|
|
|
@ -0,0 +1,440 @@
|
|
|
|
|
"""
|
|
|
|
|
GDSII file format readers and writers using the `TODO` library.
|
|
|
|
|
|
|
|
|
|
Note that GDSII references follow the same convention as `masque`,
|
|
|
|
|
with this order of operations:
|
|
|
|
|
1. Mirroring
|
|
|
|
|
2. Rotation
|
|
|
|
|
3. Scaling
|
|
|
|
|
4. Offset and array expansion (no mirroring/rotation/scaling applied to offsets)
|
|
|
|
|
|
|
|
|
|
Scaling, rotation, and mirroring apply to individual instances, not grid
|
|
|
|
|
vectors or offsets.
|
|
|
|
|
|
|
|
|
|
Notes:
|
|
|
|
|
* absolute positioning is not supported
|
|
|
|
|
* PLEX is not supported
|
|
|
|
|
* ELFLAGS are not supported
|
|
|
|
|
* GDS does not support library- or structure-level annotations
|
|
|
|
|
* GDS creation/modification/access times are set to 1900-01-01 for reproducibility.
|
|
|
|
|
* Gzip modification time is set to 0 (start of current epoch, usually 1970-01-01)
|
|
|
|
|
|
|
|
|
|
TODO writing
|
|
|
|
|
TODO warn on boxes, nodes
|
|
|
|
|
"""
|
|
|
|
|
from typing import IO, cast, Any
|
|
|
|
|
from collections.abc import Iterable, Mapping, Callable
|
|
|
|
|
import io
|
|
|
|
|
import mmap
|
|
|
|
|
import logging
|
|
|
|
|
import pathlib
|
|
|
|
|
import gzip
|
|
|
|
|
import string
|
|
|
|
|
from pprint import pformat
|
|
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
|
from numpy.typing import ArrayLike, NDArray
|
|
|
|
|
from numpy.testing import assert_equal
|
|
|
|
|
import pyarrow
|
|
|
|
|
from pyarrow.cffi import ffi
|
|
|
|
|
|
|
|
|
|
from .utils import is_gzipped, tmpfile
|
|
|
|
|
from .. import Pattern, Ref, PatternError, LibraryError, Label, Shape
|
|
|
|
|
from ..shapes import Polygon, Path
|
|
|
|
|
from ..repetition import Grid
|
|
|
|
|
from ..utils import layer_t, annotations_t
|
|
|
|
|
from ..library import LazyLibrary, Library, ILibrary, ILibraryView
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
clib = ffi.dlopen('/home/jan/projects/klamath-rs/target/release/libklamath_rs_ext.so')
|
|
|
|
|
ffi.cdef('void read_path(char* path, struct ArrowArray* array, struct ArrowSchema* schema);')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path_cap_map = {
|
|
|
|
|
0: Path.Cap.Flush,
|
|
|
|
|
1: Path.Cap.Circle,
|
|
|
|
|
2: Path.Cap.Square,
|
|
|
|
|
4: Path.Cap.SquareCustom,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rint_cast(val: ArrayLike) -> NDArray[numpy.int32]:
|
|
|
|
|
return numpy.rint(val).astype(numpy.int32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _read_to_arrow(
|
|
|
|
|
filename: str | pathlib.Path,
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
) -> pyarrow.Array:
|
|
|
|
|
path = pathlib.Path(filename)
|
|
|
|
|
path.resolve()
|
|
|
|
|
ptr_array = ffi.new('struct ArrowArray[]', 1)
|
|
|
|
|
ptr_schema = ffi.new('struct ArrowSchema[]', 1)
|
|
|
|
|
clib.read_path(str(path).encode(), ptr_array, ptr_schema)
|
|
|
|
|
|
|
|
|
|
iptr_schema = int(ffi.cast('uintptr_t', ptr_schema))
|
|
|
|
|
iptr_array = int(ffi.cast('uintptr_t', ptr_array))
|
|
|
|
|
arrow_arr = pyarrow.Array._import_from_c(iptr_array, iptr_schema)
|
|
|
|
|
|
|
|
|
|
return arrow_arr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def readfile(
|
|
|
|
|
filename: str | pathlib.Path,
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
) -> tuple[Library, dict[str, Any]]:
|
|
|
|
|
"""
|
|
|
|
|
Wrapper for `read()` that takes a filename or path instead of a stream.
|
|
|
|
|
|
|
|
|
|
Will automatically decompress gzipped files.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
filename: Filename to save to.
|
|
|
|
|
*args: passed to `read()`
|
|
|
|
|
**kwargs: passed to `read()`
|
|
|
|
|
"""
|
|
|
|
|
arrow_arr = _read_to_arrow(filename)
|
|
|
|
|
assert len(arrow_arr) == 1
|
|
|
|
|
|
|
|
|
|
results = read_arrow(arrow_arr[0])
|
|
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_arrow(
|
|
|
|
|
libarr: pyarrow.Array,
|
|
|
|
|
raw_mode: bool = True,
|
|
|
|
|
) -> tuple[Library, dict[str, Any]]:
|
|
|
|
|
"""
|
|
|
|
|
# TODO check GDSII file for cycles!
|
|
|
|
|
Read a gdsii file and translate it into a dict of Pattern objects. GDSII structures are
|
|
|
|
|
translated into Pattern objects; boundaries are translated into polygons, and srefs and arefs
|
|
|
|
|
are translated into Ref objects.
|
|
|
|
|
|
|
|
|
|
Additional library info is returned in a dict, containing:
|
|
|
|
|
'name': name of the library
|
|
|
|
|
'meters_per_unit': number of meters per database unit (all values are in database units)
|
|
|
|
|
'logical_units_per_unit': number of "logical" units displayed by layout tools (typically microns)
|
|
|
|
|
per database unit
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
stream: Stream to read from.
|
|
|
|
|
raw_mode: If True, constructs shapes in raw mode, bypassing most data validation, Default True.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
- dict of pattern_name:Patterns generated from GDSII structures
|
|
|
|
|
- dict of GDSII library info
|
|
|
|
|
"""
|
|
|
|
|
library_info = _read_header(libarr)
|
|
|
|
|
|
|
|
|
|
layer_names_np = libarr['layers'].values.to_numpy().view('i2').reshape((-1, 2))
|
|
|
|
|
layer_tups = [tuple(pair) for pair in layer_names_np]
|
|
|
|
|
|
|
|
|
|
cell_ids = libarr['cells'].values.field('id').to_numpy()
|
|
|
|
|
cell_names = libarr['cell_names'].as_py()
|
|
|
|
|
|
|
|
|
|
def get_geom(libarr: pyarrow.Array, geom_type: str) -> dict[str, Any]:
|
|
|
|
|
el = libarr['cells'].values.field(geom_type)
|
|
|
|
|
elem = dict(
|
|
|
|
|
offsets = el.offsets.to_numpy(),
|
|
|
|
|
xy_arr = el.values.field('xy').values.to_numpy().reshape((-1, 2)),
|
|
|
|
|
xy_off = el.values.field('xy').offsets.to_numpy() // 2,
|
|
|
|
|
layer_inds = el.values.field('layer').to_numpy(),
|
|
|
|
|
prop_off = el.values.field('properties').offsets.to_numpy(),
|
|
|
|
|
prop_key = el.values.field('properties').values.field('key').to_numpy(),
|
|
|
|
|
prop_val = el.values.field('properties').values.field('value').to_pylist(),
|
|
|
|
|
)
|
|
|
|
|
return elem
|
|
|
|
|
|
|
|
|
|
rf = libarr['cells'].values.field('refs')
|
|
|
|
|
refs = dict(
|
|
|
|
|
offsets = rf.offsets.to_numpy(),
|
|
|
|
|
targets = rf.values.field('target').to_numpy(),
|
|
|
|
|
xy = rf.values.field('xy').to_numpy().view('i4').reshape((-1, 2)),
|
|
|
|
|
invert_y = rf.values.field('invert_y').fill_null(False).to_numpy(zero_copy_only=False),
|
|
|
|
|
angle_rad = numpy.rad2deg(rf.values.field('angle_deg').fill_null(0).to_numpy()),
|
|
|
|
|
scale = rf.values.field('mag').fill_null(1).to_numpy(),
|
|
|
|
|
rep_valid = rf.values.field('repetition').is_valid().to_numpy(zero_copy_only=False),
|
|
|
|
|
rep_xy0 = rf.values.field('repetition').field('xy0').fill_null(0).to_numpy().view('i4').reshape((-1, 2)),
|
|
|
|
|
rep_xy1 = rf.values.field('repetition').field('xy1').fill_null(0).to_numpy().view('i4').reshape((-1, 2)),
|
|
|
|
|
rep_counts = rf.values.field('repetition').field('counts').fill_null(0).to_numpy().view('i2').reshape((-1, 2)),
|
|
|
|
|
prop_off = rf.values.field('properties').offsets.to_numpy(),
|
|
|
|
|
prop_key = rf.values.field('properties').values.field('key').to_numpy(),
|
|
|
|
|
prop_val = rf.values.field('properties').values.field('value').to_pylist(),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
txt = libarr['cells'].values.field('texts')
|
|
|
|
|
texts = dict(
|
|
|
|
|
offsets = txt.offsets.to_numpy(),
|
|
|
|
|
layer_inds = txt.values.field('layer').to_numpy(),
|
|
|
|
|
xy = txt.values.field('xy').to_numpy().view('i4').reshape((-1, 2)),
|
|
|
|
|
string = txt.values.field('string').to_pylist(),
|
|
|
|
|
prop_off = txt.values.field('properties').offsets.to_numpy(),
|
|
|
|
|
prop_key = txt.values.field('properties').values.field('key').to_numpy(),
|
|
|
|
|
prop_val = txt.values.field('properties').values.field('value').to_pylist(),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
elements = dict(
|
|
|
|
|
boundaries = get_geom(libarr, 'boundaries'),
|
|
|
|
|
paths = get_geom(libarr, 'paths'),
|
|
|
|
|
boxes = get_geom(libarr, 'boxes'),
|
|
|
|
|
nodes = get_geom(libarr, 'nodes'),
|
|
|
|
|
texts = texts,
|
|
|
|
|
refs = refs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
paths = libarr['cells'].values.field('paths')
|
|
|
|
|
elements['paths'].update(dict(
|
|
|
|
|
width = paths.values.field('width').to_numpy(),
|
|
|
|
|
path_type = paths.values.field('path_type').to_numpy(),
|
|
|
|
|
extensions = numpy.stack((
|
|
|
|
|
paths.values.field('extension_start').to_numpy(zero_copy_only=False),
|
|
|
|
|
paths.values.field('extension_end').to_numpy(zero_copy_only=False),
|
|
|
|
|
), axis=-1),
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
global_args = dict(
|
|
|
|
|
cell_names = cell_names,
|
|
|
|
|
layer_tups = layer_tups,
|
|
|
|
|
raw_mode = raw_mode,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
mlib = Library()
|
|
|
|
|
for cc, cell in enumerate(libarr['cells']):
|
|
|
|
|
name = cell_names[cell_ids[cc]]
|
|
|
|
|
pat = read_cell(cc, cell, libarr['cell_names'], global_args=global_args, elements=elements)
|
|
|
|
|
mlib[name] = pat
|
|
|
|
|
|
|
|
|
|
return mlib, library_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _read_header(libarr: pyarrow.Array) -> dict[str, Any]:
|
|
|
|
|
"""
|
|
|
|
|
Read the file header and create the library_info dict.
|
|
|
|
|
"""
|
|
|
|
|
library_info = dict(
|
|
|
|
|
name = libarr['lib_name'],
|
|
|
|
|
meters_per_unit = libarr['meters_per_db_unit'],
|
|
|
|
|
logical_units_per_unit = libarr['user_units_per_db_unit'],
|
|
|
|
|
)
|
|
|
|
|
return library_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_cell(
|
|
|
|
|
cc: int,
|
|
|
|
|
cellarr: pyarrow.Array,
|
|
|
|
|
cell_names: pyarrow.Array,
|
|
|
|
|
elements: dict[str, Any],
|
|
|
|
|
global_args: dict[str, Any],
|
|
|
|
|
) -> Pattern:
|
|
|
|
|
"""
|
|
|
|
|
TODO
|
|
|
|
|
Read elements from a GDS structure and build a Pattern from them.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
stream: Seekable stream, positioned at a record boundary.
|
|
|
|
|
Will be read until an ENDSTR record is consumed.
|
|
|
|
|
name: Name of the resulting Pattern
|
|
|
|
|
raw_mode: If True, bypass per-shape data validation. Default True.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
A pattern containing the elements that were read.
|
|
|
|
|
"""
|
|
|
|
|
pat = Pattern()
|
|
|
|
|
|
|
|
|
|
_boundaries_to_polygons(pat, global_args, elements['boundaries'], cc)
|
|
|
|
|
_gpaths_to_mpaths(pat, global_args, elements['paths'], cc)
|
|
|
|
|
_grefs_to_mrefs(pat, global_args, elements['refs'], cc)
|
|
|
|
|
_texts_to_labels(pat, global_args, elements['texts'], cc)
|
|
|
|
|
|
|
|
|
|
return pat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _grefs_to_mrefs(
|
|
|
|
|
pat: Pattern,
|
|
|
|
|
global_args: dict[str, Any],
|
|
|
|
|
elem: dict[str, Any],
|
|
|
|
|
cc: int,
|
|
|
|
|
) -> None:
|
|
|
|
|
cell_names = global_args['cell_names']
|
|
|
|
|
elem_off = elem['offsets'] # which elements belong to each cell
|
|
|
|
|
xy = elem['xy']
|
|
|
|
|
prop_key = elem['prop_key']
|
|
|
|
|
prop_val = elem['prop_val']
|
|
|
|
|
targets = elem['targets']
|
|
|
|
|
|
|
|
|
|
rep_valid = elem['rep_valid']
|
|
|
|
|
|
|
|
|
|
elem_count = elem_off[cc + 1] - elem_off[cc]
|
|
|
|
|
elem_slc = slice(elem_off[cc], elem_off[cc] + elem_count + 1) # +1 to capture ending location for last elem
|
|
|
|
|
prop_offs = elem['prop_off'][elem_slc] # which props belong to each element
|
|
|
|
|
|
|
|
|
|
for ee in range(elem_count):
|
|
|
|
|
target = cell_names[targets[ee]]
|
|
|
|
|
offset = xy[ee]
|
|
|
|
|
mirr = elem['invert_y'][ee]
|
|
|
|
|
rot = elem['angle_rad'][ee]
|
|
|
|
|
mag = elem['scale'][ee]
|
|
|
|
|
|
|
|
|
|
rep: None | Grid = None
|
|
|
|
|
if rep_valid[ee]:
|
|
|
|
|
a_vector = elem['rep_xy0'][ee]
|
|
|
|
|
b_vector = elem['rep_xy1'][ee]
|
|
|
|
|
a_count, b_count = elem['rep_counts'][ee]
|
|
|
|
|
rep = Grid(a_vector=a_vector, b_vector=b_vector, a_count=a_count, b_count=b_count)
|
|
|
|
|
|
|
|
|
|
annotations: None | dict[int, str] = None
|
|
|
|
|
prop_ii, prop_ff = prop_offs[ee], prop_offs[ee + 1]
|
|
|
|
|
if prop_ii < prop_ff:
|
|
|
|
|
annotations = {prop_key[off]: prop_val[off] for off in range(prop_ii, prop_ff)}
|
|
|
|
|
|
|
|
|
|
ref = Ref(offset=offset, mirrored=mirr, rotation=rot, scale=mag, repetition=rep, annotations=annotations)
|
|
|
|
|
pat.refs[target].append(ref)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _texts_to_labels(
|
|
|
|
|
pat: Pattern,
|
|
|
|
|
global_args: dict[str, Any],
|
|
|
|
|
elem: dict[str, Any],
|
|
|
|
|
cc: int,
|
|
|
|
|
) -> None:
|
|
|
|
|
elem_off = elem['offsets'] # which elements belong to each cell
|
|
|
|
|
xy = elem['xy']
|
|
|
|
|
layer_tups = global_args['layer_tups']
|
|
|
|
|
layer_inds = elem['layer_inds']
|
|
|
|
|
prop_key = elem['prop_key']
|
|
|
|
|
prop_val = elem['prop_val']
|
|
|
|
|
|
|
|
|
|
elem_count = elem_off[cc + 1] - elem_off[cc]
|
|
|
|
|
elem_slc = slice(elem_off[cc], elem_off[cc] + elem_count + 1) # +1 to capture ending location for last elem
|
|
|
|
|
prop_offs = elem['prop_off'][elem_slc] # which props belong to each element
|
|
|
|
|
|
|
|
|
|
for ee in range(elem_count):
|
|
|
|
|
layer = layer_tups[layer_inds[ee]]
|
|
|
|
|
offset = xy[ee]
|
|
|
|
|
string = elem['string'][ee]
|
|
|
|
|
|
|
|
|
|
annotations: None | dict[int, str] = None
|
|
|
|
|
prop_ii, prop_ff = prop_offs[ee], prop_offs[ee + 1]
|
|
|
|
|
if prop_ii < prop_ff:
|
|
|
|
|
annotations = {prop_key[off]: prop_val[off] for off in range(prop_ii, prop_ff)}
|
|
|
|
|
|
|
|
|
|
mlabel = Label(string=string, offset=offset, annotations=annotations)
|
|
|
|
|
pat.labels[layer].append(mlabel)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _gpaths_to_mpaths(
|
|
|
|
|
pat: Pattern,
|
|
|
|
|
global_args: dict[str, Any],
|
|
|
|
|
elem: dict[str, Any],
|
|
|
|
|
cc: int,
|
|
|
|
|
) -> None:
|
|
|
|
|
elem_off = elem['offsets'] # which elements belong to each cell
|
|
|
|
|
xy_val = elem['xy_arr']
|
|
|
|
|
layer_tups = global_args['layer_tups']
|
|
|
|
|
layer_inds = elem['layer_inds']
|
|
|
|
|
prop_key = elem['prop_key']
|
|
|
|
|
prop_val = elem['prop_val']
|
|
|
|
|
|
|
|
|
|
elem_count = elem_off[cc + 1] - elem_off[cc]
|
|
|
|
|
elem_slc = slice(elem_off[cc], elem_off[cc] + elem_count + 1) # +1 to capture ending location for last elem
|
|
|
|
|
xy_offs = elem['xy_off'][elem_slc] # which xy coords belong to each element
|
|
|
|
|
prop_offs = elem['prop_off'][elem_slc] # which props belong to each element
|
|
|
|
|
|
|
|
|
|
zeros = numpy.zeros((elem_count, 2))
|
|
|
|
|
raw_mode = global_args['raw_mode']
|
|
|
|
|
for ee in range(elem_count):
|
|
|
|
|
elem_ind = elem_off[cc] + ee
|
|
|
|
|
layer = layer_tups[layer_inds[ee]]
|
|
|
|
|
vertices = xy_val[xy_offs[ee]:xy_offs[ee + 1]]
|
|
|
|
|
width = elem['width'][elem_ind]
|
|
|
|
|
cap_int = elem['path_type'][elem_ind]
|
|
|
|
|
cap = path_cap_map[cap_int]
|
|
|
|
|
if cap_int == 4:
|
|
|
|
|
cap_extensions = elem['extensions'][elem_ind]
|
|
|
|
|
else:
|
|
|
|
|
cap_extensions = None
|
|
|
|
|
|
|
|
|
|
annotations: None | dict[int, str] = None
|
|
|
|
|
prop_ii, prop_ff = prop_offs[ee], prop_offs[ee + 1]
|
|
|
|
|
if prop_ii < prop_ff:
|
|
|
|
|
annotations = {prop_key[off]: prop_val[off] for off in range(prop_ii, prop_ff)}
|
|
|
|
|
|
|
|
|
|
path = Path(vertices=vertices, offset=zeros[ee], annotations=annotations, raw=raw_mode,
|
|
|
|
|
width=width, cap=cap,cap_extensions=cap_extensions)
|
|
|
|
|
pat.shapes[layer].append(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _boundaries_to_polygons(
|
|
|
|
|
pat: Pattern,
|
|
|
|
|
global_args: dict[str, Any],
|
|
|
|
|
elem: dict[str, Any],
|
|
|
|
|
cc: int,
|
|
|
|
|
) -> None:
|
|
|
|
|
elem_off = elem['offsets'] # which elements belong to each cell
|
|
|
|
|
xy_val = elem['xy_arr']
|
|
|
|
|
layer_tups = global_args['layer_tups']
|
|
|
|
|
layer_inds = elem['layer_inds']
|
|
|
|
|
prop_key = elem['prop_key']
|
|
|
|
|
prop_val = elem['prop_val']
|
|
|
|
|
|
|
|
|
|
elem_count = elem_off[cc + 1] - elem_off[cc]
|
|
|
|
|
elem_slc = slice(elem_off[cc], elem_off[cc] + elem_count + 1) # +1 to capture ending location for last elem
|
|
|
|
|
xy_offs = elem['xy_off'][elem_slc] # which xy coords belong to each element
|
|
|
|
|
prop_offs = elem['prop_off'][elem_slc] # which props belong to each element
|
|
|
|
|
|
|
|
|
|
zeros = numpy.zeros((elem_count, 2))
|
|
|
|
|
raw_mode = global_args['raw_mode']
|
|
|
|
|
for ee in range(elem_count):
|
|
|
|
|
layer = layer_tups[layer_inds[ee]]
|
|
|
|
|
vertices = xy_val[xy_offs[ee]:xy_offs[ee + 1] - 1] # -1 to drop closing point
|
|
|
|
|
|
|
|
|
|
annotations: None | dict[int, str] = None
|
|
|
|
|
prop_ii, prop_ff = prop_offs[ee], prop_offs[ee + 1]
|
|
|
|
|
if prop_ii < prop_ff:
|
|
|
|
|
annotations = {prop_key[off]: prop_val[off] for off in range(prop_ii, prop_ff)}
|
|
|
|
|
|
|
|
|
|
poly = Polygon(vertices=vertices, offset=zeros[ee], annotations=annotations, raw=raw_mode)
|
|
|
|
|
pat.shapes[layer].append(poly)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _properties_to_annotations(properties: pyarrow.Array) -> annotations_t:
|
|
|
|
|
return {prop['key'].as_py(): prop['value'].as_py() for prop in properties}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_valid_names(
|
|
|
|
|
names: Iterable[str],
|
|
|
|
|
max_length: int = 32,
|
|
|
|
|
) -> None:
|
|
|
|
|
"""
|
|
|
|
|
Check all provided names to see if they're valid GDSII cell names.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
names: Collection of names to check
|
|
|
|
|
max_length: Max allowed length
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
allowed_chars = set(string.ascii_letters + string.digits + '_?$')
|
|
|
|
|
|
|
|
|
|
bad_chars = [
|
|
|
|
|
name for name in names
|
|
|
|
|
if not set(name).issubset(allowed_chars)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
bad_lengths = [
|
|
|
|
|
name for name in names
|
|
|
|
|
if len(name) > max_length
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
if bad_chars:
|
|
|
|
|
logger.error('Names contain invalid characters:\n' + pformat(bad_chars))
|
|
|
|
|
|
|
|
|
|
if bad_lengths:
|
|
|
|
|
logger.error(f'Names too long (>{max_length}:\n' + pformat(bad_chars))
|
|
|
|
|
|
|
|
|
|
if bad_chars or bad_lengths:
|
|
|
|
|
raise LibraryError('Library contains invalid names, see log above')
|