forked from jan/fdfd_tools
Update Rayleigh quotient iteration to allow arbitrary linear operators
This commit is contained in:
parent
4aa2d07cef
commit
d09eff990f
@ -33,10 +33,11 @@ def power_iteration(operator: sparse.spmatrix,
|
||||
return lm_eigval, v
|
||||
|
||||
|
||||
def rayleigh_quotient_iteration(operator: sparse.spmatrix,
|
||||
def rayleigh_quotient_iteration(operator: sparse.spmatrix or spalg.LinearOperator,
|
||||
guess_vector: numpy.ndarray,
|
||||
iterations: int = 40,
|
||||
tolerance: float = 1e-13,
|
||||
solver=None,
|
||||
) -> Tuple[complex, numpy.ndarray]:
|
||||
"""
|
||||
Use Rayleigh quotient iteration to refine an eigenvector guess.
|
||||
@ -46,16 +47,33 @@ def rayleigh_quotient_iteration(operator: sparse.spmatrix,
|
||||
:param iterations: Maximum number of iterations to perform. Default 40.
|
||||
:param tolerance: Stop iteration if (A - I*eigenvalue) @ v < tolerance.
|
||||
Default 1e-13.
|
||||
:param solver: Solver function of the form x = solver(A, b).
|
||||
By default, use scipy.sparse.spsolve for sparse matrices and
|
||||
scipy.sparse.bicgstab for general LinearOperator instances.
|
||||
:return: (eigenvalue, eigenvector)
|
||||
"""
|
||||
try:
|
||||
_test = operator - sparse.eye(operator.shape)
|
||||
shift = lambda eigval: eigval * sparse.eye(operator.shape[0])
|
||||
if solver is None:
|
||||
solver = spalg.spsolve
|
||||
except TypeError:
|
||||
shift = lambda eigval: spalg.LinearOperator(shape=operator.shape,
|
||||
dtype=operator.dtype,
|
||||
matvec=lambda v: eigval * v)
|
||||
if solver is None:
|
||||
solver = lambda A, b: spalg.bicgstab(A, b)[0]
|
||||
|
||||
v = guess_vector
|
||||
v /= norm(v)
|
||||
for _ in range(iterations):
|
||||
eigval = v.conj() @ operator @ v
|
||||
eigval = v.conj() @ (operator @ v)
|
||||
if norm(operator @ v - eigval * v) < tolerance:
|
||||
break
|
||||
v = spalg.spsolve(operator - eigval * sparse.eye(operator.shape[0]), v)
|
||||
v /= norm(v)
|
||||
|
||||
shifted_operator = operator - shift(eigval)
|
||||
v = solver(shifted_operator, v)
|
||||
v /= norm(v)
|
||||
return eigval, v
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user