request: FixtureRequest) -> Iterable[float]:
|
||||
yield request.param
|
||||
def omega(request: FixtureRequest) -> float:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[None])
|
||||
def pec(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
|
||||
yield request.param
|
||||
def pec(request: FixtureRequest) -> NDArray[numpy.float64] | None:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[None])
|
||||
def pmc(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
|
||||
yield request.param
|
||||
def pmc(request: FixtureRequest) -> NDArray[numpy.float64] | None:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[(30, 1, 1),
|
||||
(1, 30, 1),
|
||||
(1, 1, 30)])
|
||||
def shape(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
|
||||
yield (3, *request.param)
|
||||
def shape(request: FixtureRequest) -> tuple[int, int, int]:
|
||||
return (3, *request.param)
|
||||
|
||||
|
||||
@pytest.fixture(params=[+1, -1])
|
||||
def src_polarity(request: FixtureRequest) -> Iterable[int]:
|
||||
yield request.param
|
||||
def src_polarity(request: FixtureRequest) -> int:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
@ -78,7 +78,7 @@ def j_distribution(
|
||||
dxes: dx_lists_mut,
|
||||
omega: float,
|
||||
src_polarity: int,
|
||||
) -> Iterable[NDArray[numpy.complex128]]:
|
||||
) -> NDArray[numpy.complex128]:
|
||||
j = numpy.zeros(shape, dtype=complex)
|
||||
|
||||
dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis
|
||||
@ -106,7 +106,7 @@ def j_distribution(
|
||||
|
||||
j = fdfd.waveguide_3d.compute_source(E=e, wavenumber=wavenumber_corrected, omega=omega, dxes=dxes,
|
||||
axis=dim, polarity=src_polarity, slices=slices, epsilon=epsilon)
|
||||
yield j
|
||||
return j
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
@ -115,9 +115,9 @@ def epsilon(
|
||||
shape: tuple[int, ...],
|
||||
epsilon_bg: float,
|
||||
epsilon_fg: float,
|
||||
) -> Iterable[NDArray[numpy.float64]]:
|
||||
) -> NDArray[numpy.float64]:
|
||||
epsilon = numpy.full(shape, epsilon_fg, dtype=float)
|
||||
yield epsilon
|
||||
return epsilon
|
||||
|
||||
|
||||
@pytest.fixture(params=['uniform'])
|
||||
@ -127,7 +127,7 @@ def dxes(
|
||||
dx: float,
|
||||
omega: float,
|
||||
epsilon_fg: float,
|
||||
) -> Iterable[list[list[NDArray[numpy.float64]]]]:
|
||||
) -> list[list[NDArray[numpy.float64]]]:
|
||||
if request.param == 'uniform':
|
||||
dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)]
|
||||
dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis
|
||||
@ -141,7 +141,7 @@ def dxes(
|
||||
epsilon_effective=epsilon_fg,
|
||||
thickness=10,
|
||||
)
|
||||
yield dxes
|
||||
return dxes
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
@ -162,7 +162,7 @@ def sim(
|
||||
omega=omega,
|
||||
dxes=dxes,
|
||||
epsilon=eps_vec,
|
||||
matrix_solver_opts={'atol': 1e-15, 'tol': 1e-11},
|
||||
matrix_solver_opts={'atol': 1e-15, 'rtol': 1e-11},
|
||||
)
|
||||
e = unvec(e_vec, shape[1:])
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
from typing import Iterable, Any
|
||||
# ruff: noqa: ARG001
|
||||
from typing import Any
|
||||
import dataclasses
|
||||
import pytest # type: ignore
|
||||
import numpy
|
||||
@ -101,7 +102,7 @@ def test_poynting_divergence(sim: 'TDResult') -> None:
|
||||
def test_poynting_planes(sim: 'TDResult') -> None:
|
||||
mask = (sim.js[0] != 0).any(axis=0)
|
||||
if mask.sum() > 1:
|
||||
pytest.skip('test_poynting_planes can only test single point sources, got {}'.format(mask.sum()))
|
||||
pytest.skip(f'test_poynting_planes can only test single point sources, got {mask.sum()}')
|
||||
|
||||
args: dict[str, Any] = {
|
||||
'dxes': sim.dxes,
|
||||
@ -150,8 +151,8 @@ def test_poynting_planes(sim: 'TDResult') -> None:
|
||||
|
||||
|
||||
@pytest.fixture(params=[0.3])
|
||||
def dt(request: FixtureRequest) -> Iterable[float]:
|
||||
yield request.param
|
||||
def dt(request: FixtureRequest) -> float:
|
||||
return request.param
|
||||
|
||||
|
||||
@dataclasses.dataclass()
|
||||
@ -168,8 +169,8 @@ class TDResult:
|
||||
|
||||
|
||||
@pytest.fixture(params=[(0, 4, 8)]) # (0,)
|
||||
def j_steps(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
|
||||
yield request.param
|
||||
def j_steps(request: FixtureRequest) -> tuple[int, ...]:
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=['center', 'random'])
|
||||
@ -177,7 +178,7 @@ def j_distribution(
|
||||
request: FixtureRequest,
|
||||
shape: tuple[int, ...],
|
||||
j_mag: float,
|
||||
) -> Iterable[NDArray[numpy.float64]]:
|
||||
) -> NDArray[numpy.float64]:
|
||||
j = numpy.zeros(shape)
|
||||
if request.param == 'center':
|
||||
j[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = j_mag
|
||||
@ -185,7 +186,7 @@ def j_distribution(
|
||||
j[:, 0, 0, 0] = j_mag
|
||||
elif request.param == 'random':
|
||||
j[:] = PRNG.uniform(low=-j_mag, high=j_mag, size=shape)
|
||||
yield j
|
||||
return j
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
@ -199,8 +200,7 @@ def sim(
|
||||
j_steps: tuple[int, ...],
|
||||
) -> TDResult:
|
||||
is3d = (numpy.array(shape) == 1).sum() == 0
|
||||
if is3d:
|
||||
if dt != 0.3:
|
||||
if is3d and dt != 0.3:
|
||||
pytest.skip('Skipping dt != 0.3 because test is 3D (for speed)')
|
||||
|
||||
sim = TDResult(
|
||||
|
@ -1,5 +1,3 @@
|
||||
from typing import Any
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
|
||||
@ -10,22 +8,25 @@ PRNG = numpy.random.RandomState(12345)
|
||||
def assert_fields_close(
|
||||
x: NDArray,
|
||||
y: NDArray,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
numpy.testing.assert_allclose(
|
||||
x, y, verbose=False, # type: ignore
|
||||
err_msg='Fields did not match:\n{}\n{}'.format(numpy.moveaxis(x, -1, 0),
|
||||
numpy.moveaxis(y, -1, 0)),
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
x_disp = numpy.moveaxis(x, -1, 0)
|
||||
y_disp = numpy.moveaxis(y, -1, 0)
|
||||
numpy.testing.assert_allclose(
|
||||
x, # type: ignore
|
||||
y, # type: ignore
|
||||
*args,
|
||||
verbose=False,
|
||||
err_msg=f'Fields did not match:\n{x_disp}\n{y_disp}',
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def assert_close(
|
||||
x: NDArray,
|
||||
y: NDArray,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
numpy.testing.assert_allclose(x, y, *args, **kwargs)
|
||||
|
||||
|
@ -39,8 +39,8 @@ include = [
|
||||
]
|
||||
dynamic = ["version"]
|
||||
dependencies = [
|
||||
"numpy~=1.21",
|
||||
"scipy",
|
||||
"numpy>=1.26",
|
||||
"scipy~=1.14",
|
||||
]
|
||||
|
||||
|
||||
@ -51,3 +51,48 @@ path = "meanas/__init__.py"
|
||||
dev = ["pytest", "pdoc", "gridlock"]
|
||||
examples = ["gridlock"]
|
||||
test = ["pytest"]
|
||||
|
||||
|
||||
[tool.ruff]
|
||||
exclude = [
|
||||
".git",
|
||||
"dist",
|
||||
]
|
||||
line-length = 245
|
||||
indent-width = 4
|
||||
lint.dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
|
||||
lint.select = [
|
||||
"NPY", "E", "F", "W", "B", "ANN", "UP", "SLOT", "SIM", "LOG",
|
||||
"C4", "ISC", "PIE", "PT", "RET", "TCH", "PTH", "INT",
|
||||
"ARG", "PL", "R", "TRY",
|
||||
"G010", "G101", "G201", "G202",
|
||||
"Q002", "Q003", "Q004",
|
||||
]
|
||||
lint.ignore = [
|
||||
#"ANN001", # No annotation
|
||||
"ANN002", # *args
|
||||
"ANN003", # **kwargs
|
||||
"ANN401", # Any
|
||||
"ANN101", # self: Self
|
||||
"SIM108", # single-line if / else assignment
|
||||
"RET504", # x=y+z; return x
|
||||
"PIE790", # unnecessary pass
|
||||
"ISC003", # non-implicit string concatenation
|
||||
"C408", # dict(x=y) instead of {'x': y}
|
||||
"PLR09", # Too many xxx
|
||||
"PLR2004", # magic number
|
||||
"PLC0414", # import x as x
|
||||
"TRY003", # Long exception message
|
||||
"TRY002", # Exception()
|
||||
]
|
||||
|
||||
|
||||
[[tool.mypy.overrides]]
|
||||
module = [
|
||||
"scipy",
|
||||
"scipy.optimize",
|
||||
"scipy.linalg",
|
||||
"scipy.sparse",
|
||||
"scipy.sparse.linalg",
|
||||
]
|
||||
ignore_missing_imports = true
|
||||
|
Loading…
x
Reference in New Issue
Block a user