forked from jan/fdfd_tools
add fdtd and test
This commit is contained in:
parent
bb53ba44e0
commit
1e80a66b50
175
examples/test_fdtd.py
Normal file
175
examples/test_fdtd.py
Normal file
@ -0,0 +1,175 @@
|
||||
"""
|
||||
Example code for running an OpenCL FDTD simulation
|
||||
|
||||
See main() for simulation setup.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import time
|
||||
|
||||
import numpy
|
||||
import h5py
|
||||
|
||||
from fdfd_tools import fdtd
|
||||
from masque import Pattern, shapes
|
||||
import gridlock
|
||||
import pcgen
|
||||
|
||||
|
||||
def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern:
|
||||
"""
|
||||
Generate a masque.Pattern object containing a perturbed L3 cavity.
|
||||
|
||||
:param a: Lattice constant.
|
||||
:param radius: Hole radius, in units of a (lattice constant).
|
||||
:param kwargs: Keyword arguments:
|
||||
hole_dose, trench_dose, hole_layer, trench_layer: Shape properties for Pattern.
|
||||
Defaults *_dose=1, hole_layer=0, trench_layer=1.
|
||||
shifts_a, shifts_r: passed to pcgen.l3_shift; specifies lattice constant (1 -
|
||||
multiplicative factor) and radius (multiplicative factor) for shifting
|
||||
holes adjacent to the defect (same row). Defaults are 0.15 shift for
|
||||
first hole, 0.075 shift for third hole, and no radius change.
|
||||
xy_size: [x, y] number of mirror periods in each direction; total size is
|
||||
2 * n + 1 holes in each direction. Default [10, 10].
|
||||
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
|
||||
(multiplicative factor). Default 1.1.
|
||||
trench width: Width of the undercut trenches. Default 1.2e3.
|
||||
:return: masque.Pattern object containing the L3 design
|
||||
"""
|
||||
|
||||
default_args = {'hole_dose': 1,
|
||||
'trench_dose': 1,
|
||||
'hole_layer': 0,
|
||||
'trench_layer': 1,
|
||||
'shifts_a': (0.15, 0, 0.075),
|
||||
'shifts_r': (1.0, 1.0, 1.0),
|
||||
'xy_size': (10, 10),
|
||||
'perturbed_radius': 1.1,
|
||||
'trench_width': 1.2e3,
|
||||
}
|
||||
kwargs = {**default_args, **kwargs}
|
||||
|
||||
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=kwargs['xy_size'],
|
||||
perturbed_radius=kwargs['perturbed_radius'],
|
||||
shifts_a=kwargs['shifts_a'],
|
||||
shifts_r=kwargs['shifts_r'])
|
||||
xyr *= a
|
||||
xyr[:, 2] *= radius
|
||||
|
||||
pat = Pattern()
|
||||
pat.name = 'L3p-a{:g}r{:g}rp{:g}'.format(a, radius, kwargs['perturbed_radius'])
|
||||
pat.shapes += [shapes.Circle(radius=r, offset=(x, y),
|
||||
dose=kwargs['hole_dose'],
|
||||
layer=kwargs['hole_layer'])
|
||||
for x, y, r in xyr]
|
||||
|
||||
maxes = numpy.max(numpy.fabs(xyr), axis=0)
|
||||
pat.shapes += [shapes.Polygon.rectangle(
|
||||
lx=(2 * maxes[0]), ly=kwargs['trench_width'],
|
||||
offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2)),
|
||||
dose=kwargs['trench_dose'], layer=kwargs['trench_layer'])
|
||||
for s in (-1, 1)]
|
||||
return pat
|
||||
|
||||
|
||||
def main():
|
||||
dtype = numpy.float32
|
||||
max_t = 8000 # number of timesteps
|
||||
|
||||
dx = 40 # discretization (nm/cell)
|
||||
pml_thickness = 8 # (number of cells)
|
||||
|
||||
wl = 1550 # Excitation wavelength and fwhm
|
||||
dwl = 200
|
||||
|
||||
# Device design parameters
|
||||
xy_size = numpy.array([10, 10])
|
||||
a = 430
|
||||
r = 0.285
|
||||
th = 170
|
||||
|
||||
# refractive indices
|
||||
n_slab = 3.408 # InGaAsP(80, 50) @ 1550nm
|
||||
n_air = 1.0 # air
|
||||
|
||||
# Half-dimensions of the simulation grid
|
||||
xy_max = (xy_size + 1) * a * [1, numpy.sqrt(3)/2]
|
||||
z_max = 1.6 * a
|
||||
xyz_max = numpy.hstack((xy_max, z_max)) + pml_thickness * dx
|
||||
|
||||
# Coordinates of the edges of the cells. The fdtd package can only do square grids at the moment.
|
||||
half_edge_coords = [numpy.arange(dx/2, m + dx, step=dx) for m in xyz_max]
|
||||
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
||||
|
||||
# #### Create the grid, mask, and draw the device ####
|
||||
grid = gridlock.Grid(edge_coords, initial=n_air**2, num_grids=3)
|
||||
grid.draw_slab(surface_normal=gridlock.Direction.z,
|
||||
center=[0, 0, 0],
|
||||
thickness=th,
|
||||
eps=n_slab**2)
|
||||
mask = perturbed_l3(a, r)
|
||||
|
||||
grid.draw_polygons(surface_normal=gridlock.Direction.z,
|
||||
center=[0, 0, 0],
|
||||
thickness=2 * th,
|
||||
eps=n_air**2,
|
||||
polygons=mask.as_polygons())
|
||||
|
||||
print(grid.shape)
|
||||
# #### Create the simulation grid ####
|
||||
epsilon = [eps.astype(dtype) for eps in grid.grids]
|
||||
|
||||
dt = .99/numpy.sqrt(3)
|
||||
e = [numpy.zeros_like(epsilon[0], dtype=dtype) for _ in range(3)]
|
||||
h = [numpy.zeros_like(epsilon[0], dtype=dtype) for _ in range(3)]
|
||||
|
||||
update_e = fdtd.maxwell_e(dt)
|
||||
update_h = fdtd.maxwell_h(dt)
|
||||
|
||||
# PMLs in every direction
|
||||
pml_e_funcs = []
|
||||
pml_h_funcs = []
|
||||
pml_fields = {}
|
||||
for d in (0, 1, 2):
|
||||
for p in (-1, 1):
|
||||
ef, hf, psis = fdtd.cpml(direction=d, polarity=p, dt=dt, epsilon=epsilon, epsilon_eff=n_slab**2, dtype=dtype)
|
||||
pml_e_funcs.append(ef)
|
||||
pml_h_funcs.append(hf)
|
||||
pml_fields.update(psis)
|
||||
|
||||
# Source parameters and function
|
||||
w = 2 * numpy.pi * dx / wl
|
||||
fwhm = dwl * w * w / (2 * numpy.pi * dx)
|
||||
alpha = (fwhm ** 2) / 8 * numpy.log(2)
|
||||
delay = 7/numpy.sqrt(2 * alpha)
|
||||
|
||||
def field_source(i):
|
||||
t0 = i * dt - delay
|
||||
return numpy.sin(w * t0) * numpy.exp(-alpha * t0**2)
|
||||
|
||||
# #### Run a bunch of iterations ####
|
||||
output_file = h5py.File('simulation_output.h5', 'w')
|
||||
start = time.perf_counter()
|
||||
for t in range(max_t):
|
||||
[f(e, h, epsilon) for f in pml_e_funcs]
|
||||
update_e(e, h, epsilon)
|
||||
|
||||
e[1][tuple(grid.shape//2)] += field_source(t)
|
||||
[f(e, h) for f in pml_h_funcs]
|
||||
update_h(e, h)
|
||||
|
||||
print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
||||
sys.stdout.flush()
|
||||
|
||||
if t % 20 == 0:
|
||||
r = sum([(f * f * e).sum() for f, e in zip(e, epsilon)])
|
||||
print('E sum', r)
|
||||
|
||||
# Save field slices
|
||||
if (t % 20 == 0 and (max_t - t <= 1000 or t <= 2000)) or t == max_t-1:
|
||||
print('saving E-field')
|
||||
for j, f in enumerate(e):
|
||||
output_file['/E{}_t{}'.format('xyz'[j], t)] = f[:, :, round(f.shape[2]/2)]
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
239
fdfd_tools/fdtd.py
Normal file
239
fdfd_tools/fdtd.py
Normal file
@ -0,0 +1,239 @@
|
||||
from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
|
||||
from . import dx_lists_t, field_t
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
functional_matrix = Callable[[field_t], field_t]
|
||||
|
||||
|
||||
def curl_h(dxes: dx_lists_t = None) -> functional_matrix:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:return: Function for taking the discretized curl of the H-field, F(H) -> curlH
|
||||
"""
|
||||
if dxes:
|
||||
dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij')
|
||||
|
||||
def dh(f, ax):
|
||||
return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax]
|
||||
else:
|
||||
def dh(f, ax):
|
||||
return f - numpy.roll(f, 1, axis=ax)
|
||||
|
||||
def ch_fun(h: field_t) -> field_t:
|
||||
e = [dh(h[2], 1) - dh(h[1], 2),
|
||||
dh(h[0], 2) - dh(h[2], 0),
|
||||
dh(h[1], 0) - dh(h[0], 1)]
|
||||
return e
|
||||
|
||||
return ch_fun
|
||||
|
||||
|
||||
def curl_e(dxes: dx_lists_t = None) -> functional_matrix:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:return: Function for taking the discretized curl of the E-field, F(E) -> curlE
|
||||
"""
|
||||
if dxes is not None:
|
||||
dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij')
|
||||
|
||||
def de(f, ax):
|
||||
return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax]
|
||||
else:
|
||||
def de(f, ax):
|
||||
return numpy.roll(f, -1, axis=ax) - f
|
||||
|
||||
def ce_fun(e: field_t) -> field_t:
|
||||
h = [de(e[2], 1) - de(e[1], 2),
|
||||
de(e[0], 2) - de(e[2], 0),
|
||||
de(e[1], 0) - de(e[0], 1)]
|
||||
return h
|
||||
|
||||
return ce_fun
|
||||
|
||||
|
||||
def maxwell_e(dt: float, dxes: dx_lists_t = None) -> functional_matrix:
|
||||
curl_h_fun = curl_h(dxes)
|
||||
|
||||
def me_fun(e: field_t, h: field_t, epsilon: field_t):
|
||||
ch = curl_h_fun(h)
|
||||
for ei, ci, epsi in zip(e, ch, epsilon):
|
||||
ei += dt * ci / epsi
|
||||
return e
|
||||
|
||||
return me_fun
|
||||
|
||||
|
||||
def maxwell_h(dt: float, dxes: dx_lists_t = None) -> functional_matrix:
|
||||
curl_e_fun = curl_e(dxes)
|
||||
|
||||
def mh_fun(e: field_t, h: field_t):
|
||||
ce = curl_e_fun(e)
|
||||
for hi, ci in zip(h, ce):
|
||||
hi -= dt * ci
|
||||
return h
|
||||
|
||||
return mh_fun
|
||||
|
||||
|
||||
def conducting_boundary(direction: int,
|
||||
polarity: int
|
||||
) -> Tuple[functional_matrix, functional_matrix]:
|
||||
dirs = [0, 1, 2]
|
||||
if direction not in dirs:
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
dirs.remove(direction)
|
||||
u, v = dirs
|
||||
|
||||
if polarity < 0:
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
boundary_slice[direction] = 0
|
||||
shifted1_slice[direction] = 1
|
||||
|
||||
def en(e: field_t):
|
||||
e[direction][boundary_slice] = 0
|
||||
e[u][boundary_slice] = e[u][shifted1_slice]
|
||||
e[v][boundary_slice] = e[v][shifted1_slice]
|
||||
return e
|
||||
|
||||
def hn(h: field_t):
|
||||
h[direction][boundary_slice] = h[direction][shifted1_slice]
|
||||
h[u][boundary_slice] = 0
|
||||
h[v][boundary_slice] = 0
|
||||
return h
|
||||
|
||||
return en, hn
|
||||
|
||||
elif polarity > 0:
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
shifted2_slice = [slice(None)] * 3
|
||||
boundary_slice[direction] = -1
|
||||
shifted1_slice[direction] = -2
|
||||
shifted2_slice[direction] = -3
|
||||
|
||||
def ep(e: field_t):
|
||||
e[direction][boundary_slice] = -e[direction][shifted2_slice]
|
||||
e[direction][shifted1_slice] = 0
|
||||
e[u][boundary_slice] = e[u][shifted1_slice]
|
||||
e[v][boundary_slice] = e[v][shifted1_slice]
|
||||
return e
|
||||
|
||||
def hp(h: field_t):
|
||||
h[direction][boundary_slice] = h[direction][shifted1_slice]
|
||||
h[u][boundary_slice] = -h[u][shifted2_slice]
|
||||
h[u][shifted1_slice] = 0
|
||||
h[v][boundary_slice] = -h[v][shifted2_slice]
|
||||
h[v][shifted1_slice] = 0
|
||||
return h
|
||||
|
||||
return ep, hp
|
||||
|
||||
else:
|
||||
raise Exception('Bad polarity: {}'.format(polarity))
|
||||
|
||||
|
||||
def cpml(direction:int,
|
||||
polarity: int,
|
||||
dt: float,
|
||||
epsilon: field_t,
|
||||
thickness: int = 8,
|
||||
epsilon_eff: float = 1,
|
||||
dtype: numpy.dtype = numpy.float32,
|
||||
) -> Tuple[Callable, Callable, Dict[str, field_t]]:
|
||||
|
||||
if direction not in range(3):
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
|
||||
if polarity not in (-1, 1):
|
||||
raise Exception('Invalid polarity: {}'.format(polarity))
|
||||
|
||||
if thickness <= 2:
|
||||
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
|
||||
|
||||
if epsilon_eff <= 0:
|
||||
raise Exception('epsilon_eff must be positive')
|
||||
|
||||
m = (3.5, 1)
|
||||
sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(epsilon_eff)
|
||||
alpha_max = 0 # TODO: Decide what to do about non-zero alpha
|
||||
transverse = numpy.delete(range(3), direction)
|
||||
u, v = transverse
|
||||
|
||||
xe = numpy.arange(1, thickness+1, dtype=float)
|
||||
xh = numpy.arange(1, thickness+1, dtype=float)
|
||||
if polarity > 0:
|
||||
xe -= 0.5
|
||||
elif polarity < 0:
|
||||
xh -= 0.5
|
||||
xe = xe[::-1]
|
||||
xh = xh[::-1]
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
expand_slice = [None] * 3
|
||||
expand_slice[direction] = slice(None)
|
||||
|
||||
def par(x):
|
||||
sigma = ((x / thickness) ** m[0]) * sigma_max
|
||||
alpha = ((1 - x / thickness) ** m[1]) * alpha_max
|
||||
p0 = numpy.exp(-(sigma + alpha) * dt)
|
||||
p1 = sigma / (sigma + alpha) * (p0 - 1)
|
||||
return p0[expand_slice], p1[expand_slice]
|
||||
|
||||
p0e, p1e = par(xe)
|
||||
p0h, p1h = par(xh)
|
||||
|
||||
region = [slice(None)] * 3
|
||||
if polarity < 0:
|
||||
region[direction] = slice(None, thickness)
|
||||
elif polarity > 0:
|
||||
region[direction] = slice(-thickness, None)
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
if direction == 1:
|
||||
se = 1
|
||||
else:
|
||||
se = -1
|
||||
|
||||
# TODO check if epsilon is uniform?
|
||||
shape = list(epsilon[0].shape)
|
||||
shape[direction] = thickness
|
||||
psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
psi_h = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
|
||||
fields = {
|
||||
'psi_e_u': psi_e[0],
|
||||
'psi_e_v': psi_e[1],
|
||||
'psi_h_u': psi_h[0],
|
||||
'psi_h_v': psi_h[1],
|
||||
}
|
||||
|
||||
def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]:
|
||||
psi_e[0] *= p0e
|
||||
psi_e[0] += p1e * (h[v][region] - numpy.roll(h[v], 1, axis=direction)[region])
|
||||
psi_e[1] *= p0e
|
||||
psi_e[1] += p1e * (h[u][region] - numpy.roll(h[u], 1, axis=direction)[region])
|
||||
e[u][region] += se * dt * psi_e[0] / epsilon[u][region]
|
||||
e[v][region] -= se * dt * psi_e[1] / epsilon[v][region]
|
||||
return e, h
|
||||
|
||||
def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]:
|
||||
psi_h[0] *= p0h
|
||||
psi_h[0] += p1h * (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region])
|
||||
psi_h[1] *= p0h
|
||||
psi_h[1] += p1h * (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region])
|
||||
h[u][region] -= se * dt * psi_h[0]
|
||||
h[v][region] += se * dt * psi_h[1]
|
||||
return e, h
|
||||
|
||||
return pml_e, pml_h, fields
|
Loading…
Reference in New Issue
Block a user