Compare commits
1 Commits
master
...
polycollec
Author | SHA1 | Date | |
---|---|---|---|
cc59ae9ab5 |
210
masque/shapes/poly_collection.py
Normal file
210
masque/shapes/poly_collection.py
Normal file
@ -0,0 +1,210 @@
|
||||
from typing import Any, cast, Iterable
|
||||
from collections.abc import Sequence
|
||||
import copy
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import Shape, normalized_shape_tuple
|
||||
from ..error import PatternError
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, rotation_matrix_2d, annotations_lt, annotations_eq, rep2key
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class PolyCollection(Shape):
|
||||
"""
|
||||
A collection of polygons, consisting of list of vertex arrays (N_m x 2 ndarrays) which specify
|
||||
implicitly-closed boundaries, and an offset.
|
||||
|
||||
Note that the setter for `PolyCollection.vertex_list` creates a copy of the
|
||||
passed vertex coordinates.
|
||||
|
||||
A `normalized_form(...)` is available, but can be quite slow with lots of vertices.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_vertex_lists',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations',
|
||||
)
|
||||
|
||||
_vertex_lists: list[NDArray[numpy.float64]]
|
||||
""" List of ndarrays (N_m x 2) of vertices `[ [[x0, y0], [x1, y1], ...] ]` """
|
||||
|
||||
# vertex_lists property
|
||||
@property
|
||||
def vertex_lists(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
||||
"""
|
||||
Vertices of the polygons (ist of ndarrays (N_m x 2) `[ [[x0, y0], [x1, y1], ...] ]`
|
||||
|
||||
When setting, note that a copy will be made,
|
||||
"""
|
||||
return self._vertex_lists
|
||||
|
||||
@vertex_lists.setter
|
||||
def vertex_lists(self, val: ArrayLike) -> None:
|
||||
val = [numpy.array(vv, dtype=float) for vv in val]
|
||||
for ii, vv in enumerate(val):
|
||||
if len(vv.shape) < 2 or vv.shape[1] != 2:
|
||||
raise PatternError(f'vertex_lists contents must be an Nx2 arrays (polygon #{ii} fails)')
|
||||
if vv.shape[0] < 3:
|
||||
raise PatternError(f'vertex_lists contents must have at least 3 vertices (Nx2 where N>2) (polygon ${ii} has shape {vv.shape})')
|
||||
self._vertices = val
|
||||
|
||||
# xs property
|
||||
@property
|
||||
def xs(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
All vertex x coords as a 1D ndarray
|
||||
"""
|
||||
return self.vertices[:, 0]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vertex_lists: Iterable[ArrayLike],
|
||||
*,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
raw: bool = False,
|
||||
) -> None:
|
||||
if raw:
|
||||
assert isinstance(vertex_lists, list)
|
||||
assert all(isinstance(vv, numpy.ndarray) for vv in vertex_lists)
|
||||
assert isinstance(offset, numpy.ndarray)
|
||||
self._vertex_lists = vertex_lists
|
||||
self._offset = offset
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
else:
|
||||
self.vertices = vertices
|
||||
self.offset = offset
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.rotate(rotation)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> 'PolyCollection':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
new._offset = self._offset.copy()
|
||||
new._vertex_lists = [vv.copy() for vv in self._vertex_lists]
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
return new
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and all(numpy.array_equal(ss, oo) for ss, oo in zip(self.vertices, other.vertices))
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def __lt__(self, other: Shape) -> bool:
|
||||
if type(self) is not type(other):
|
||||
if repr(type(self)) != repr(type(other)):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
return id(type(self)) < id(type(other))
|
||||
|
||||
other = cast(PolyCollection, other)
|
||||
for vv, oo in zip(self.vertices, other.vertices):
|
||||
if not numpy.array_equal(vv, oo):
|
||||
min_len = min(vv.shape[0], oo.shape[0])
|
||||
eq_mask = vv[:min_len] != oo[:min_len]
|
||||
eq_lt = vv[:min_len] < oo[:min_len]
|
||||
eq_lt_masked = eq_lt[eq_mask]
|
||||
if eq_lt_masked.size > 0:
|
||||
return eq_lt_masked.flat[0]
|
||||
return vv.shape[0] < oo.shape[0]
|
||||
if len(self.vertex_lists) != len(other.vertex_lists):
|
||||
return len(self.vertex_lists) < len(other.vertex_lists):
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
def pop_as_polygon(self, index: int) -> 'Polygon':
|
||||
"""
|
||||
Remove one polygon from the list, and return it as a `Polygon` object.
|
||||
|
||||
Args:
|
||||
index: which polygon to pop
|
||||
"""
|
||||
verts = self.vertex_lists.pop(index)
|
||||
return Polygon(
|
||||
vertices=verts,
|
||||
offset=self.offset,
|
||||
repetition=self.repetition.copy(),
|
||||
annotations=copy.deepcopy(self.annotations),
|
||||
)
|
||||
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = None, # unused # noqa: ARG002
|
||||
max_arclen: float | None = None, # unused # noqa: ARG002
|
||||
) -> list['Polygon']:
|
||||
return [Polygon(
|
||||
vertices=vv,
|
||||
offset=self.offset,
|
||||
repetition=self.repetition.copy(),
|
||||
annotations=copy.deepcopy(self.annotations),
|
||||
) for vv in self.vertex_lists]
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]: # TODO note shape get_bounds doesn't include repetition
|
||||
mins = [numpy.min(vv, axis=0) for vv self.vertex_lists]
|
||||
maxs = [numpy.max(vv, axis=0) for vv self.vertex_lists]
|
||||
return numpy.vstack((self.offset + numpy.min(self.vertex_lists, axis=0),
|
||||
self.offset + numpy.max(self.vertex_lists, axis=0)))
|
||||
|
||||
def rotate(self, theta: float) -> 'Polygon':
|
||||
if theta != 0:
|
||||
for vv in self.vertex_lists:
|
||||
vv[:] = numpy.dot(rotation_matrix_2d(theta), vv.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> 'Polygon':
|
||||
for vv in self.vertex_lists:
|
||||
vv[:, axis - 1] *= -1
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Polygon':
|
||||
for vv in self.vertex_lists:
|
||||
vv *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
# Note: this function is going to be pretty slow for many-vertexed polygons, relative to
|
||||
# other shapes
|
||||
meanv = numpy.concatenate(self.vertex_lists).mean(axis=0)
|
||||
zeroed_vertices = [vv - meanv for vv in self.vertex_lists]
|
||||
offset = meanv + self.offset
|
||||
|
||||
scale = zeroed_vertices.std()
|
||||
normed_vertices = zeroed_vertices / scale
|
||||
|
||||
_, _, vertex_axis = numpy.linalg.svd(zeroed_vertices)
|
||||
rotation = numpy.arctan2(vertex_axis[0][1], vertex_axis[0][0]) % (2 * pi)
|
||||
rotated_vertices = numpy.vstack([numpy.dot(rotation_matrix_2d(-rotation), v)
|
||||
for v in normed_vertices])
|
||||
|
||||
# Reorder the vertices so that the one with lowest x, then y, comes first.
|
||||
x_min = rotated_vertices[:, 0].argmin()
|
||||
if not is_scalar(x_min):
|
||||
y_min = rotated_vertices[x_min, 1].argmin()
|
||||
x_min = cast(Sequence, x_min)[y_min]
|
||||
reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
|
||||
|
||||
# TODO: normalize mirroring?
|
||||
|
||||
return ((type(self), reordered_vertices.data.tobytes()),
|
||||
(offset, scale / norm_value, rotation, False),
|
||||
lambda: Polygon(reordered_vertices * norm_value))
|
||||
|
||||
def __repr__(self) -> str:
|
||||
centroid = self.offset + numpy.concatenate(self.vertex_lists).mean(axis=0)
|
||||
return f'<PolyCollection centroid {centroid} p{len(self.vertex_lists)}>'
|
Loading…
Reference in New Issue
Block a user