forked from jan/opencl_fdfd
Use fdfd_tools.solvers.generic for csr solve
This commit is contained in:
parent
80592dff79
commit
848f86f6ee
@ -14,7 +14,7 @@ satisfy the constraints for the 'conjugate gradient' algorithm
|
||||
(positive definite, symmetric) and some that don't.
|
||||
"""
|
||||
|
||||
from typing import List, Dict, Any
|
||||
from typing import Dict, Any
|
||||
import time
|
||||
|
||||
import numpy
|
||||
@ -22,7 +22,7 @@ from numpy.linalg import norm
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
|
||||
import fdfd_tools.operators
|
||||
import fdfd_tools.solvers
|
||||
|
||||
from . import ops
|
||||
|
||||
@ -43,7 +43,7 @@ class CSRMatrix(object):
|
||||
self.data = pyopencl.array.to_device(queue, m.data.astype(numpy.complex128))
|
||||
|
||||
|
||||
def cg(a: 'scipy.sparse.csr_matrix',
|
||||
def cg(A: 'scipy.sparse.csr_matrix',
|
||||
b: numpy.ndarray,
|
||||
max_iters: int = 10000,
|
||||
err_threshold: float = 1e-6,
|
||||
@ -54,7 +54,7 @@ def cg(a: 'scipy.sparse.csr_matrix',
|
||||
"""
|
||||
General conjugate-gradient solver for sparse matrices, where A @ x = b.
|
||||
|
||||
:param a: Matrix to solve (CSR format)
|
||||
:param A: Matrix to solve (CSR format)
|
||||
:param b: Right-hand side vector (dense ndarray)
|
||||
:param max_iters: Maximum number of iterations
|
||||
:param err_threshold: Error threshold for successful solve, relative to norm(b)
|
||||
@ -84,7 +84,7 @@ def cg(a: 'scipy.sparse.csr_matrix',
|
||||
rho = 1.0 + 0j
|
||||
errs = []
|
||||
|
||||
m = CSRMatrix(queue, a)
|
||||
m = CSRMatrix(queue, A)
|
||||
|
||||
'''
|
||||
Generate OpenCL kernels
|
||||
@ -102,7 +102,8 @@ def cg(a: 'scipy.sparse.csr_matrix',
|
||||
|
||||
_, err2 = rhoerr_step(r, [])
|
||||
b_norm = numpy.sqrt(err2)
|
||||
print('b_norm check: ', b_norm)
|
||||
if verbose:
|
||||
print('b_norm check: ', b_norm)
|
||||
|
||||
success = False
|
||||
for k in range(max_iters):
|
||||
@ -126,7 +127,7 @@ def cg(a: 'scipy.sparse.csr_matrix',
|
||||
e = a_step(v, m, p, e)
|
||||
alpha = rho / dot(p, v, e)
|
||||
|
||||
if k % 1000 == 0:
|
||||
if verbose and k % 1000 == 0:
|
||||
print(k)
|
||||
|
||||
'''
|
||||
@ -136,71 +137,43 @@ def cg(a: 'scipy.sparse.csr_matrix',
|
||||
|
||||
x = x.get()
|
||||
|
||||
if success:
|
||||
print('Success', end='')
|
||||
else:
|
||||
print('Failure', end=', ')
|
||||
print(', {} iterations in {} sec: {} iterations/sec \
|
||||
'.format(k, time_elapsed, k / time_elapsed))
|
||||
print('final error', errs[-1])
|
||||
print('overhead {} sec'.format(start_time2 - start_time))
|
||||
if verbose:
|
||||
if success:
|
||||
print('Success', end='')
|
||||
else:
|
||||
print('Failure', end=', ')
|
||||
print(', {} iterations in {} sec: {} iterations/sec \
|
||||
'.format(k, time_elapsed, k / time_elapsed))
|
||||
print('final error', errs[-1])
|
||||
print('overhead {} sec'.format(start_time2 - start_time))
|
||||
|
||||
print('Final residual:', norm(a @ x - b) / norm(b))
|
||||
print('Final residual:', norm(A @ x - b) / norm(b))
|
||||
return x
|
||||
|
||||
|
||||
def fdfd_cg_solver(omega: complex,
|
||||
dxes: List[List[numpy.ndarray]],
|
||||
J: numpy.ndarray,
|
||||
epsilon: numpy.ndarray,
|
||||
mu: numpy.ndarray = None,
|
||||
pec: numpy.ndarray = None,
|
||||
pmc: numpy.ndarray = None,
|
||||
adjoint: bool = False,
|
||||
solver_opts: Dict[str, Any] = None,
|
||||
def fdfd_cg_solver(solver_opts: Dict[str, Any] = None,
|
||||
**fdfd_args
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
Conjugate gradient FDFD solver using CSR sparse matrices, mainly for
|
||||
testing and development since it's much slower than the solver in main.py.
|
||||
|
||||
All ndarray arguments should be 1D arrays. To linearize a list of 3 3D ndarrays,
|
||||
either use fdfd_tools.vec() or numpy:
|
||||
f_1D = numpy.hstack(tuple((fi.flatten(order='F') for fi in [f_x, f_y, f_z])))
|
||||
Calls fdfd_tools.solvers.generic(**fdfd_args,
|
||||
matrix_solver=opencl_fdfd.csr.cg,
|
||||
matrix_solver_opts=solver_opts)
|
||||
|
||||
:param omega: Complex frequency to solve at.
|
||||
:param dxes: [[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes)
|
||||
:param J: Electric current distribution (at E-field locations)
|
||||
:param epsilon: Dielectric constant distribution (at E-field locations)
|
||||
:param mu: Magnetic permeability distribution (at H-field locations)
|
||||
:param pec: Perfect electric conductor distribution
|
||||
(at E-field locations; non-zero value indicates PEC is present)
|
||||
:param pmc: Perfect magnetic conductor distribution
|
||||
(at H-field locations; non-zero value indicates PMC is present)
|
||||
:param adjoint: If true, solves the adjoint problem.
|
||||
:param solver_opts: Passed as kwargs to opencl_fdfd.csr.cg(**solver_opts)
|
||||
:param solver_opts: Passed as matrix_solver_opts to fdfd_tools.solver.generic(...).
|
||||
Default {}.
|
||||
:param fdfd_args: Passed as **fdfd_args to fdfd_tools.solver.generic(...).
|
||||
Should include all of the arguments **except** matrix_solver and matrix_solver_opts
|
||||
:return: E-field which solves the system.
|
||||
"""
|
||||
|
||||
if solver_opts is None:
|
||||
solver_opts = dict()
|
||||
|
||||
b0 = -1j * omega * J
|
||||
A0 = fdfd_tools.operators.e_full(omega, dxes, epsilon=epsilon, mu=mu, pec=pec, pmc=pmc)
|
||||
x = fdfd_tools.solvers.generic(matrix_solver=cg,
|
||||
matrix_solver_opts=solver_opts,
|
||||
**fdfd_args)
|
||||
|
||||
Pl, Pr = fdfd_tools.operators.e_full_preconditioners(dxes)
|
||||
|
||||
if adjoint:
|
||||
A = (Pl @ A0 @ Pr).H
|
||||
b = Pr.H @ b0
|
||||
else:
|
||||
A = Pl @ A0 @ Pr
|
||||
b = Pl @ b0
|
||||
|
||||
x = cg(A.tocsr(), b, **solver_opts)
|
||||
|
||||
if adjoint:
|
||||
x0 = Pl.H @ x
|
||||
else:
|
||||
x0 = Pr @ x
|
||||
|
||||
return x0
|
||||
return x
|
||||
|
Loading…
Reference in New Issue
Block a user