forked from jan/fdfd_tools
Add Bloch eigenproblem
This commit is contained in:
parent
6503b488ce
commit
4aa2d07cef
406
fdfd_tools/bloch.py
Normal file
406
fdfd_tools/bloch.py
Normal file
@ -0,0 +1,406 @@
|
||||
'''
|
||||
Bloch eigenmode solver/operators
|
||||
|
||||
This module contains functions for generating and solving the
|
||||
3D Bloch eigenproblem. The approach is to transform the problem
|
||||
into the (spatial) fourier domain, transforming the equation
|
||||
1/mu * curl(1/eps * curl(H)) = (w/c)^2 H
|
||||
into
|
||||
conv(1/mu_k, ik x conv(1/eps_k, ik x H_k)) = (w/c)^2 H_k
|
||||
where:
|
||||
- the _k subscript denotes a 3D fourier transformed field
|
||||
- each component of H_k corresponds to a plane wave with wavevector k
|
||||
- x is the cross product
|
||||
- conv denotes convolution
|
||||
|
||||
Since k and H are orthogonal for each plane wave, we can use each
|
||||
k to create an orthogonal basis (k, m, n), with k x m = n, and
|
||||
|m| = |n| = 1. The cross products are then simplified with
|
||||
|
||||
k @ h = kx hx + ky hy + kz hz = 0 = hk
|
||||
h = hk + hm + hn = hm + hn
|
||||
k = kk + km + kn = kk = |k|
|
||||
|
||||
k x h = (ky hz - kz hy,
|
||||
kz hx - kx hz,
|
||||
kx hy - ky hx)
|
||||
= ((k x h) @ k, (k x h) @ m, (k x h) @ n)_kmn
|
||||
= (0, (m x k) @ h, (n x k) @ h)_kmn # triple product ordering
|
||||
= (0, kk (-n @ h), kk (m @ h))_kmn # (m x k) = -|k| n, etc.
|
||||
= |k| (0, -h @ n, h @ m)_kmn
|
||||
|
||||
k x h = (km hn - kn hm,
|
||||
kn hk - kk hn,
|
||||
kk hm - km hk)_kmn
|
||||
= (0, -kk hn, kk hm)_kmn
|
||||
= (-kk hn)(mx, my, mz) + (kk hm)(nx, ny, nz)
|
||||
= |k| (hm * (nx, ny, nz) - hn * (mx, my, mz))
|
||||
|
||||
where h is shorthand for H_k, (...)_kmn deontes the (k, m, n) basis,
|
||||
and e.g. hm is the component of h in the m direction.
|
||||
|
||||
We can also simplify conv(X_k, Y_k) as fftn(X * ifftn(Y_k)).
|
||||
|
||||
Using these results and storing H_k as h = (hm, hn), we have
|
||||
e_xyz = fftn(1/eps * ifftn(|k| (hm * n - hn * m)))
|
||||
b_mn = |k| (-e_xyz @ n, e_xyz @ m)
|
||||
h_mn = fftn(1/mu * ifftn(b_m * m + b_n * n))
|
||||
which forms the operator from the left side of the equation.
|
||||
|
||||
We can then use ARPACK in shift-invert mode (via scipy.linalg.eigs)
|
||||
to find the eigenvectors for this operator.
|
||||
|
||||
This approach is similar to the one used in MPB and derived at the start of
|
||||
SG Johnson and JD Joannopoulos, Block-iterative frequency-domain methods
|
||||
for Maxwell's equations in a planewave basis, Optics Express 8, 3, 173-190 (2001)
|
||||
|
||||
===
|
||||
|
||||
Typically you will want to do something like
|
||||
|
||||
recip_lattice = numpy.diag(1/numpy.array(epsilon[0].shape * dx))
|
||||
n, v = bloch.eigsolve(5, k0, recip_lattice, epsilon)
|
||||
f = numpy.sqrt(-numpy.real(n[0]))
|
||||
n_eff = norm(recip_lattice @ k0) / f
|
||||
|
||||
v2e = bloch.hmn_2_exyz(k0, recip_lattice, epsilon)
|
||||
e_field = v2e(v[0])
|
||||
|
||||
k, f = find_k(frequency=1/1550,
|
||||
tolerance=(1/1550 - 1/1551),
|
||||
search_direction=[1, 0, 0],
|
||||
G_matrix=recip_lattice,
|
||||
epsilon=epsilon,
|
||||
band=0)
|
||||
|
||||
'''
|
||||
|
||||
from typing import List, Tuple, Callable, Dict
|
||||
import numpy
|
||||
from numpy.fft import fftn, ifftn, fftfreq
|
||||
import scipy
|
||||
from scipy.linalg import norm
|
||||
import scipy.sparse.linalg as spalg
|
||||
|
||||
from . import field_t
|
||||
|
||||
|
||||
def generate_kmn(k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
shape: numpy.ndarray
|
||||
) -> Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]:
|
||||
"""
|
||||
Generate a (k, m, n) orthogonal basis for each k-vector in the simulation grid.
|
||||
|
||||
:param k0: [k0x, k0y, k0z], Bloch wavevector, in G basis.
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param shape: [nx, ny, nz] shape of the simulation grid.
|
||||
:return: (|k|, m, n) where |k| has shape tuple(shape) + (1,)
|
||||
and m, n have shape tuple(shape) + (3,).
|
||||
All are given in the xyz basis (e.g. |k|[0,0,0] = norm(G_matrix @ k0)).
|
||||
"""
|
||||
k0 = numpy.array(k0)
|
||||
|
||||
Gi_grids = numpy.meshgrid(*(fftfreq(n, 1/n) for n in shape[:3]), indexing='ij')
|
||||
Gi = numpy.stack(Gi_grids, axis=3)
|
||||
|
||||
k_G = k0[None, None, None, :] - Gi
|
||||
k_xyz = numpy.rollaxis(G_matrix @ numpy.rollaxis(k_G, 3, 2), 3, 2)
|
||||
|
||||
m = numpy.broadcast_to([0, 1, 0], tuple(shape[:3]) + (3,)).astype(float)
|
||||
n = numpy.broadcast_to([0, 0, 1], tuple(shape[:3]) + (3,)).astype(float)
|
||||
|
||||
xy_non0 = numpy.any(k_xyz[:, :, :, 0:1] != 0, axis=3)
|
||||
if numpy.any(xy_non0):
|
||||
u = numpy.cross(k_xyz[xy_non0], [0, 0, 1])
|
||||
m[xy_non0, :] = u / norm(u, axis=1)[:, None]
|
||||
|
||||
z_non0 = numpy.any(k_xyz != 0, axis=3)
|
||||
if numpy.any(z_non0):
|
||||
v = numpy.cross(k_xyz[z_non0], m[z_non0])
|
||||
n[z_non0, :] = v / norm(v, axis=1)[:, None]
|
||||
|
||||
k_mag = norm(k_xyz, axis=3)[:, :, :, None]
|
||||
return k_mag, m, n
|
||||
|
||||
|
||||
def maxwell_operator(k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None
|
||||
) -> Callable[[numpy.ndarray], numpy.ndarray]:
|
||||
"""
|
||||
Generate the Maxwell operator
|
||||
conv(1/mu_k, ik x conv(1/eps_k, ik x ___))
|
||||
which is the spatial-frequency-space representation of
|
||||
1/mu * curl(1/eps * curl(___))
|
||||
|
||||
The operator is a function that acts on a vector h_mn of size (2 * epsilon[0].size)
|
||||
|
||||
See the module-level docstring for more information.
|
||||
|
||||
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param epsilon: Dielectric constant distribution for the simulation.
|
||||
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
||||
:param mu: Magnetic permability distribution for the simulation.
|
||||
Default None (1 everywhere).
|
||||
:return: Function which applies the maxwell operator to h_mn.
|
||||
"""
|
||||
|
||||
shape = epsilon[0].shape + (1,)
|
||||
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
|
||||
|
||||
epsilon = numpy.stack(epsilon, 3)
|
||||
if mu is not None:
|
||||
mu = numpy.stack(mu, 3)
|
||||
|
||||
def operator(h: numpy.ndarray):
|
||||
"""
|
||||
Maxwell operator for Bloch eigenmode simulation.
|
||||
|
||||
h is complex 2-field in (m, n) basis, vectorized
|
||||
|
||||
:param h: Raveled h_mn; size (2 * epsilon[0].size).
|
||||
:return: Raveled conv(1/mu_k, ik x conv(1/eps_k, ik x h_mn)).
|
||||
"""
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
|
||||
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
|
||||
|
||||
# cross product and transform into xyz basis
|
||||
d_xyz = (n * hin_m -
|
||||
m * hin_n) * k_mag
|
||||
|
||||
# divide by epsilon
|
||||
e_xyz = ifftn(fftn(d_xyz, axes=range(3)) / epsilon, axes=range(3))
|
||||
|
||||
# cross product and transform into mn basis
|
||||
b_m = numpy.sum(e_xyz * n, axis=3)[:, :, :, None] * -k_mag
|
||||
b_n = numpy.sum(e_xyz * m, axis=3)[:, :, :, None] * +k_mag
|
||||
|
||||
if mu is None:
|
||||
h_m, h_n = b_m, b_n
|
||||
else:
|
||||
# transform from mn to xyz
|
||||
b_xyz = (m * b_m[:, :, :, None] +
|
||||
n * b_n[:, :, :, None])
|
||||
|
||||
# divide by mu
|
||||
h_xyz = ifftn(fftn(b_xyz, axes=range(3)) / mu, axes=range(3))
|
||||
|
||||
# transform back to mn
|
||||
h_m = numpy.sum(h_xyz * m, axis=3)
|
||||
h_n = numpy.sum(h_xyz * n, axis=3)
|
||||
return numpy.hstack((h_m.ravel(), h_n.ravel()))
|
||||
|
||||
return operator
|
||||
|
||||
|
||||
def hmn_2_exyz(k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t,
|
||||
) -> Callable[[numpy.ndarray], field_t]:
|
||||
"""
|
||||
Generate an operator which converts a vectorized spatial-frequency-space
|
||||
h_mn into an E-field distribution, i.e.
|
||||
ifft(conv(1/eps_k, ik x h_mn))
|
||||
|
||||
The operator is a function that acts on a vector h_mn of size (2 * epsilon[0].size)
|
||||
|
||||
See the module-level docstring for more information.
|
||||
|
||||
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param epsilon: Dielectric constant distribution for the simulation.
|
||||
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
||||
:return: Function for converting h_mn into E_xyz
|
||||
"""
|
||||
shape = epsilon[0].shape + (1,)
|
||||
epsilon = numpy.stack(epsilon, 3)
|
||||
|
||||
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
|
||||
|
||||
def operator(h: numpy.ndarray) -> field_t:
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
d_xyz = (n * hin_m -
|
||||
m * hin_n) * k_mag
|
||||
|
||||
# divide by epsilon
|
||||
return [ei for ei in numpy.rollaxis(fftn(d_xyz, axes=range(3)) / epsilon, 3)]
|
||||
|
||||
return operator
|
||||
|
||||
|
||||
def hmn_2_hxyz(k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t
|
||||
) -> Callable[[numpy.ndarray], field_t]:
|
||||
"""
|
||||
Generate an operator which converts a vectorized spatial-frequency-space
|
||||
h_mn into an H-field distribution, i.e.
|
||||
ifft(h_mn)
|
||||
|
||||
The operator is a function that acts on a vector h_mn of size (2 * epsilon[0].size)
|
||||
|
||||
See the module-level docstring for more information.
|
||||
|
||||
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param epsilon: Dielectric constant distribution for the simulation.
|
||||
Only epsilon[0].shape is used.
|
||||
:return: Function for converting h_mn into H_xyz
|
||||
"""
|
||||
shape = epsilon[0].shape + (1,)
|
||||
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
|
||||
|
||||
def operator(h: numpy.ndarray):
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
h_xyz = (m * hin_m +
|
||||
n * hin_n)
|
||||
return [fftn(hi) for hi in numpy.rollaxis(h_xyz, 3)]
|
||||
|
||||
return operator
|
||||
|
||||
|
||||
def inverse_maxwell_operator_approx(k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None
|
||||
) -> Callable[[numpy.ndarray], numpy.ndarray]:
|
||||
"""
|
||||
Generate an approximate inverse of the Maxwell operator,
|
||||
ik x conv(eps_k, ik x conv(mu_k, ___))
|
||||
which can be used to improve the speed of ARPACK in shift-invert mode.
|
||||
|
||||
See the module-level docstring for more information.
|
||||
|
||||
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param epsilon: Dielectric constant distribution for the simulation.
|
||||
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
||||
:param mu: Magnetic permability distribution for the simulation.
|
||||
Default None (1 everywhere).
|
||||
:return: Function which applies the approximate inverse of the maxwell operator to h_mn.
|
||||
"""
|
||||
shape = epsilon[0].shape + (1,)
|
||||
epsilon = numpy.stack(epsilon, 3)
|
||||
|
||||
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
|
||||
|
||||
if mu is not None:
|
||||
mu = numpy.stack(mu, 3)
|
||||
|
||||
def operator(h: numpy.ndarray):
|
||||
"""
|
||||
Approximate inverse Maxwell operator for Bloch eigenmode simulation.
|
||||
|
||||
h is complex 2-field in (m, n) basis, vectorized
|
||||
|
||||
:param h: Raveled h_mn; size (2 * epsilon[0].size).
|
||||
:return: Raveled ik x conv(eps_k, ik x conv(mu_k, h_mn))
|
||||
"""
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
|
||||
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
|
||||
|
||||
if mu is None:
|
||||
b_m, b_n = hin_m, hin_n
|
||||
else:
|
||||
# transform from mn to xyz
|
||||
h_xyz = (m * hin_m[:, :, :, None] +
|
||||
n * hin_n[:, :, :, None])
|
||||
|
||||
# multiply by mu
|
||||
b_xyz = ifftn(fftn(h_xyz, axes=range(3)) * mu, axes=range(3))
|
||||
|
||||
# transform back to mn
|
||||
b_m = numpy.sum(b_xyz * m, axis=3)
|
||||
b_n = numpy.sum(b_xyz * n, axis=3)
|
||||
|
||||
# cross product and transform into xyz basis
|
||||
e_xyz = (n * b_m -
|
||||
m * b_n) / k_mag
|
||||
|
||||
# multiply by epsilon
|
||||
d_xyz = ifftn(fftn(e_xyz, axes=range(3)) * epsilon, axes=range(3))
|
||||
|
||||
# cross product and transform into mn basis crossinv_t2c
|
||||
h_m = numpy.sum(e_xyz * n, axis=3)[:, :, :, None] / +k_mag
|
||||
h_n = numpy.sum(e_xyz * m, axis=3)[:, :, :, None] / -k_mag
|
||||
|
||||
return numpy.hstack((h_m.ravel(), h_n.ravel()))
|
||||
|
||||
return operator
|
||||
|
||||
|
||||
def eigsolve(num_modes: int,
|
||||
k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None
|
||||
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||
"""
|
||||
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
|
||||
k0 of the specified structure.
|
||||
|
||||
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param epsilon: Dielectric constant distribution for the simulation.
|
||||
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
||||
:param mu: Magnetic permability distribution for the simulation.
|
||||
Default None (1 everywhere).
|
||||
:return: (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the
|
||||
vector eigenvectors[i, :]
|
||||
"""
|
||||
h_size = 2 * epsilon[0].size
|
||||
|
||||
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||
|
||||
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
|
||||
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
|
||||
|
||||
_eigvals, eigvecs = spalg.eigs(scipy_op, num_modes, sigma=0, OPinv=scipy_iop, which='LM')
|
||||
eigvals = numpy.sum(eigvecs * (scipy_op @ eigvecs), axis=0) / numpy.sum(eigvecs * eigvecs, axis=0)
|
||||
order = numpy.argsort(-eigvals)
|
||||
return eigvals[order], eigvecs.T[order]
|
||||
|
||||
|
||||
def find_k(frequency: float,
|
||||
tolerance: float,
|
||||
search_direction: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
band: int = 0
|
||||
) -> Tuple[numpy.ndarray, float]:
|
||||
"""
|
||||
Search for a bloch vector that has a given frequency.
|
||||
|
||||
:param frequency: Target frequency.
|
||||
:param tolerance: Target frequency tolerance.
|
||||
:param search_direction: k-vector direction to search along.
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param epsilon: Dielectric constant distribution for the simulation.
|
||||
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
||||
:param mu: Magnetic permability distribution for the simulation.
|
||||
Default None (1 everywhere).
|
||||
:param band: Which band to search in. Default 0 (lowest frequency).
|
||||
return: (k, actual_frequency) The found k-vector and its frequency
|
||||
"""
|
||||
|
||||
search_direction = numpy.array(search_direction) / norm(search_direction)
|
||||
|
||||
def get_f(k0_mag: float, band: int = 0):
|
||||
k0 = search_direction * k0_mag
|
||||
n, _v = eigsolve(band + 1, k0, G_matrix=G_matrix, epsilon=epsilon)
|
||||
f = numpy.sqrt(numpy.abs(numpy.real(n[band])))
|
||||
return f
|
||||
|
||||
res = scipy.optimize.minimize_scalar(lambda x: abs(get_f(x, band) - frequency), 0.25,
|
||||
method='Bounded', bounds=(0, 0.5),
|
||||
options={'xatol': abs(tolerance)})
|
||||
return res.x * search_direction, res.fun + frequency
|
||||
|
||||
|
@ -29,7 +29,7 @@ def power_iteration(operator: sparse.spmatrix,
|
||||
v = operator @ v
|
||||
v /= norm(v)
|
||||
|
||||
lm_eigval = v.conj() @ operator @ v
|
||||
lm_eigval = v.conj() @ (operator @ v)
|
||||
return lm_eigval, v
|
||||
|
||||
|
||||
@ -59,7 +59,7 @@ def rayleigh_quotient_iteration(operator: sparse.spmatrix,
|
||||
return eigval, v
|
||||
|
||||
|
||||
def signed_eigensolve(operator: sparse.spmatrix,
|
||||
def signed_eigensolve(operator: sparse.spmatrix or spalg.LinearOperator,
|
||||
how_many: int,
|
||||
negative: bool = False,
|
||||
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||
@ -83,12 +83,19 @@ def signed_eigensolve(operator: sparse.spmatrix,
|
||||
largest _positive_ eigenvalues, since any negative eigenvalues will be shifted to the
|
||||
range 0 >= neg_eigval + abs(lm_eigval) > abs(lm_eigval)
|
||||
'''
|
||||
shift = numpy.abs(lm_eigval)
|
||||
if negative:
|
||||
shifted_operator = operator - abs(lm_eigval) * sparse.eye(operator.shape[0])
|
||||
else:
|
||||
shifted_operator = operator + abs(lm_eigval) * sparse.eye(operator.shape[0])
|
||||
shift *= -1
|
||||
|
||||
eigenvalues, eigenvectors = spalg.eigs(shifted_operator, which='LM', k=how_many, ncv=50)
|
||||
# Try to combine, use general LinearOperator if we fail
|
||||
try:
|
||||
shifted_operator = operator + shift * sparse.eye(operator.shape[0])
|
||||
except TypeError:
|
||||
shifted_operator = operator + spalg.LinearOperator(shape=operator.shape,
|
||||
matvec=lambda v: shift * v)
|
||||
|
||||
shifted_eigenvalues, eigenvectors = spalg.eigs(shifted_operator, which='LM', k=how_many, ncv=50)
|
||||
eigenvalues = shifted_eigenvalues - shift
|
||||
|
||||
k = eigenvalues.argsort()
|
||||
return eigenvalues[k], eigenvectors[:, k]
|
||||
|
@ -1,7 +1,7 @@
|
||||
"""
|
||||
Functions for moving between a vector field (list of 3 ndarrays, [f_x, f_y, f_z])
|
||||
and a 1D array representation of that field [f_x0, f_x1, f_x2,... f_y0,... f_z0,...].
|
||||
Vectorized versions of the field use column-major (ie., Fortran, Matlab) ordering.
|
||||
Vectorized versions of the field use row-major (ie., C-style) ordering.
|
||||
"""
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user