[PolyCollection] add PolyCollection shape

based on ndarrays of vertices and offsets
This commit is contained in:
jan 2024-10-17 18:04:25 -07:00 committed by Jan Petykiewicz
parent dea3eca178
commit e41e91f6e0
2 changed files with 208 additions and 0 deletions

View File

@ -10,6 +10,7 @@ from .shape import (
)
from .polygon import Polygon as Polygon
from .poly_collection import PolyCollection as PolyCollection
from .circle import Circle as Circle
from .ellipse import Ellipse as Ellipse
from .arc import Arc as Arc

View File

@ -0,0 +1,207 @@
from typing import Any, cast, Self
from collections.abc import Iterator
import copy
import functools
from itertools import chain
import numpy
from numpy import pi
from numpy.typing import NDArray, ArrayLike
from . import Shape, normalized_shape_tuple
from .polygon import Polygon
from ..repetition import Repetition
from ..utils import rotation_matrix_2d, annotations_lt, annotations_eq, rep2key, annotations_t
@functools.total_ordering
class PolyCollection(Shape):
"""
A collection of polygons, consisting of concatenated vertex arrays (N_m x 2 ndarray) which specify
implicitly-closed boundaries, and an array of offets specifying the first vertex of each
successive polygon.
A `normalized_form(...)` is available, but is untested and probably fairly slow.
"""
__slots__ = (
'_vertex_lists',
'_vertex_offsets',
# Inherited
'_offset', '_repetition', '_annotations',
)
_vertex_lists: NDArray[numpy.float64]
""" 2D NDArray ((N+M+...) x 2) of vertices `[[xa0, ya0], [xa1, ya1], ..., [xb0, yb0], [xb1, yb1], ... ]` """
_vertex_offsets: NDArray[numpy.intp]
""" 1D NDArray specifying the starting offset for each polygon """
@property
def vertex_lists(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
"""
Vertices of the polygons, ((N+M+...) x 2). Use with `vertex_offsets`.
"""
return self._vertex_lists
@property
def vertex_offsets(self) -> Any: # mypy#3004 NDArray[numpy.intp]:
"""
Starting offset (in `vertex_lists`) for each polygon
"""
return self._vertex_offsets
@property
def vertex_slices(self) -> Iterator[slice]:
"""
Iterator which provides slices which index vertex_lists
"""
for ii, ff in zip(
self._vertex_offsets,
chain(self._vertex_offsets, (self._vertex_lists.shape[0],)),
strict=True,
):
yield slice(ii, ff)
@property
def polygon_vertices(self) -> Iterator[NDArray[numpy.float64]]:
for slc in self.vertex_slices:
yield self._vertex_lists[slc]
def __init__(
self,
vertex_lists: ArrayLike,
vertex_offsets: ArrayLike,
*,
offset: ArrayLike = (0.0, 0.0),
rotation: float = 0.0,
repetition: Repetition | None = None,
annotations: annotations_t = None,
raw: bool = False,
) -> None:
if raw:
assert isinstance(vertex_lists, numpy.ndarray)
assert isinstance(vertex_offsets, numpy.ndarray)
assert isinstance(offset, numpy.ndarray)
self._vertex_lists = vertex_lists
self._vertex_offsets = vertex_offsets
self._offset = offset
self._repetition = repetition
self._annotations = annotations
else:
self._vertex_lists = numpy.asarray(vertex_lists, dtype=float)
self._vertex_offsets = numpy.asarray(vertex_offsets, dtype=numpy.intp)
self.offset = offset
self.repetition = repetition
self.annotations = annotations
if rotation:
self.rotate(rotation)
def __deepcopy__(self, memo: dict | None = None) -> Self:
memo = {} if memo is None else memo
new = copy.copy(self)
new._offset = self._offset.copy()
new._vertex_lists = self._vertex_lists.copy()
new._vertex_offsets = self._vertex_offsets.copy()
new._annotations = copy.deepcopy(self._annotations)
return new
def __eq__(self, other: Any) -> bool:
return (
type(self) is type(other)
and numpy.array_equal(self.offset, other.offset)
and numpy.array_equal(self._vertex_lists, other._vertex_lists)
and numpy.array_equal(self._vertex_offsets, other._vertex_offsets)
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def __lt__(self, other: Shape) -> bool:
if type(self) is not type(other):
if repr(type(self)) != repr(type(other)):
return repr(type(self)) < repr(type(other))
return id(type(self)) < id(type(other))
other = cast('PolyCollection', other)
for vv, oo in zip(self.polygon_vertices, other.polygon_vertices, strict=False):
if not numpy.array_equal(vv, oo):
min_len = min(vv.shape[0], oo.shape[0])
eq_mask = vv[:min_len] != oo[:min_len]
eq_lt = vv[:min_len] < oo[:min_len]
eq_lt_masked = eq_lt[eq_mask]
if eq_lt_masked.size > 0:
return eq_lt_masked.flat[0]
return vv.shape[0] < oo.shape[0]
if len(self.vertex_lists) != len(other.vertex_lists):
return len(self.vertex_lists) < len(other.vertex_lists)
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
def to_polygons(
self,
num_vertices: int | None = None, # unused # noqa: ARG002
max_arclen: float | None = None, # unused # noqa: ARG002
) -> list['Polygon']:
return [Polygon(
vertices = vv,
offset = self.offset,
repetition = copy.deepcopy(self.repetition),
annotations = copy.deepcopy(self.annotations),
) for vv in self.polygon_vertices]
def get_bounds_single(self) -> NDArray[numpy.float64]: # TODO note shape get_bounds doesn't include repetition
return numpy.vstack((self.offset + numpy.min(self._vertex_lists, axis=0),
self.offset + numpy.max(self._vertex_lists, axis=0)))
def rotate(self, theta: float) -> Self:
if theta != 0:
rot = rotation_matrix_2d(theta)
self._vertex_lists = numpy.einsum('ij,kj->ki', rot, self._vertex_lists)
return self
def mirror(self, axis: int = 0) -> Self:
self._vertex_lists[:, axis - 1] *= -1
return self
def scale_by(self, c: float) -> Self:
self._vertex_lists *= c
return self
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
# Note: this function is going to be pretty slow for many-vertexed polygons, relative to
# other shapes
meanv = self._vertex_lists.mean(axis=0)
zeroed_vertices = self._vertex_lists - [meanv]
offset = meanv + self.offset
scale = zeroed_vertices.std()
normed_vertices = zeroed_vertices / scale
_, _, vertex_axis = numpy.linalg.svd(zeroed_vertices)
rotation = numpy.arctan2(vertex_axis[0][1], vertex_axis[0][0]) % (2 * pi)
rotated_vertices = numpy.einsum('ij,kj->ki', rotation_matrix_2d(-rotation), normed_vertices)
# TODO consider how to reorder vertices for polycollection
## Reorder the vertices so that the one with lowest x, then y, comes first.
#x_min = rotated_vertices[:, 0].argmin()
#if not is_scalar(x_min):
# y_min = rotated_vertices[x_min, 1].argmin()
# x_min = cast('Sequence', x_min)[y_min]
#reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
# TODO: normalize mirroring?
return ((type(self), rotated_vertices.data.tobytes() + self._vertex_offsets.tobytes()),
(offset, scale / norm_value, rotation, False),
lambda: PolyCollection(
vertex_lists=rotated_vertices * norm_value,
vertex_offsets=self._vertex_offsets,
),
)
def __repr__(self) -> str:
centroid = self.offset + self.vertex_lists.mean(axis=0)
return f'<PolyCollection centroid {centroid} p{len(self.vertex_offsets)}>'