forked from jan/fdfd_tools
240 lines
7.1 KiB
Python
240 lines
7.1 KiB
Python
|
from typing import List, Callable, Tuple, Dict
|
||
|
import numpy
|
||
|
|
||
|
from . import dx_lists_t, field_t
|
||
|
|
||
|
__author__ = 'Jan Petykiewicz'
|
||
|
|
||
|
|
||
|
functional_matrix = Callable[[field_t], field_t]
|
||
|
|
||
|
|
||
|
def curl_h(dxes: dx_lists_t = None) -> functional_matrix:
|
||
|
"""
|
||
|
Curl operator for use with the H field.
|
||
|
|
||
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||
|
:return: Function for taking the discretized curl of the H-field, F(H) -> curlH
|
||
|
"""
|
||
|
if dxes:
|
||
|
dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij')
|
||
|
|
||
|
def dh(f, ax):
|
||
|
return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax]
|
||
|
else:
|
||
|
def dh(f, ax):
|
||
|
return f - numpy.roll(f, 1, axis=ax)
|
||
|
|
||
|
def ch_fun(h: field_t) -> field_t:
|
||
|
e = [dh(h[2], 1) - dh(h[1], 2),
|
||
|
dh(h[0], 2) - dh(h[2], 0),
|
||
|
dh(h[1], 0) - dh(h[0], 1)]
|
||
|
return e
|
||
|
|
||
|
return ch_fun
|
||
|
|
||
|
|
||
|
def curl_e(dxes: dx_lists_t = None) -> functional_matrix:
|
||
|
"""
|
||
|
Curl operator for use with the E field.
|
||
|
|
||
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||
|
:return: Function for taking the discretized curl of the E-field, F(E) -> curlE
|
||
|
"""
|
||
|
if dxes is not None:
|
||
|
dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij')
|
||
|
|
||
|
def de(f, ax):
|
||
|
return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax]
|
||
|
else:
|
||
|
def de(f, ax):
|
||
|
return numpy.roll(f, -1, axis=ax) - f
|
||
|
|
||
|
def ce_fun(e: field_t) -> field_t:
|
||
|
h = [de(e[2], 1) - de(e[1], 2),
|
||
|
de(e[0], 2) - de(e[2], 0),
|
||
|
de(e[1], 0) - de(e[0], 1)]
|
||
|
return h
|
||
|
|
||
|
return ce_fun
|
||
|
|
||
|
|
||
|
def maxwell_e(dt: float, dxes: dx_lists_t = None) -> functional_matrix:
|
||
|
curl_h_fun = curl_h(dxes)
|
||
|
|
||
|
def me_fun(e: field_t, h: field_t, epsilon: field_t):
|
||
|
ch = curl_h_fun(h)
|
||
|
for ei, ci, epsi in zip(e, ch, epsilon):
|
||
|
ei += dt * ci / epsi
|
||
|
return e
|
||
|
|
||
|
return me_fun
|
||
|
|
||
|
|
||
|
def maxwell_h(dt: float, dxes: dx_lists_t = None) -> functional_matrix:
|
||
|
curl_e_fun = curl_e(dxes)
|
||
|
|
||
|
def mh_fun(e: field_t, h: field_t):
|
||
|
ce = curl_e_fun(e)
|
||
|
for hi, ci in zip(h, ce):
|
||
|
hi -= dt * ci
|
||
|
return h
|
||
|
|
||
|
return mh_fun
|
||
|
|
||
|
|
||
|
def conducting_boundary(direction: int,
|
||
|
polarity: int
|
||
|
) -> Tuple[functional_matrix, functional_matrix]:
|
||
|
dirs = [0, 1, 2]
|
||
|
if direction not in dirs:
|
||
|
raise Exception('Invalid direction: {}'.format(direction))
|
||
|
dirs.remove(direction)
|
||
|
u, v = dirs
|
||
|
|
||
|
if polarity < 0:
|
||
|
boundary_slice = [slice(None)] * 3
|
||
|
shifted1_slice = [slice(None)] * 3
|
||
|
boundary_slice[direction] = 0
|
||
|
shifted1_slice[direction] = 1
|
||
|
|
||
|
def en(e: field_t):
|
||
|
e[direction][boundary_slice] = 0
|
||
|
e[u][boundary_slice] = e[u][shifted1_slice]
|
||
|
e[v][boundary_slice] = e[v][shifted1_slice]
|
||
|
return e
|
||
|
|
||
|
def hn(h: field_t):
|
||
|
h[direction][boundary_slice] = h[direction][shifted1_slice]
|
||
|
h[u][boundary_slice] = 0
|
||
|
h[v][boundary_slice] = 0
|
||
|
return h
|
||
|
|
||
|
return en, hn
|
||
|
|
||
|
elif polarity > 0:
|
||
|
boundary_slice = [slice(None)] * 3
|
||
|
shifted1_slice = [slice(None)] * 3
|
||
|
shifted2_slice = [slice(None)] * 3
|
||
|
boundary_slice[direction] = -1
|
||
|
shifted1_slice[direction] = -2
|
||
|
shifted2_slice[direction] = -3
|
||
|
|
||
|
def ep(e: field_t):
|
||
|
e[direction][boundary_slice] = -e[direction][shifted2_slice]
|
||
|
e[direction][shifted1_slice] = 0
|
||
|
e[u][boundary_slice] = e[u][shifted1_slice]
|
||
|
e[v][boundary_slice] = e[v][shifted1_slice]
|
||
|
return e
|
||
|
|
||
|
def hp(h: field_t):
|
||
|
h[direction][boundary_slice] = h[direction][shifted1_slice]
|
||
|
h[u][boundary_slice] = -h[u][shifted2_slice]
|
||
|
h[u][shifted1_slice] = 0
|
||
|
h[v][boundary_slice] = -h[v][shifted2_slice]
|
||
|
h[v][shifted1_slice] = 0
|
||
|
return h
|
||
|
|
||
|
return ep, hp
|
||
|
|
||
|
else:
|
||
|
raise Exception('Bad polarity: {}'.format(polarity))
|
||
|
|
||
|
|
||
|
def cpml(direction:int,
|
||
|
polarity: int,
|
||
|
dt: float,
|
||
|
epsilon: field_t,
|
||
|
thickness: int = 8,
|
||
|
epsilon_eff: float = 1,
|
||
|
dtype: numpy.dtype = numpy.float32,
|
||
|
) -> Tuple[Callable, Callable, Dict[str, field_t]]:
|
||
|
|
||
|
if direction not in range(3):
|
||
|
raise Exception('Invalid direction: {}'.format(direction))
|
||
|
|
||
|
if polarity not in (-1, 1):
|
||
|
raise Exception('Invalid polarity: {}'.format(polarity))
|
||
|
|
||
|
if thickness <= 2:
|
||
|
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
|
||
|
|
||
|
if epsilon_eff <= 0:
|
||
|
raise Exception('epsilon_eff must be positive')
|
||
|
|
||
|
m = (3.5, 1)
|
||
|
sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(epsilon_eff)
|
||
|
alpha_max = 0 # TODO: Decide what to do about non-zero alpha
|
||
|
transverse = numpy.delete(range(3), direction)
|
||
|
u, v = transverse
|
||
|
|
||
|
xe = numpy.arange(1, thickness+1, dtype=float)
|
||
|
xh = numpy.arange(1, thickness+1, dtype=float)
|
||
|
if polarity > 0:
|
||
|
xe -= 0.5
|
||
|
elif polarity < 0:
|
||
|
xh -= 0.5
|
||
|
xe = xe[::-1]
|
||
|
xh = xh[::-1]
|
||
|
else:
|
||
|
raise Exception('Bad polarity!')
|
||
|
|
||
|
expand_slice = [None] * 3
|
||
|
expand_slice[direction] = slice(None)
|
||
|
|
||
|
def par(x):
|
||
|
sigma = ((x / thickness) ** m[0]) * sigma_max
|
||
|
alpha = ((1 - x / thickness) ** m[1]) * alpha_max
|
||
|
p0 = numpy.exp(-(sigma + alpha) * dt)
|
||
|
p1 = sigma / (sigma + alpha) * (p0 - 1)
|
||
|
return p0[expand_slice], p1[expand_slice]
|
||
|
|
||
|
p0e, p1e = par(xe)
|
||
|
p0h, p1h = par(xh)
|
||
|
|
||
|
region = [slice(None)] * 3
|
||
|
if polarity < 0:
|
||
|
region[direction] = slice(None, thickness)
|
||
|
elif polarity > 0:
|
||
|
region[direction] = slice(-thickness, None)
|
||
|
else:
|
||
|
raise Exception('Bad polarity!')
|
||
|
|
||
|
if direction == 1:
|
||
|
se = 1
|
||
|
else:
|
||
|
se = -1
|
||
|
|
||
|
# TODO check if epsilon is uniform?
|
||
|
shape = list(epsilon[0].shape)
|
||
|
shape[direction] = thickness
|
||
|
psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||
|
psi_h = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||
|
|
||
|
fields = {
|
||
|
'psi_e_u': psi_e[0],
|
||
|
'psi_e_v': psi_e[1],
|
||
|
'psi_h_u': psi_h[0],
|
||
|
'psi_h_v': psi_h[1],
|
||
|
}
|
||
|
|
||
|
def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]:
|
||
|
psi_e[0] *= p0e
|
||
|
psi_e[0] += p1e * (h[v][region] - numpy.roll(h[v], 1, axis=direction)[region])
|
||
|
psi_e[1] *= p0e
|
||
|
psi_e[1] += p1e * (h[u][region] - numpy.roll(h[u], 1, axis=direction)[region])
|
||
|
e[u][region] += se * dt * psi_e[0] / epsilon[u][region]
|
||
|
e[v][region] -= se * dt * psi_e[1] / epsilon[v][region]
|
||
|
return e, h
|
||
|
|
||
|
def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]:
|
||
|
psi_h[0] *= p0h
|
||
|
psi_h[0] += p1h * (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region])
|
||
|
psi_h[1] *= p0h
|
||
|
psi_h[1] += p1h * (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region])
|
||
|
h[u][region] -= se * dt * psi_h[0]
|
||
|
h[v][region] += se * dt * psi_h[1]
|
||
|
return e, h
|
||
|
|
||
|
return pml_e, pml_h, fields
|