Compare commits
35 Commits
Author | SHA1 | Date | |
---|---|---|---|
5b16295769 | |||
fe684d83d3 | |||
7f620a9bb3 | |||
50b30d31fb | |||
b703f1ee20 | |||
5b1e758c27 | |||
d0011cb1f9 | |||
654f9c165b | |||
689b3176cc | |||
77c10feead | |||
08a9328390 | |||
f489eb6e06 | |||
b2043ce841 | |||
c2e5c94e14 | |||
c75a7e67c9 | |||
26ae8578c9 | |||
4c81f33d05 | |||
1403b9e1a3 | |||
e58efd2127 | |||
a6384429ee | |||
292fde05d5 | |||
bbd33844b3 | |||
2b96e5dd84 | |||
922161c0e6 | |||
da3216133a | |||
45e047c50e | |||
8afe1d1f26 | |||
8cbb0e9864 | |||
4e0bd8b3c6 | |||
a4dd031666 | |||
0c7b2fd3a2 | |||
23d65d6ebb | |||
cf0db63a3f | |||
89d99187b6 | |||
1627d0da05 |
29
.flake8
Normal file
29
.flake8
Normal file
@ -0,0 +1,29 @@
|
||||
[flake8]
|
||||
ignore =
|
||||
# E501 line too long
|
||||
E501,
|
||||
# W391 newlines at EOF
|
||||
W391,
|
||||
# E241 multiple spaces after comma
|
||||
E241,
|
||||
# E302 expected 2 newlines
|
||||
E302,
|
||||
# W503 line break before binary operator (to be deprecated)
|
||||
W503,
|
||||
# E265 block comment should start with '# '
|
||||
E265,
|
||||
# E123 closing bracket does not match indentation of opening bracket's line
|
||||
E123,
|
||||
# E124 closing bracket does not match visual indentation
|
||||
E124,
|
||||
# E221 multiple spaces before operator
|
||||
E221,
|
||||
# E201 whitespace after '['
|
||||
E201,
|
||||
# E741 ambiguous variable name 'I'
|
||||
E741,
|
||||
|
||||
|
||||
per-file-ignores =
|
||||
# F401 import without use
|
||||
*/__init__.py: F401,
|
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,9 +1,11 @@
|
||||
.idea/
|
||||
*.h5
|
||||
|
||||
__pycache__
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
build/
|
||||
dist/
|
||||
*.egg-info/
|
||||
|
||||
.pytest_cache/
|
||||
.mypy_cache/
|
||||
|
199
fdtd.py
199
fdtd.py
@ -7,6 +7,7 @@ See main() for simulation setup.
|
||||
import sys
|
||||
import time
|
||||
import logging
|
||||
import pyopencl
|
||||
|
||||
import numpy
|
||||
import lzma
|
||||
@ -16,7 +17,7 @@ from opencl_fdtd import Simulation
|
||||
from masque import Pattern, shapes
|
||||
import gridlock
|
||||
import pcgen
|
||||
import fdfd_tools
|
||||
import meanas
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
@ -29,60 +30,69 @@ def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern:
|
||||
"""
|
||||
Generate a masque.Pattern object containing a perturbed L3 cavity.
|
||||
|
||||
:param a: Lattice constant.
|
||||
:param radius: Hole radius, in units of a (lattice constant).
|
||||
:param kwargs: Keyword arguments:
|
||||
hole_dose, trench_dose, hole_layer, trench_layer: Shape properties for Pattern.
|
||||
Defaults *_dose=1, hole_layer=0, trench_layer=1.
|
||||
shifts_a, shifts_r: passed to pcgen.l3_shift; specifies lattice constant (1 -
|
||||
multiplicative factor) and radius (multiplicative factor) for shifting
|
||||
holes adjacent to the defect (same row). Defaults are 0.15 shift for
|
||||
first hole, 0.075 shift for third hole, and no radius change.
|
||||
Args:
|
||||
a: Lattice constant.
|
||||
radius: Hole radius, in units of a (lattice constant).
|
||||
hole_dose: Dose for all holes. Default 1.
|
||||
trench_dose: Dose for undercut trenches. Default 1.
|
||||
hole_layer: Layer for holes. Default (0, 0).
|
||||
trench_layer: Layer for undercut trenches. Default (1, 0).
|
||||
shifts_a: passed to pcgen.l3_shift
|
||||
shifts_r: passed to pcgen.l3_shift
|
||||
xy_size: [x, y] number of mirror periods in each direction; total size is
|
||||
2 * n + 1 holes in each direction. Default [10, 10].
|
||||
2 * n + 1 holes in each direction. Default (10, 10).
|
||||
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
|
||||
(multiplicative factor). Default 1.1.
|
||||
trench width: Width of the undercut trenches. Default 1.2e3.
|
||||
:return: masque.Pattern object containing the L3 design
|
||||
|
||||
Returns:
|
||||
`masque.Pattern` object containing the L3 design
|
||||
"""
|
||||
|
||||
default_args = {'hole_dose': 1,
|
||||
'trench_dose': 1,
|
||||
'hole_layer': 0,
|
||||
'trench_layer': 1,
|
||||
'shifts_a': (0.15, 0, 0.075),
|
||||
'shifts_r': (1.0, 1.0, 1.0),
|
||||
'xy_size': (10, 10),
|
||||
'perturbed_radius': 1.1,
|
||||
'trench_width': 1.2e3,
|
||||
}
|
||||
default_args = {
|
||||
'hole_dose': 1,
|
||||
'trench_dose': 1,
|
||||
'hole_layer': 0,
|
||||
'trench_layer': 1,
|
||||
'shifts_a': (0.15, 0, 0.075),
|
||||
'shifts_r': (1.0, 1.0, 1.0),
|
||||
'xy_size': (10, 10),
|
||||
'perturbed_radius': 1.1,
|
||||
'trench_width': 1.2e3,
|
||||
}
|
||||
kwargs = {**default_args, **kwargs}
|
||||
|
||||
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=kwargs['xy_size'],
|
||||
perturbed_radius=kwargs['perturbed_radius'],
|
||||
shifts_a=kwargs['shifts_a'],
|
||||
shifts_r=kwargs['shifts_r'])
|
||||
xyr = pcgen.l3_shift_perturbed_defect(
|
||||
mirror_dims=kwargs['xy_size'],
|
||||
perturbed_radius=kwargs['perturbed_radius'],
|
||||
shifts_a=kwargs['shifts_a'],
|
||||
shifts_r=kwargs['shifts_r'],
|
||||
)
|
||||
xyr *= a
|
||||
xyr[:, 2] *= radius
|
||||
|
||||
pat = Pattern()
|
||||
pat.name = 'L3p-a{:g}r{:g}rp{:g}'.format(a, radius, kwargs['perturbed_radius'])
|
||||
pat.name = f'L3p-a{a:g}r{radius:g}rp{kwargs["perturbed_radius"]:g}'
|
||||
pat.shapes += [shapes.Circle(radius=r, offset=(x, y),
|
||||
dose=kwargs['hole_dose'],
|
||||
layer=kwargs['hole_layer'])
|
||||
for x, y, r in xyr]
|
||||
|
||||
maxes = numpy.max(numpy.fabs(xyr), axis=0)
|
||||
pat.shapes += [shapes.Polygon.rectangle(
|
||||
lx=(2 * maxes[0]), ly=kwargs['trench_width'],
|
||||
offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2)),
|
||||
dose=kwargs['trench_dose'], layer=kwargs['trench_layer'])
|
||||
for s in (-1, 1)]
|
||||
pat.shapes += [
|
||||
shapes.Polygon.rectangle(
|
||||
lx=(2 * maxes[0]),
|
||||
ly=kwargs['trench_width'],
|
||||
offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2)),
|
||||
dose=kwargs['trench_dose'],
|
||||
layer=kwargs['trench_layer'],
|
||||
)
|
||||
for s in (-1, 1)]
|
||||
return pat
|
||||
|
||||
|
||||
def main():
|
||||
max_t = 8000 # number of timesteps
|
||||
max_t = 4000 # number of timesteps
|
||||
|
||||
dx = 25 # discretization (nm/cell)
|
||||
pml_thickness = 8 # (number of cells)
|
||||
@ -101,36 +111,43 @@ def main():
|
||||
n_air = 1.0 # air
|
||||
|
||||
# Half-dimensions of the simulation grid
|
||||
xy_max = (xy_size + 1) * a * [1, numpy.sqrt(3)/2]
|
||||
z_max = 1.6 * a
|
||||
xyz_max = numpy.hstack((xy_max, z_max)) + pml_thickness * dx
|
||||
|
||||
# Coordinates of the edges of the cells.
|
||||
# The fdtd package can only do square grids at the moment.
|
||||
half_edge_coords = [numpy.arange(dx/2, m + dx, step=dx) for m in xyz_max]
|
||||
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
||||
# xy_max = (xy_size + 1) * a * [1, numpy.sqrt(3)/2]
|
||||
# z_max = 1.6 * a
|
||||
# xyz_max = numpy.hstack((xy_max, z_max)) + pml_thickness * dx
|
||||
#
|
||||
# # Coordinates of the edges of the cells.
|
||||
# # The fdtd package can only do square grids at the moment.
|
||||
# half_edge_coords = [numpy.arange(dx/2, m + dx, step=dx) for m in xyz_max]
|
||||
# edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
||||
edge_coords = [numpy.arange(-100.5, 101), numpy.arange(-1, 1), numpy.arange(-100.5, 101)]
|
||||
# edge_coords = [numpy.arange(-100.5, 101), numpy.arange(-100.5, 101), numpy.arange(-1, 1)]
|
||||
|
||||
# #### Create the grid, mask, and draw the device ####
|
||||
grid = gridlock.Grid(edge_coords, initial=n_air**2, num_grids=3)
|
||||
grid.draw_slab(surface_normal=gridlock.Direction.z,
|
||||
center=[0, 0, 0],
|
||||
thickness=th,
|
||||
eps=n_slab**2)
|
||||
mask = perturbed_l3(a, r)
|
||||
grid = gridlock.Grid(edge_coords)
|
||||
epsilon = grid.allocate(n_air**2)
|
||||
# grid.draw_slab(epsilon,
|
||||
# surface_normal=2,
|
||||
# center=[0, 0, 0],
|
||||
# thickness=th,
|
||||
# eps=n_slab**2)
|
||||
# mask = perturbed_l3(a, r)
|
||||
#
|
||||
# grid.draw_polygons(epsilon,
|
||||
# surface_normal=2,
|
||||
# center=[0, 0, 0],
|
||||
# thickness=2 * th,
|
||||
# eps=n_air**2,
|
||||
# polygons=mask.as_polygons())
|
||||
|
||||
grid.draw_polygons(surface_normal=gridlock.Direction.z,
|
||||
center=[0, 0, 0],
|
||||
thickness=2 * th,
|
||||
eps=n_air**2,
|
||||
polygons=mask.as_polygons())
|
||||
|
||||
logger.info('grid shape: {}'.format(grid.shape))
|
||||
logger.info(f'grid shape: {grid.shape}')
|
||||
# #### Create the simulation grid ####
|
||||
# pmls = [{'axis': a, 'polarity': p, 'thickness': pml_thickness}
|
||||
# for a in 'xyz' for p in 'np']
|
||||
pmls = [{'axis': a, 'polarity': p, 'thickness': pml_thickness}
|
||||
for a in 'xyz' for p in 'np']
|
||||
for a in 'xz' for p in 'np']
|
||||
#bloch = [{'axis': a, 'real': 1, 'imag': 0} for a in 'x']
|
||||
bloch = []
|
||||
sim = Simulation(grid.grids, do_poynting=True, pmls=pmls, bloch_boundaries=bloch)
|
||||
sim = Simulation(epsilon, do_poynting=True, pmls=pmls, bloch_boundaries=bloch)
|
||||
|
||||
# Source parameters and function
|
||||
w = 2 * numpy.pi * dx / wl
|
||||
@ -155,36 +172,88 @@ def main():
|
||||
f.write('\n=====================G=====================\n')
|
||||
f.write(sim.sources['G'])
|
||||
|
||||
|
||||
planes = numpy.empty((max_t, 4))
|
||||
planes2 = numpy.empty((max_t, 4))
|
||||
Ectr = numpy.empty(max_t)
|
||||
u = numpy.empty(max_t)
|
||||
ui = numpy.empty(max_t)
|
||||
# #### Run a bunch of iterations ####
|
||||
# event = sim.whatever([prev_event]) indicates that sim.whatever should be queued
|
||||
# immediately and run once prev_event is finished.
|
||||
start = time.perf_counter()
|
||||
for t in range(max_t):
|
||||
e = sim.update_E([])
|
||||
if bloch:
|
||||
e = sim.update_F([e])
|
||||
# if bloch:
|
||||
# e = sim.update_F([e])
|
||||
e.wait()
|
||||
|
||||
ind = numpy.ravel_multi_index(tuple(grid.shape//2), dims=grid.shape, order='C') + numpy.prod(grid.shape)
|
||||
sim.E[ind] += field_source(t)
|
||||
# sim.E[ind] += field_source(t)
|
||||
if t == 2:
|
||||
sim.E[ind] += 1e6
|
||||
|
||||
h_old = sim.H.copy()
|
||||
|
||||
e = sim.update_H([])
|
||||
if bloch:
|
||||
e = sim.update_G([e])
|
||||
if sim.update_S:
|
||||
e = sim.update_S([e])
|
||||
# if bloch:
|
||||
# e = sim.update_G([e])
|
||||
e.wait()
|
||||
|
||||
S = sim.S.get().reshape(epsilon.shape) * sim.dt * dx * dx *dx
|
||||
m = 30
|
||||
planes[t] = (
|
||||
S[0][+pml_thickness+2, :, pml_thickness+3:-pml_thickness-3].sum(),
|
||||
S[0][-pml_thickness-2, :, pml_thickness+3:-pml_thickness-3].sum(),
|
||||
S[2][pml_thickness+2:-pml_thickness-2, :, +pml_thickness+2].sum(),
|
||||
S[2][pml_thickness+2:-pml_thickness-2, :, -pml_thickness-2].sum(),
|
||||
)
|
||||
planes2[t] = (
|
||||
S[0][grid.shape[0]//2-1, 0, grid.shape[2]//2].sum(),
|
||||
S[0][grid.shape[0]//2 , 0, grid.shape[2]//2].sum(),
|
||||
S[2][grid.shape[0]//2 , 0, grid.shape[2]//2-1].sum(),
|
||||
S[2][grid.shape[0]//2 , 0, grid.shape[2]//2].sum(),
|
||||
)
|
||||
|
||||
# planes[t] = (
|
||||
# S[0][+pml_thickness+m, pml_thickness+m+1:-pml_thickness-m, :].sum(),
|
||||
# S[0][-pml_thickness-m, pml_thickness+m+1:-pml_thickness-m, :].sum(),
|
||||
# S[1][pml_thickness+1+m:-pml_thickness-m, +pml_thickness+m, :].sum(),
|
||||
# S[1][pml_thickness+1+m:-pml_thickness-m, -pml_thickness-m, :].sum(),
|
||||
# )
|
||||
# planes2[t] = (
|
||||
# S[0][grid.shape[0]//2-1, grid.shape[1]//2 , 0].sum(),
|
||||
# S[0][grid.shape[0]//2 , grid.shape[1]//2 , 0].sum(),
|
||||
# S[1][grid.shape[0]//2 , grid.shape[1]//2-1, 0].sum(),
|
||||
# S[1][grid.shape[0]//2 , grid.shape[1]//2 , 0].sum(),
|
||||
# )
|
||||
Ectr[t] = sim.E[ind].get()
|
||||
u[t] = pyopencl.array.sum(sim.E * sim.E * sim.eps + h_old * sim.H).get() * dx * dx * dx
|
||||
ui[t] = (sim.E * sim.E * sim.eps + h_old * sim.H).reshape(epsilon.shape).get()[:, pml_thickness+m:-pml_thickness-m, :,
|
||||
pml_thickness+m:-pml_thickness-m].sum() * dx * dx * dx
|
||||
# ui[t] = (sim.E * sim.E * sim.eps + h_old * sim.H).reshape(epsilon.shape).get()[:, pml_thickness+m:-pml_thickness-m,
|
||||
# pml_thickness+m:-pml_thickness-m, :].sum() * dx * dx * dx
|
||||
|
||||
if t % 100 == 0:
|
||||
logger.info('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
||||
avg = (t + 1) / (time.perf_counter() - start)
|
||||
logger.info(f'iteration {t}: average {avg} iterations per sec')
|
||||
sys.stdout.flush()
|
||||
|
||||
with lzma.open('saved_simulation', 'wb') as f:
|
||||
def unvec(f):
|
||||
return fdfd_tools.unvec(f, grid.shape)
|
||||
return meanas.fdmath.unvec(f, grid.shape)
|
||||
d = {
|
||||
'grid': grid,
|
||||
'epsilon': epsilon,
|
||||
'E': unvec(sim.E.get()),
|
||||
'H': unvec(sim.H.get()),
|
||||
'dt': sim.dt,
|
||||
'dx': dx,
|
||||
'planes': planes,
|
||||
'planes2': planes2,
|
||||
'Ectr': Ectr,
|
||||
'u': u,
|
||||
'ui': ui,
|
||||
}
|
||||
if sim.S is not None:
|
||||
d['S'] = unvec(sim.S.get())
|
||||
|
1
opencl_fdtd/LICENSE.md
Symbolic link
1
opencl_fdtd/LICENSE.md
Symbolic link
@ -0,0 +1 @@
|
||||
../LICENSE.md
|
1
opencl_fdtd/README.md
Symbolic link
1
opencl_fdtd/README.md
Symbolic link
@ -0,0 +1 @@
|
||||
../README.md
|
@ -1,5 +1,8 @@
|
||||
from .simulation import Simulation, type_to_C
|
||||
from .simulation import (
|
||||
Simulation as Simulation,
|
||||
type_to_C as type_to_C,
|
||||
)
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
version = '0.4'
|
||||
__version__ = '0.4'
|
||||
version = __version__
|
||||
|
@ -92,7 +92,7 @@ if ( s{{r}} > {{r}} && {{r}} >= s{{r}} - pml_{{r ~ p}}_thickness ) {
|
||||
const size_t ip = {{v}} + {{u}} * s{{v}} + ir * s{{v}} * s{{u}}; // linear index into Psi
|
||||
dH{{v ~ r}} *= p{{r}}2e{{p}}[ir];
|
||||
dH{{u ~ r}} *= p{{r}}2e{{p}}[ir];
|
||||
{{psi ~ u}}[ip] = p{{r}}0e{{p}}[ir] * {{psi ~ u}}[ip] + p{{r}}1e{{p}}[ir] * dH{{v ~ r}};
|
||||
{{psi ~ u}}[ip] = p{{r}}0e{{p}}[ir] * {{psi ~ u}}[ip] + p{{r}}1e{{p}}[ir] * dH{{v ~ r}}; //note u uses v
|
||||
{{psi ~ v}}[ip] = p{{r}}0e{{p}}[ir] * {{psi ~ v}}[ip] + p{{r}}1e{{p}}[ir] * dH{{u ~ r}};
|
||||
pE{{u}}i {{se}}= {{psi ~ u}}[ip];
|
||||
pE{{v}}i {{sh}}= {{psi ~ v}}[ip];
|
||||
|
@ -6,13 +6,14 @@
|
||||
* common_header: Rendered contents of common.cl
|
||||
* pmls: [{'axis': 'x', 'polarity': 'n', 'thickness': 8}, ...] list of pml dicts containing
|
||||
* axes, polarities, and thicknesses.
|
||||
* do_poynting: Whether to precalculate poynting vector components (boolean)
|
||||
* do_poynting: Whether to calculate poynting vector (boolean)
|
||||
* do_poynting_halves: Whether to calculate half-step poynting vectors (boolean)
|
||||
* uniform_dx: If grid is uniform, uniform_dx should be the grid spacing.
|
||||
* Otherwise, uniform_dx should be False and [inv_de{xyz}] arrays must be supplied as
|
||||
* OpenCL args.
|
||||
*
|
||||
* OpenCL args:
|
||||
* E, H, dt, [inv_de{xyz}], [p{xyz}{01}h{np}, Psi_{xyz}{np}_H], [oS]
|
||||
* E, H, dt, [inv_de{xyz}], [p{xyz}{01}h{np}, Psi_{xyz}{np}_H], [S], [S0, S1]
|
||||
*/
|
||||
|
||||
{{common_header}}
|
||||
@ -52,24 +53,7 @@ if ({{r}} == s{{r}} - 1) {
|
||||
dE{{u ~ r}} = bloch_re * dE{{u ~ r}} + bloch_im * (F{{u}}[i + p{{u}}] - F{{u}}[i]);
|
||||
dE{{v ~ r}} = bloch_re * dE{{v ~ r}} + bloch_im * (F{{v}}[i + p{{v}}] - F{{v}}[i]);
|
||||
}
|
||||
{% endfor -%}
|
||||
|
||||
{%- if do_poynting %}
|
||||
|
||||
|
||||
/*
|
||||
* Precalculate averaged E
|
||||
*/
|
||||
ftype aExy = Ex[i + py] + Ex[i];
|
||||
ftype aExz = Ex[i + pz] + Ex[i];
|
||||
|
||||
ftype aEyx = Ey[i + px] + Ey[i];
|
||||
ftype aEyz = Ey[i + pz] + Ey[i];
|
||||
|
||||
ftype aEzx = Ez[i + px] + Ez[i];
|
||||
ftype aEzy = Ez[i + py] + Ez[i];
|
||||
{%- endif %}
|
||||
|
||||
{%- endfor %}
|
||||
|
||||
|
||||
|
||||
@ -118,7 +102,7 @@ if ( s{{r}} > {{r}} && {{r}} >= s{{r}} - pml_{{r ~ p}}_thickness ) {
|
||||
/*
|
||||
* Update H
|
||||
*/
|
||||
{% if do_poynting -%}
|
||||
{% if do_poynting or do_poynting_halves -%}
|
||||
// Save old H for averaging
|
||||
ftype Hx_old = Hx[i];
|
||||
ftype Hy_old = Hy[i];
|
||||
@ -131,25 +115,40 @@ Hy[i] -= dt * (dExz - dEzx - pHyi);
|
||||
Hz[i] -= dt * (dEyx - dExy - pHzi);
|
||||
|
||||
{% if do_poynting -%}
|
||||
// Average H across timesteps
|
||||
ftype aHxt = Hx[i] + Hx_old;
|
||||
ftype aHyt = Hy[i] + Hy_old;
|
||||
ftype aHzt = Hz[i] + Hz_old;
|
||||
|
||||
/*
|
||||
* Calculate unscaled S components at H locations
|
||||
* Calculate unscaled S components at ??? locations
|
||||
* //TODO: document S locations and types
|
||||
*/
|
||||
__global ftype *oSxy = oS + 0 * field_size;
|
||||
__global ftype *oSyz = oS + 1 * field_size;
|
||||
__global ftype *oSzx = oS + 2 * field_size;
|
||||
__global ftype *oSxz = oS + 3 * field_size;
|
||||
__global ftype *oSyx = oS + 4 * field_size;
|
||||
__global ftype *oSzy = oS + 5 * field_size;
|
||||
__global ftype *Sx = S + XX;
|
||||
__global ftype *Sy = S + YY;
|
||||
__global ftype *Sz = S + ZZ;
|
||||
|
||||
oSxy[i] = aEyx * aHzt;
|
||||
oSxz[i] = -aEzx * aHyt;
|
||||
oSyz[i] = aEzy * aHxt;
|
||||
oSyx[i] = -aExy * aHzt;
|
||||
oSzx[i] = aExz * aHyt;
|
||||
oSzy[i] = -aEyz * aHxt;
|
||||
// Sum old and new H
|
||||
ftype sHxt = Hx[i] + Hx_old;
|
||||
ftype sHyt = Hy[i] + Hy_old;
|
||||
ftype sHzt = Hz[i] + Hz_old;
|
||||
|
||||
Sx[i] = Ey[i + px] * sHzt - Ez[i + px] * sHyt;
|
||||
Sy[i] = Ez[i + py] * sHxt - Ex[i + py] * sHzt;
|
||||
Sz[i] = Ex[i + pz] * sHyt - Ey[i + pz] * sHxt;
|
||||
{%- endif -%}
|
||||
|
||||
{% if do_poynting_halves -%}
|
||||
/*
|
||||
* Calculate unscaled S components at ??? locations
|
||||
* //TODO: document S locations and types
|
||||
*/
|
||||
__global ftype *Sx0 = S0 + XX;
|
||||
__global ftype *Sy0 = S0 + YY;
|
||||
__global ftype *Sz0 = S0 + ZZ;
|
||||
__global ftype *Sx1 = S1 + XX;
|
||||
__global ftype *Sy1 = S1 + YY;
|
||||
__global ftype *Sz1 = S1 + ZZ;
|
||||
|
||||
Sx0[i] = Ey[i + px] * Hz_old - Ez[i + px] * Hy_old;
|
||||
Sy0[i] = Ez[i + py] * Hx_old - Ex[i + py] * Hz_old;
|
||||
Sz0[i] = Ex[i + pz] * Hy_old - Ey[i + pz] * Hx_old;
|
||||
Sx1[i] = Ey[i + px] * Hz[i] - Ez[i + px] * Hy[i];
|
||||
Sy1[i] = Ez[i + py] * Hx[i] - Ex[i + py] * Hz[i];
|
||||
Sz1[i] = Ex[i + pz] * Hy[i] - Ey[i + pz] * Hx[i];
|
||||
{%- endif -%}
|
||||
|
@ -1,36 +0,0 @@
|
||||
/*
|
||||
* Update E-field, including any PMLs.
|
||||
*
|
||||
* Template parameters:
|
||||
* common_header: Rendered contents of common.cl
|
||||
* pmls: [('x', 'n'), ('z', 'p'),...] list of pml axes and polarities
|
||||
* pml_thickness: Number of cells (integer)
|
||||
*
|
||||
* OpenCL args:
|
||||
* E, H, dt, S, oS
|
||||
*/
|
||||
|
||||
{{common_header}}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
/*
|
||||
* Calculate S from oS (pre-calculated components)
|
||||
*/
|
||||
__global ftype *Sx = S + XX;
|
||||
__global ftype *Sy = S + YY;
|
||||
__global ftype *Sz = S + ZZ;
|
||||
|
||||
// Use unscaled S components from H locations
|
||||
__global ftype *oSxy = oS + 0 * field_size;
|
||||
__global ftype *oSyz = oS + 1 * field_size;
|
||||
__global ftype *oSzx = oS + 2 * field_size;
|
||||
__global ftype *oSxz = oS + 3 * field_size;
|
||||
__global ftype *oSyx = oS + 4 * field_size;
|
||||
__global ftype *oSzy = oS + 5 * field_size;
|
||||
|
||||
ftype s_factor = dt * 0.125;
|
||||
Sx[i] = (oSxy[i] + oSxz[i] + oSxy[i + my] + oSxz[i + mz]) * s_factor;
|
||||
Sy[i] = (oSyz[i] + oSyx[i] + oSyz[i + mz] + oSyx[i + mx]) * s_factor;
|
||||
Sz[i] = (oSzx[i] + oSzy[i] + oSzx[i + mx] + oSzy[i + my]) * s_factor;
|
@ -2,28 +2,35 @@
|
||||
Class for constructing and holding the basic FDTD operations and fields
|
||||
"""
|
||||
|
||||
from typing import List, Dict, Callable
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Callable, Sequence
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
from numpy import floating, complexfloating
|
||||
import jinja2
|
||||
import warnings
|
||||
import logging
|
||||
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
from pyopencl.elementwise import ElementwiseKernel
|
||||
|
||||
from fdfd_tools import vec
|
||||
from meanas.fdmath import vec
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Create jinja2 env on module load
|
||||
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels'))
|
||||
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__.split('.')[0], 'kernels'))
|
||||
|
||||
|
||||
class Simulation(object):
|
||||
"""
|
||||
class FDTDError(Exception):
|
||||
""" Custom exception for opencl_fdtd """
|
||||
pass
|
||||
|
||||
|
||||
class Simulation:
|
||||
r"""
|
||||
Constructs and holds the basic FDTD operations and related fields
|
||||
|
||||
After constructing this object, call the (update_E, update_H, update_S) members
|
||||
@ -32,7 +39,7 @@ class Simulation(object):
|
||||
pmls = [{'axis': a, 'polarity': p} for a in 'xyz' for p in 'np']
|
||||
sim = Simulation(grid.grids, do_poynting=True, pmls=pmls)
|
||||
with open('sources.c', 'w') as f:
|
||||
f.write('{}'.format(sim.sources))
|
||||
f.write(f'{sim.sources}')
|
||||
|
||||
for t in range(max_t):
|
||||
sim.update_E([]).wait()
|
||||
@ -48,7 +55,7 @@ class Simulation(object):
|
||||
event.wait()
|
||||
|
||||
with lzma.open('saved_simulation', 'wb') as f:
|
||||
dill.dump(fdfd_tools.unvec(sim.E.get(), grid.shape), f)
|
||||
dill.dump(meanas.fdmath.unvec(sim.E.get(), grid.shape), f)
|
||||
|
||||
Code in the form
|
||||
event2 = sim.update_H([event0, event1])
|
||||
@ -56,70 +63,70 @@ class Simulation(object):
|
||||
event0 and event1 to occur (i.e. previous operations to finish) before starting execution.
|
||||
event2 can then be used to prepare further operations to be run after update_H.
|
||||
"""
|
||||
E = None # type: pyopencl.array.Array
|
||||
H = None # type: pyopencl.array.Array
|
||||
S = None # type: pyopencl.array.Array
|
||||
eps = None # type: pyopencl.array.Array
|
||||
dt = None # type: float
|
||||
inv_dxes = None # type: List[pyopencl.array.Array]
|
||||
E: pyopencl.array.Array
|
||||
H: pyopencl.array.Array
|
||||
S: pyopencl.array.Array
|
||||
eps: pyopencl.array.Array
|
||||
dt: float
|
||||
inv_dxes: list[pyopencl.array.Array]
|
||||
|
||||
arg_type = None # type: numpy.float32 or numpy.float64
|
||||
arg_type: type
|
||||
|
||||
context = None # type: pyopencl.Context
|
||||
queue = None # type: pyopencl.CommandQueue
|
||||
context: pyopencl.Context
|
||||
queue: pyopencl.CommandQueue
|
||||
|
||||
update_E = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_H = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_S = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_J = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
sources = None # type: Dict[str, str]
|
||||
update_E: Callable[[list[pyopencl.Event]], pyopencl.Event]
|
||||
update_H: Callable[[list[pyopencl.Event]], pyopencl.Event]
|
||||
update_S: Callable[[list[pyopencl.Event]], pyopencl.Event]
|
||||
update_J: Callable[[list[pyopencl.Event]], pyopencl.Event]
|
||||
sources: dict[str, str]
|
||||
|
||||
def __init__(self,
|
||||
epsilon: List[numpy.ndarray],
|
||||
pmls: List[Dict[str, int or float]],
|
||||
bloch_boundaries: List[Dict[str, int or float]] = (),
|
||||
dxes: List[List[numpy.ndarray]] or float = None,
|
||||
dt: float = None,
|
||||
initial_fields: Dict[str, List[numpy.ndarray]] = None,
|
||||
context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None,
|
||||
float_type: numpy.float32 or numpy.float64 = numpy.float32,
|
||||
do_poynting: bool = True,
|
||||
do_fieldsrc: bool = False):
|
||||
def __init__(
|
||||
self,
|
||||
epsilon: NDArray,
|
||||
pmls: Sequence[dict[str, float]],
|
||||
bloch_boundaries: Sequence[dict[str, float]] = (),
|
||||
dxes: list[list[NDArray]] | float | None = None,
|
||||
dt: float | None = None,
|
||||
initial_fields: dict[str, NDArray] | None = None,
|
||||
context: pyopencl.Context | None = None,
|
||||
queue: pyopencl.CommandQueue | None = None,
|
||||
float_type: type = numpy.float32,
|
||||
do_poynting: bool = True,
|
||||
do_fieldsrc: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the simulation.
|
||||
|
||||
:param epsilon: List containing [eps_r,xx, eps_r,yy, eps_r,zz], where each element is a Yee-shifted ndarray
|
||||
Args:
|
||||
epsilon: List containing [eps_r,xx, eps_r,yy, eps_r,zz], where each element is a Yee-shifted ndarray
|
||||
spanning the simulation domain. Relative epsilon is used.
|
||||
:param pmls: List of dicts with keys:
|
||||
'axis': One of 'x', 'y', 'z'.
|
||||
'direction': One of 'n', 'p'.
|
||||
'thickness': Number of layers, default 8.
|
||||
'epsilon_eff': Effective epsilon to match to. Default 1.0.
|
||||
'mu_eff': Effective mu to match to. Default 1.0.
|
||||
'ln_R_per_layer': Desired (ln(R) / thickness) value. Default -1.6.
|
||||
'm': Polynomial grading exponent. Default 3.5.
|
||||
'ma': Exponent for alpha. Default 1.
|
||||
:param bloch_boundaries: List of dicts with keys:
|
||||
'axis': One of 'x', 'y', 'z'.
|
||||
'real': Real part of bloch phase factor (i.e. real(exp(i * phase)))
|
||||
'imag': Imaginary part of bloch phase factor (i.e. imag(exp(i * phase)))
|
||||
:param dt: Time step. Default is min(dxes) * .99/sqrt(3).
|
||||
:param initial_fields: Dict with optional keys ('E', 'H', 'F', 'G') containing initial values for the
|
||||
specified fields (default is 0 everywhere). Fields have same format as epsilon.
|
||||
:param context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called.
|
||||
:param queue: pyOpenCL command queue. If not given, pyopencl.CommandQueue(context) is called.
|
||||
:param float_type: numpy.float32 or numpy.float64. Default numpy.float32.
|
||||
:param do_poynting: If true, enables calculation of the poynting vector, S.
|
||||
pmls: List of dicts with keys:
|
||||
'axis': One of 'x', 'y', 'z'.
|
||||
'direction': One of 'n', 'p'.
|
||||
'thickness': Number of layers, default 8.
|
||||
'epsilon_eff': Effective epsilon to match to. Default 1.0.
|
||||
'mu_eff': Effective mu to match to. Default 1.0.
|
||||
'ln_R_per_layer': Desired (ln(R) / thickness) value. Default -1.6.
|
||||
'm': Polynomial grading exponent. Default 3.5.
|
||||
'ma': Exponent for alpha. Default 1.
|
||||
bloch_boundaries: List of dicts with keys:
|
||||
'axis': One of 'x', 'y', 'z'.
|
||||
'real': Real part of bloch phase factor (i.e. real(exp(i * phase)))
|
||||
'imag': Imaginary part of bloch phase factor (i.e. imag(exp(i * phase)))
|
||||
dt: Time step. Default is min(dxes) * .99/sqrt(3).
|
||||
initial_fields: Dict with optional keys ('E', 'H', 'F', 'G') containing initial values for the
|
||||
specified fields (default is 0 everywhere). Fields have same format as epsilon.
|
||||
context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called.
|
||||
queue: pyOpenCL command queue. If not given, pyopencl.CommandQueue(context) is called.
|
||||
float_type: numpy.float32 or numpy.float64. Default numpy.float32.
|
||||
do_poynting: If True, enables calculation of the poynting vector, S.
|
||||
Poynting vector calculation adds the following computational burdens:
|
||||
* During update_H, ~6 extra additions/cell are performed in order to spatially
|
||||
average E and temporally average H. These quantities are multiplied
|
||||
(6 multiplications/cell) and then stored (6 writes/cell, cache-friendly).
|
||||
* update_S performs a discrete cross product using the precalculated products
|
||||
from update_H. This is not nice to the cache and similar to e.g. update_E
|
||||
in complexity.
|
||||
* GPU memory requirements are approximately doubled, since S and the intermediate
|
||||
products must be stored.
|
||||
* During update_H, 12 extra additions/cell are performed in order to temporally
|
||||
sum E and H. The results are then multiplied by E (6 multiplications/cell) and
|
||||
then stored (6 writes/cell, cache-friendly). The E-field components are
|
||||
reused from the H-field update and do not require additional H
|
||||
* GPU memory requirements increase by 50% (for storing S)
|
||||
"""
|
||||
if initial_fields is None:
|
||||
initial_fields = {}
|
||||
@ -133,7 +140,7 @@ class Simulation(object):
|
||||
if dxes is None:
|
||||
dxes = 1.0
|
||||
|
||||
if isinstance(dxes, (float, int)):
|
||||
if isinstance(dxes, float | int):
|
||||
uniform_dx = dxes
|
||||
min_dx = dxes
|
||||
else:
|
||||
@ -142,13 +149,14 @@ class Simulation(object):
|
||||
min_dx = min(min(dxn) for dxn in dxes[0] + dxes[1])
|
||||
|
||||
max_dt = min_dx * .99 / numpy.sqrt(3)
|
||||
logger.info(f'{min_dx=}, {max_dt=}, {dt=}')
|
||||
|
||||
if dt is None:
|
||||
self.dt = max_dt
|
||||
elif dt > max_dt:
|
||||
warnings.warn('Warning: unstable dt: {}'.format(dt))
|
||||
warnings.warn(f'Warning: unstable dt: {dt}', stacklevel=2)
|
||||
elif dt <= 0:
|
||||
raise Exception('Invalid dt: {}'.format(dt))
|
||||
raise FDTDError(f'Invalid dt: {dt}')
|
||||
else:
|
||||
self.dt = dt
|
||||
|
||||
@ -170,42 +178,46 @@ class Simulation(object):
|
||||
ctype = type_to_C(self.arg_type)
|
||||
|
||||
def ptr(arg: str) -> str:
|
||||
return ctype + ' * restrict ' + arg
|
||||
return ctype + ' *' + arg
|
||||
|
||||
base_fields = OrderedDict()
|
||||
base_fields[ptr('E')] = self.E
|
||||
base_fields[ptr('H')] = self.H
|
||||
base_fields[ctype + ' dt'] = self.dt
|
||||
if uniform_dx == False:
|
||||
base_fields = {
|
||||
ptr('E'): self.E,
|
||||
ptr('H'): self.H,
|
||||
ctype + ' dt': self.dt,
|
||||
}
|
||||
if uniform_dx is False:
|
||||
inv_dx_names = ['inv_d' + eh + r for eh in 'eh' for r in 'xyz']
|
||||
for name, field in zip(inv_dx_names, self.inv_dxes):
|
||||
for name, field in zip(inv_dx_names, self.inv_dxes, strict=True):
|
||||
base_fields[ptr(name)] = field
|
||||
|
||||
eps_field = OrderedDict()
|
||||
eps_field[ptr('eps')] = self.eps
|
||||
eps_field = {ptr('eps'): self.eps}
|
||||
|
||||
if bloch_boundaries:
|
||||
base_fields[ptr('F')] = self.F
|
||||
base_fields[ptr('G')] = self.G
|
||||
base_fields |= {
|
||||
ptr('F'): self.F,
|
||||
ptr('G'): self.G,
|
||||
}
|
||||
|
||||
bloch_fields = OrderedDict()
|
||||
bloch_fields[ptr('E')] = self.F
|
||||
bloch_fields[ptr('H')] = self.G
|
||||
bloch_fields[ctype + ' dt'] = self.dt
|
||||
bloch_fields[ptr('F')] = self.E
|
||||
bloch_fields[ptr('G')] = self.H
|
||||
bloch_fields = {
|
||||
ptr('E'): self.F,
|
||||
ptr('H'): self.G,
|
||||
ctype + ' dt': self.dt,
|
||||
ptr('F'): self.E,
|
||||
ptr('G'): self.H,
|
||||
}
|
||||
|
||||
common_source = jinja_env.get_template('common.cl').render(
|
||||
ftype=ctype,
|
||||
shape=self.shape,
|
||||
)
|
||||
ftype=ctype,
|
||||
shape=self.shape,
|
||||
)
|
||||
jinja_args = {
|
||||
'common_header': common_source,
|
||||
'pmls': pmls,
|
||||
'do_poynting': do_poynting,
|
||||
'bloch': bloch_boundaries,
|
||||
'uniform_dx': uniform_dx,
|
||||
}
|
||||
'common_header': common_source,
|
||||
'pmls': pmls,
|
||||
'do_poynting': do_poynting,
|
||||
'do_poynting_halves': do_poynting_halves,
|
||||
'bloch': bloch_boundaries,
|
||||
'uniform_dx': uniform_dx,
|
||||
}
|
||||
E_source = jinja_env.get_template('update_e.cl').render(**jinja_args)
|
||||
H_source = jinja_env.get_template('update_h.cl').render(**jinja_args)
|
||||
self.sources['E'] = E_source
|
||||
@ -214,27 +226,28 @@ class Simulation(object):
|
||||
if bloch_boundaries:
|
||||
bloch_args = jinja_args.copy()
|
||||
bloch_args['do_poynting'] = False
|
||||
bloch_args['bloch'] = [{'axis': b['axis'],
|
||||
'real': b['imag'],
|
||||
'imag': b['real']}
|
||||
for b in bloch_boundaries]
|
||||
bloch_args['bloch'] = [{
|
||||
'axis': b['axis'],
|
||||
'real': b['imag'],
|
||||
'imag': b['real'],
|
||||
}
|
||||
for b in bloch_boundaries]
|
||||
F_source = jinja_env.get_template('update_e.cl').render(**bloch_args)
|
||||
G_source = jinja_env.get_template('update_h.cl').render(**bloch_args)
|
||||
self.sources['F'] = F_source
|
||||
self.sources['G'] = G_source
|
||||
|
||||
|
||||
S_fields = OrderedDict()
|
||||
S_fields = {}
|
||||
if do_poynting:
|
||||
S_source = jinja_env.get_template('update_s.cl').render(**jinja_args)
|
||||
self.sources['S'] = S_source
|
||||
|
||||
self.oS = pyopencl.array.zeros(self.queue, self.E.shape + (2,), dtype=self.arg_type)
|
||||
self.S = pyopencl.array.zeros_like(self.E)
|
||||
S_fields[ptr('oS')] = self.oS
|
||||
S_fields[ptr('S')] = self.S
|
||||
if do_poynting_halves:
|
||||
self.S0 = pyopencl.array.zeros_like(self.E)
|
||||
self.S1 = pyopencl.array.zeros_like(self.E)
|
||||
S_fields[ptr('S0')] = self.S0
|
||||
S_fields[ptr('S1')] = self.S1
|
||||
|
||||
J_fields = OrderedDict()
|
||||
J_fields = {}
|
||||
if do_fieldsrc:
|
||||
J_source = jinja_env.get_template('update_j.cl').render(**jinja_args)
|
||||
self.sources['J'] = J_source
|
||||
@ -244,40 +257,36 @@ class Simulation(object):
|
||||
J_fields[ptr('Jr')] = self.Jr
|
||||
J_fields[ptr('Ji')] = self.Ji
|
||||
|
||||
|
||||
'''
|
||||
PML
|
||||
'''
|
||||
#
|
||||
# PML
|
||||
#
|
||||
pml_e_fields, pml_h_fields = self._create_pmls(pmls)
|
||||
if bloch_boundaries:
|
||||
pml_f_fields, pml_g_fields = self._create_pmls(pmls)
|
||||
|
||||
'''
|
||||
Create operations
|
||||
'''
|
||||
#
|
||||
# Create operations
|
||||
#
|
||||
self.update_E = self._create_operation(E_source, (base_fields, eps_field, pml_e_fields))
|
||||
self.update_H = self._create_operation(H_source, (base_fields, pml_h_fields, S_fields))
|
||||
if do_poynting:
|
||||
self.update_S = self._create_operation(S_source, (base_fields, S_fields))
|
||||
if bloch_boundaries:
|
||||
self.update_F = self._create_operation(F_source, (bloch_fields, eps_field, pml_f_fields))
|
||||
self.update_G = self._create_operation(G_source, (bloch_fields, pml_g_fields))
|
||||
if do_fieldsrc:
|
||||
args = OrderedDict()
|
||||
[args.update(d) for d in (base_fields, J_fields)]
|
||||
args = base_fields | J_fields
|
||||
var_args = [ctype + ' ' + v for v in 'cs'] + ['uint ' + r + m for r in 'xyz' for m in ('min', 'max')]
|
||||
update = ElementwiseKernel(self.context, operation=J_source,
|
||||
arguments=', '.join(list(args.keys()) + var_args))
|
||||
self.update_J = lambda e, *a: update(*args.values(), *a, wait_for=e)
|
||||
|
||||
|
||||
def _create_pmls(self, pmls):
|
||||
def _create_pmls(self, pmls: Sequence[dict[str, float]]) -> tuple[dict[str, pyopencl.array.Array], ...]:
|
||||
ctype = type_to_C(self.arg_type)
|
||||
|
||||
def ptr(arg: str) -> str:
|
||||
return ctype + ' *' + arg
|
||||
|
||||
pml_e_fields = OrderedDict()
|
||||
pml_h_fields = OrderedDict()
|
||||
pml_e_fields = {}
|
||||
pml_h_fields = {}
|
||||
for pml in pmls:
|
||||
a = 'xyz'.find(pml['axis'])
|
||||
|
||||
@ -285,7 +294,9 @@ class Simulation(object):
|
||||
kappa_max = numpy.sqrt(pml['mu_eff'] * pml['epsilon_eff'])
|
||||
alpha_max = pml['cfs_alpha']
|
||||
|
||||
def par(x):
|
||||
print(sigma_max, kappa_max, alpha_max, pml['thickness'], self.dt)
|
||||
|
||||
def par(x, pml=pml, sigma_max=sigma_max, kappa_max=kappa_max, alpha_max=alpha_max): # noqa: ANN001, ANN202
|
||||
scaling = (x / pml['thickness']) ** pml['m']
|
||||
sigma = scaling * sigma_max
|
||||
kappa = 1 + scaling * (kappa_max - 1)
|
||||
@ -301,8 +312,13 @@ class Simulation(object):
|
||||
elif pml['polarity'] == 'n':
|
||||
xh -= 0.5
|
||||
|
||||
logger.debug(f'{pml=}')
|
||||
logger.debug(f'{xe=}')
|
||||
logger.debug(f'{xh=}')
|
||||
logger.debug(f'{par(xe)=}')
|
||||
logger.debug(f'{par(xh)=}')
|
||||
pml_p_names = [['p' + pml['axis'] + i + eh + pml['polarity'] for i in '012'] for eh in 'eh']
|
||||
for name_e, name_h, pe, ph in zip(pml_p_names[0], pml_p_names[1], par(xe), par(xh)):
|
||||
for name_e, name_h, pe, ph in zip(pml_p_names[0], pml_p_names[1], par(xe), par(xh), strict=True):
|
||||
pml_e_fields[ptr(name_e)] = pyopencl.array.to_device(self.queue, pe)
|
||||
pml_h_fields[ptr(name_h)] = pyopencl.array.to_device(self.queue, ph)
|
||||
|
||||
@ -313,64 +329,87 @@ class Simulation(object):
|
||||
psi_shape = list(self.shape)
|
||||
psi_shape[a] = pml['thickness']
|
||||
|
||||
for ne, nh in zip(*psi_names):
|
||||
for ne, nh in zip(*psi_names, strict=True):
|
||||
pml_e_fields[ptr(ne)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
|
||||
pml_h_fields[ptr(nh)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
|
||||
return pml_e_fields, pml_h_fields
|
||||
|
||||
def _create_operation(self, source, args_fields):
|
||||
args = OrderedDict()
|
||||
[args.update(d) for d in args_fields]
|
||||
update = ElementwiseKernel(self.context, operation=source,
|
||||
arguments=', '.join(args.keys()))
|
||||
def _create_operation(self, source: str, args_fields: Sequence[dict[str, pyopencl.array.Array]]) -> Callable[..., pyopencl.Event]:
|
||||
args = {}
|
||||
for d in args_fields:
|
||||
args.update(d)
|
||||
update = ElementwiseKernel(
|
||||
self.context,
|
||||
operation=source,
|
||||
arguments=', '.join(args.keys()),
|
||||
)
|
||||
return lambda e: update(*args.values(), wait_for=e)
|
||||
|
||||
def _create_context(self, context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None):
|
||||
if context is None:
|
||||
self.context = pyopencl.create_some_context()
|
||||
else:
|
||||
self.context = context
|
||||
def _create_context(
|
||||
self,
|
||||
context: pyopencl.Context | None = None,
|
||||
queue: pyopencl.CommandQueue | None = None,
|
||||
) -> None:
|
||||
self.context = context or pyopencl.create_some_context()
|
||||
self.queue = queue or pyopencl.CommandQueue(self.context)
|
||||
|
||||
if queue is None:
|
||||
self.queue = pyopencl.CommandQueue(self.context)
|
||||
else:
|
||||
self.queue = queue
|
||||
|
||||
def _create_eps(self, epsilon: List[numpy.ndarray]):
|
||||
def _create_eps(self, epsilon: NDArray) -> pyopencl.array.Array:
|
||||
if len(epsilon) != 3:
|
||||
raise Exception('Epsilon must be a list with length of 3')
|
||||
if not all((e.shape == epsilon[0].shape for e in epsilon[1:])):
|
||||
raise Exception('All epsilon grids must have the same shape. Shapes are {}', [e.shape for e in epsilon])
|
||||
raise FDTDError('Epsilon must be a list with length of 3')
|
||||
if not all(e.shape == epsilon[0].shape for e in epsilon[1:]):
|
||||
raise FDTDError('All epsilon grids must have the same shape. Shapes are {}', [e.shape for e in epsilon])
|
||||
if not epsilon[0].shape == self.shape:
|
||||
raise Exception('Epsilon shape mismatch. Expected {}, got {}'.format(self.shape, epsilon[0].shape))
|
||||
raise FDTDError(f'Epsilon shape mismatch. Expected {self.shape}, got {epsilon[0].shape}')
|
||||
self.eps = pyopencl.array.to_device(self.queue, vec(epsilon).astype(self.arg_type))
|
||||
|
||||
def _create_field(self, initial_value: List[numpy.ndarray] = None):
|
||||
def _create_field(self, initial_value: NDArray | None = None) -> pyopencl.array.Array:
|
||||
if initial_value is None:
|
||||
return pyopencl.array.zeros_like(self.eps)
|
||||
else:
|
||||
if len(initial_value) != 3:
|
||||
Exception('Initial field value must be a list of length 3')
|
||||
if not all((f.shape == self.shape for f in initial_value)):
|
||||
Exception('Initial field list elements must have same shape as epsilon elements')
|
||||
return pyopencl.array.to_device(self.queue, vec(initial_value).astype(self.arg_type))
|
||||
if len(initial_value) != 3:
|
||||
raise FDTDError('Initial field value must be a list of length 3')
|
||||
if not all(f.shape == self.shape for f in initial_value):
|
||||
raise FDTDError('Initial field list elements must have same shape as epsilon elements')
|
||||
return pyopencl.array.to_device(self.queue, vec(initial_value).astype(self.arg_type))
|
||||
|
||||
|
||||
def type_to_C(float_type) -> str:
|
||||
def type_to_C(
|
||||
float_type: type,
|
||||
) -> str:
|
||||
"""
|
||||
Returns a string corresponding to the C equivalent of a numpy type.
|
||||
Only works for float16, float32, float64.
|
||||
|
||||
:param float_type: e.g. numpy.float32
|
||||
:return: string containing the corresponding C type (eg. 'double')
|
||||
Args:
|
||||
float_type: e.g. numpy.float32
|
||||
|
||||
Returns:
|
||||
string containing the corresponding C type (eg. 'double')
|
||||
"""
|
||||
if float_type == numpy.float16:
|
||||
arg_type = 'half'
|
||||
elif float_type == numpy.float32:
|
||||
arg_type = 'float'
|
||||
elif float_type == numpy.float64:
|
||||
arg_type = 'double'
|
||||
else:
|
||||
raise Exception('Unsupported type')
|
||||
return arg_type
|
||||
types = {
|
||||
numpy.float16: 'half',
|
||||
numpy.float32: 'float',
|
||||
numpy.float64: 'double',
|
||||
numpy.complex64: 'cfloat_t',
|
||||
numpy.complex128: 'cdouble_t',
|
||||
}
|
||||
if float_type not in types:
|
||||
raise FDTDError(f'Unsupported type: {float_type}')
|
||||
|
||||
return types[float_type]
|
||||
|
||||
# def par(x):
|
||||
# scaling = ((x / (pml['thickness'])) ** pml['m'])
|
||||
# print('scaling', scaling)
|
||||
# print('sigma_max * dt / 2', sigma_max * self.dt / 2)
|
||||
# print('kappa_max', kappa_max)
|
||||
# print('m', pml['m'])
|
||||
# sigma = scaling * sigma_max
|
||||
# kappa = 1 + scaling * (kappa_max - 1)
|
||||
# alpha = ((1 - x / pml['thickness']) ** pml['ma']) * alpha_max
|
||||
# p0 = 1/(1 + self.dt * (alpha + sigma / kappa))
|
||||
# p1 = self.dt * sigma / kappa * p0
|
||||
# p2 = 1/kappa
|
||||
# print(p0.min(), p0.max(), p1.min(), p1.max())
|
||||
# return p0, p1, p2
|
||||
#
|
||||
#
|
||||
|
382
opencl_fdtd/test_simulation.py
Normal file
382
opencl_fdtd/test_simulation.py
Normal file
@ -0,0 +1,382 @@
|
||||
import unittest
|
||||
import numpy
|
||||
|
||||
from opencl_fdtd import Simulation
|
||||
from meanas import fdtd
|
||||
|
||||
|
||||
class BasicTests():
|
||||
def test_initial_fields(self):
|
||||
# Make sure initial fields didn't change
|
||||
e0 = self.es[0]
|
||||
h0 = self.hs[0]
|
||||
mask = self.src_mask
|
||||
|
||||
self.assertEqual(e0[mask], self.j_mag / self.epsilon[mask])
|
||||
self.assertFalse(e0[~mask].any())
|
||||
self.assertFalse(h0.any())
|
||||
|
||||
|
||||
def test_initial_energy(self):
|
||||
e0 = self.es[0]
|
||||
h0 = self.hs[0]
|
||||
h1 = self.hs[1]
|
||||
mask = self.src_mask[1]
|
||||
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in e0.shape[1:]) for _ in range(2))
|
||||
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
||||
u0 = self.j_mag * self.j_mag / self.epsilon[self.src_mask] * dV[mask]
|
||||
args = {
|
||||
'dxes': self.dxes,
|
||||
'epsilon': self.epsilon,
|
||||
}
|
||||
|
||||
# Make sure initial energy and E dot J are correct
|
||||
energy0 = fdtd.energy_estep(h0=h0, e1=e0, h2=self.hs[1], **args)
|
||||
e_dot_j_0 = fdtd.delta_energy_j(j0=(e0 - 0) * self.epsilon, e1=e0, dxes=self.dxes)
|
||||
self.assertTrue(numpy.allclose(energy0[mask], u0))
|
||||
self.assertFalse(energy0[~mask].any(), msg=f'{energy0=}')
|
||||
self.assertTrue(numpy.allclose(e_dot_j_0[mask], u0))
|
||||
self.assertFalse(e_dot_j_0[~mask].any(), msg=f'{e_dot_j_0=}')
|
||||
|
||||
|
||||
def test_energy_conservation(self):
|
||||
e0 = self.es[0]
|
||||
u0 = fdtd.delta_energy_j(j0=(e0 - 0) * self.epsilon, e1=e0, dxes=self.dxes).sum()
|
||||
args = {'dxes': self.dxes,
|
||||
'epsilon': self.epsilon}
|
||||
|
||||
for ii in range(1, 8):
|
||||
with self.subTest(i=ii):
|
||||
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args)
|
||||
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args)
|
||||
self.assertTrue(numpy.allclose(u_hstep.sum(), u0), msg=f'u_hstep: {u_hstep.sum()}\n{numpy.moveaxis(u_hstep, -1, 0)}')
|
||||
self.assertTrue(numpy.allclose(u_estep.sum(), u0), msg=f'u_estep: {u_estep.sum()}\n{numpy.moveaxis(u_estep, -1, 0)}')
|
||||
|
||||
|
||||
def test_poynting(self):
|
||||
for ii in range(1, 3):
|
||||
with self.subTest(i=ii):
|
||||
s = fdtd.poynting(e=self.es[ii], h=self.hs[ii+1] + self.hs[ii])
|
||||
sf = numpy.moveaxis(s, -1, 0)
|
||||
ss = numpy.moveaxis(self.ss[ii], -1, 0)
|
||||
self.assertTrue(numpy.allclose(s, self.ss[ii], rtol=1e-4),
|
||||
msg=f'From ExH:\n{sf}\nFrom sim.S:\n{ss}')
|
||||
|
||||
|
||||
def test_poynting_divergence(self):
|
||||
args = {
|
||||
'dxes': self.dxes,
|
||||
'epsilon': self.epsilon,
|
||||
}
|
||||
|
||||
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in self.epsilon.shape[1:]) for _ in range(2))
|
||||
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
||||
|
||||
u_eprev = None
|
||||
for ii in range(1, 8):
|
||||
with self.subTest(i=ii):
|
||||
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args)
|
||||
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args)
|
||||
|
||||
du_half_h2e = u_estep - u_hstep
|
||||
div_s_h2e = self.dt * fdtd.poynting_divergence(e=self.es[ii], h=self.hs[ii], dxes=self.dxes) * dV
|
||||
|
||||
du_half_h2e_f = numpy.moveaxis(du_half_h2e, -1, 0)
|
||||
div_s_h2e_f = -numpy.moveaxis(div_s_h2e, -1, 0)
|
||||
self.assertTrue(numpy.allclose(du_half_h2e, -div_s_h2e, rtol=1e-4),
|
||||
msg=f'du_half_h2e\n{du_half_h2e_f}\ndiv_s_h2e\n{div_s_h2e_f}')
|
||||
|
||||
if u_eprev is None:
|
||||
u_eprev = u_estep
|
||||
continue
|
||||
|
||||
# previous half-step
|
||||
du_half_e2h = u_hstep - u_eprev
|
||||
div_s_e2h = self.dt * fdtd.poynting_divergence(e=self.es[ii-1], h=self.hs[ii], dxes=self.dxes) * dV
|
||||
du_half_e2h_f = numpy.moveaxis(du_half_e2h, -1, 0)
|
||||
div_s_e2h_f = -numpy.moveaxis(div_s_e2h, -1, 0)
|
||||
self.assertTrue(numpy.allclose(du_half_e2h, -div_s_e2h, rtol=1e-4),
|
||||
msg=f'du_half_e2h\n{du_half_e2h_f}\ndiv_s_e2h\n{div_s_e2h_f}')
|
||||
u_eprev = u_estep
|
||||
|
||||
|
||||
def test_poynting_planes(self):
|
||||
args = {
|
||||
'dxes': self.dxes,
|
||||
'epsilon': self.epsilon,
|
||||
}
|
||||
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in self.epsilon.shape[1:]) for _ in range(2))
|
||||
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
||||
|
||||
mx = numpy.roll(self.src_mask, (-1, -1), axis=(0, 1))
|
||||
my = numpy.roll(self.src_mask, -1, axis=2)
|
||||
mz = numpy.roll(self.src_mask, (+1, -1), axis=(0, 3))
|
||||
px = numpy.roll(self.src_mask, -1, axis=0)
|
||||
py = self.src_mask.copy()
|
||||
pz = numpy.roll(self.src_mask, +1, axis=0)
|
||||
|
||||
u_eprev = None
|
||||
for ii in range(1, 8):
|
||||
with self.subTest(i=ii):
|
||||
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args)
|
||||
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args)
|
||||
|
||||
s_h2e = -fdtd.poynting(e=self.es[ii], h=self.hs[ii]) * self.dt
|
||||
s_h2e[0] *= dxes[0][1][None, :, None] * dxes[0][2][None, None, :]
|
||||
s_h2e[1] *= dxes[0][0][:, None, None] * dxes[0][2][None, None, :]
|
||||
s_h2e[2] *= dxes[0][0][:, None, None] * dxes[0][1][None, :, None]
|
||||
planes = [s_h2e[px].sum(), -s_h2e[mx].sum(),
|
||||
s_h2e[py].sum(), -s_h2e[my].sum(),
|
||||
s_h2e[pz].sum(), -s_h2e[mz].sum()]
|
||||
du = (u_estep - u_hstep)[self.src_mask[1]]
|
||||
self.assertTrue(numpy.allclose(sum(planes), (u_estep - u_hstep)[self.src_mask[1]]),
|
||||
msg=f'planes: {planes} (sum: {sum(planes)})\n du:\n {du}')
|
||||
|
||||
if u_eprev is None:
|
||||
u_eprev = u_estep
|
||||
continue
|
||||
|
||||
s_e2h = -fdtd.poynting(e=self.es[ii - 1], h=self.hs[ii]) * self.dt
|
||||
s_e2h[0] *= dxes[0][1][None, :, None] * dxes[0][2][None, None, :]
|
||||
s_e2h[1] *= dxes[0][0][:, None, None] * dxes[0][2][None, None, :]
|
||||
s_e2h[2] *= dxes[0][0][:, None, None] * dxes[0][1][None, :, None]
|
||||
planes = [s_e2h[px].sum(), -s_e2h[mx].sum(),
|
||||
s_e2h[py].sum(), -s_e2h[my].sum(),
|
||||
s_e2h[pz].sum(), -s_e2h[mz].sum()]
|
||||
du = (u_hstep - u_eprev)[self.src_mask[1]]
|
||||
self.assertTrue(numpy.allclose(sum(planes), (u_hstep - u_eprev)[self.src_mask[1]]),
|
||||
msg=f'planes: {du} (sum: {sum(planes)})\n du:\n {du}')
|
||||
|
||||
# previous half-step
|
||||
u_eprev = u_estep
|
||||
|
||||
|
||||
class Basic2DNoDXOnlyVacuum(unittest.TestCase, BasicTests):
|
||||
def setUp(self):
|
||||
shape = [3, 5, 5, 1]
|
||||
self.dt = 0.5
|
||||
self.epsilon = numpy.ones(shape, dtype=float)
|
||||
self.j_mag = 32
|
||||
self.dxes = None
|
||||
|
||||
self.src_mask = numpy.zeros_like(self.epsilon, dtype=bool)
|
||||
self.src_mask[1, 2, 2, 0] = True
|
||||
|
||||
e = numpy.zeros_like(self.epsilon)
|
||||
h = numpy.zeros_like(self.epsilon)
|
||||
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
||||
self.es = [e]
|
||||
self.hs = [h]
|
||||
self.ss = []
|
||||
|
||||
sim = Simulation(epsilon=self.epsilon, pmls=[], dt=self.dt, dxes=self.dxes,
|
||||
initial_fields={'E': e, 'H': h}, do_poynting=True)
|
||||
|
||||
for _ in range(9):
|
||||
e = e.copy()
|
||||
h = h.copy()
|
||||
sim.update_H([]).wait()
|
||||
sim.update_E([]).wait()
|
||||
self.es.append(sim.E.get().reshape(shape))
|
||||
self.hs.append(sim.H.get().reshape(shape))
|
||||
self.ss.append(sim.S.get().reshape(shape))
|
||||
|
||||
|
||||
class Basic2DUniformDX3(unittest.TestCase, BasicTests):
|
||||
def setUp(self):
|
||||
shape = [3, 5, 1, 5]
|
||||
self.dt = 0.5
|
||||
self.j_mag = 32
|
||||
self.dxes = tuple(tuple(numpy.full(s, 2.0) for s in shape[1:]) for _ in range(2))
|
||||
|
||||
self.src_mask = numpy.zeros(shape, dtype=bool)
|
||||
self.src_mask[1, 2, 0, 2] = True
|
||||
|
||||
self.epsilon = numpy.full(shape, 1, dtype=float)
|
||||
self.epsilon[self.src_mask] = 2
|
||||
|
||||
e = numpy.zeros_like(self.epsilon)
|
||||
h = numpy.zeros_like(self.epsilon)
|
||||
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
||||
self.es = [e]
|
||||
self.hs = [h]
|
||||
self.ss = []
|
||||
|
||||
sim = Simulation(epsilon=self.epsilon, pmls=[], dt=self.dt, dxes=self.dxes,
|
||||
initial_fields={'E': e, 'H': h}, do_poynting=True)
|
||||
|
||||
for _ in range(9):
|
||||
e = e.copy()
|
||||
h = h.copy()
|
||||
sim.update_H([]).wait()
|
||||
sim.update_E([]).wait()
|
||||
self.es.append(sim.E.get().reshape(shape))
|
||||
self.hs.append(sim.H.get().reshape(shape))
|
||||
self.ss.append(sim.S.get().reshape(shape))
|
||||
|
||||
|
||||
class Basic3DUniformDXOnlyVacuum(unittest.TestCase, BasicTests):
|
||||
def setUp(self):
|
||||
shape = [3, 5, 5, 5]
|
||||
self.dt = 0.5
|
||||
self.epsilon = numpy.ones(shape, dtype=float)
|
||||
self.j_mag = 32
|
||||
self.dxes = tuple(tuple(numpy.ones(s) for s in shape[1:]) for _ in range(2))
|
||||
|
||||
self.src_mask = numpy.zeros_like(self.epsilon, dtype=bool)
|
||||
self.src_mask[1, 2, 2, 2] = True
|
||||
|
||||
e = numpy.zeros_like(self.epsilon)
|
||||
h = numpy.zeros_like(self.epsilon)
|
||||
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
||||
self.es = [e]
|
||||
self.hs = [h]
|
||||
self.ss = []
|
||||
|
||||
sim = Simulation(epsilon=self.epsilon, pmls=[], dt=self.dt, dxes=self.dxes,
|
||||
initial_fields={'E': e, 'H': h}, do_poynting=True)
|
||||
|
||||
for _ in range(9):
|
||||
e = e.copy()
|
||||
h = h.copy()
|
||||
sim.update_H([]).wait()
|
||||
sim.update_E([]).wait()
|
||||
self.es.append(sim.E.get().reshape(shape))
|
||||
self.hs.append(sim.H.get().reshape(shape))
|
||||
self.ss.append(sim.S.get().reshape(shape))
|
||||
|
||||
|
||||
class Basic3DUniformDXUniformN(unittest.TestCase, BasicTests):
|
||||
def setUp(self):
|
||||
shape = [3, 5, 5, 5]
|
||||
self.dt = 0.5
|
||||
self.epsilon = numpy.full(shape, 2.5, dtype=float)
|
||||
self.j_mag = 32
|
||||
self.dxes = tuple(tuple(numpy.ones(s) for s in shape[1:]) for _ in range(2))
|
||||
|
||||
self.src_mask = numpy.zeros_like(self.epsilon, dtype=bool)
|
||||
self.src_mask[1, 2, 2, 2] = True
|
||||
|
||||
e = numpy.zeros_like(self.epsilon)
|
||||
h = numpy.zeros_like(self.epsilon)
|
||||
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
||||
self.es = [e]
|
||||
self.hs = [h]
|
||||
self.ss = []
|
||||
|
||||
sim = Simulation(epsilon=self.epsilon, pmls=[], dt=self.dt, dxes=self.dxes,
|
||||
initial_fields={'E': e, 'H': h}, do_poynting=True)
|
||||
|
||||
for _ in range(9):
|
||||
e = e.copy()
|
||||
h = h.copy()
|
||||
sim.update_H([]).wait()
|
||||
sim.update_E([]).wait()
|
||||
self.es.append(sim.E.get().reshape(shape))
|
||||
self.hs.append(sim.H.get().reshape(shape))
|
||||
self.ss.append(sim.S.get().reshape(shape))
|
||||
|
||||
|
||||
class Basic3DUniformDX(unittest.TestCase, BasicTests):
|
||||
def setUp(self):
|
||||
shape = [3, 5, 5, 5]
|
||||
self.dt = 0.33
|
||||
self.j_mag = 32
|
||||
self.dxes = tuple(tuple(numpy.ones(s) for s in shape[1:]) for _ in range(2))
|
||||
|
||||
self.src_mask = numpy.zeros(shape, dtype=bool)
|
||||
self.src_mask[1, 2, 2, 2] = True
|
||||
|
||||
self.epsilon = numpy.full(shape, 1, dtype=float)
|
||||
self.epsilon[self.src_mask] = 2
|
||||
|
||||
e = numpy.zeros_like(self.epsilon)
|
||||
h = numpy.zeros_like(self.epsilon)
|
||||
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
||||
self.es = [e]
|
||||
self.hs = [h]
|
||||
self.ss = []
|
||||
|
||||
sim = Simulation(epsilon=self.epsilon, pmls=[], dt=self.dt, dxes=self.dxes,
|
||||
initial_fields={'E': e, 'H': h}, do_poynting=True)
|
||||
|
||||
for _ in range(9):
|
||||
e = e.copy()
|
||||
h = h.copy()
|
||||
sim.update_H([]).wait()
|
||||
sim.update_E([]).wait()
|
||||
self.es.append(sim.E.get().reshape(shape))
|
||||
self.hs.append(sim.H.get().reshape(shape))
|
||||
self.ss.append(sim.S.get().reshape(shape))
|
||||
|
||||
|
||||
class JdotE_3DUniformDX(unittest.TestCase):
|
||||
def setUp(self):
|
||||
shape = [3, 5, 5, 5]
|
||||
self.dt = 0.5
|
||||
self.j_mag = 32
|
||||
self.dxes = tuple(tuple(numpy.full(s, 2.0) for s in shape[1:]) for _ in range(2))
|
||||
|
||||
self.src_mask = numpy.zeros(shape, dtype=bool)
|
||||
self.src_mask[1, 2, 2, 2] = True
|
||||
|
||||
self.epsilon = numpy.full(shape, 4, dtype=float)
|
||||
self.epsilon[self.src_mask] = 2
|
||||
|
||||
rng = numpy.random.default_rng()
|
||||
e = rng.integers(-128, 128 + 1, size=shape, dtype=float)
|
||||
h = rng.integers(-128, 128 + 1, size=shape, dtype=float)
|
||||
self.es = [e]
|
||||
self.hs = [h]
|
||||
self.ss = []
|
||||
|
||||
sim = Simulation(epsilon=self.epsilon, pmls=[], dt=self.dt, dxes=self.dxes,
|
||||
initial_fields={'E': e, 'H': h}, do_poynting=True, float_type=numpy.float64)
|
||||
|
||||
eh2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
||||
eh2e = fdtd.maxwell_e(dt=self.dt, dxes=self.dxes)
|
||||
for ii in range(9):
|
||||
e = e.copy()
|
||||
h = h.copy()
|
||||
sim.update_H([]).wait()
|
||||
sim.update_E([]).wait()
|
||||
|
||||
if ii == 1:
|
||||
nn = numpy.where(self.src_mask.flat)[0][0]
|
||||
self.e_before = sim.E.get().reshape(shape)
|
||||
sim.E[nn] += self.j_mag / self.epsilon[self.src_mask][0]
|
||||
self.e_after = sim.E.get().reshape(shape)
|
||||
self.j_dot_e = self.j_mag * e[self.src_mask]
|
||||
|
||||
self.hs.append(sim.H.get().reshape(shape))
|
||||
self.es.append(sim.E.get().reshape(shape))
|
||||
self.ss.append(sim.S.get().reshape(shape))
|
||||
|
||||
|
||||
def test_j_dot_e(self):
|
||||
h0 = self.hs[2]
|
||||
e0 = self.es[1]
|
||||
e1 = self.es[2]
|
||||
j0 = numpy.zeros_like(e0)
|
||||
j0[self.src_mask] = self.j_mag
|
||||
args = {
|
||||
'dxes': self.dxes,
|
||||
'epsilon': self.epsilon,
|
||||
}
|
||||
e2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
||||
|
||||
#ee = j0 * (2 * e0 - j0)
|
||||
#hh = h0 * e2h(j0, numpy.zeros_like(h0))
|
||||
#u0 = fdtd.dxmul(ee, hh, **args)
|
||||
u0 = fdtd.delta_energy_j(j0=j0, e1=(e0 + e1), dxes=self.dxes)
|
||||
|
||||
#uh = [fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args) for ii in range(1, 9)]
|
||||
#ue = [fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args) for ii in range(8)]
|
||||
#uht = [uu.sum() for uu in uh]
|
||||
#uet = [uu.sum() for uu in ue]
|
||||
|
||||
u_hstep = fdtd.energy_hstep(e0=self.es[0], h1=self.hs[1], e2=self.es[1], **args)
|
||||
u_estep = fdtd.energy_estep(h0=self.hs[-2], e1=self.es[-2], h2=self.hs[-1], **args)
|
||||
#breakpoint()
|
||||
du = (u_estep - u_hstep).sum()
|
||||
self.assertTrue(numpy.allclose(u0.sum(), (u_estep - u_hstep).sum()), msg=f'{u0.sum()} != {du}')
|
213
pcgen.py
213
pcgen.py
@ -1,213 +0,0 @@
|
||||
"""
|
||||
Routines for creating normalized 2D lattices and common photonic crystal
|
||||
cavity designs.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
def triangular_lattice(dims: List[int],
|
||||
asymmetrical: bool=False
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
Return an ndarray of [[x0, y0], [x1, y1], ...] denoting lattice sites for
|
||||
a triangular lattice in 2D. The lattice will be centered around (0, 0),
|
||||
unless asymmetrical=True in which case there will be extra holes in the +x
|
||||
direction.
|
||||
|
||||
:param dims: Number of lattice sites in the [x, y] directions.
|
||||
:param asymmetrical: If true, each row in x will contain the same number of
|
||||
lattice sites. If false, the structure is symmetrical around (0, 0).
|
||||
:return: [[x0, y0], [x1, 1], ...] denoting lattice sites.
|
||||
"""
|
||||
dims = numpy.array(dims, dtype=int)
|
||||
|
||||
if asymmetrical:
|
||||
k = 0
|
||||
else:
|
||||
k = 1
|
||||
|
||||
positions = []
|
||||
ymax = (dims[1] - 1)/2
|
||||
for j in numpy.linspace(-ymax, ymax, dims[0]):
|
||||
j_odd = numpy.floor(j) % 2
|
||||
|
||||
x_offset = j_odd * 0.5
|
||||
y_offset = j * numpy.sqrt(3)/2
|
||||
|
||||
num_x = dims[0] - k * j_odd
|
||||
xmax = (dims[0] - 1)/2
|
||||
xs = numpy.linspace(-xmax, xmax - k * j_odd, num_x) + x_offset
|
||||
ys = numpy.full_like(xs, y_offset)
|
||||
|
||||
positions += [numpy.vstack((xs, ys)).T]
|
||||
|
||||
xy = numpy.vstack(tuple(positions))
|
||||
return xy[xy[:, 0].argsort(), ]
|
||||
|
||||
|
||||
def square_lattice(dims: List[int]) -> numpy.ndarray:
|
||||
"""
|
||||
Return an ndarray of [[x0, y0], [x1, y1], ...] denoting lattice sites for
|
||||
a square lattice in 2D. The lattice will be centered around (0, 0).
|
||||
|
||||
:param dims: Number of lattice sites in the [x, y] directions.
|
||||
:return: [[x0, y0], [x1, 1], ...] denoting lattice sites.
|
||||
"""
|
||||
xs, ys = numpy.meshgrid(range(dims[0]), range(dims[1]), 'xy')
|
||||
xs -= dims[0]/2
|
||||
ys -= dims[1]/2
|
||||
xy = numpy.vstack((xs.flatten(), ys.flatten())).T
|
||||
return xy[xy[:, 0].argsort(), ]
|
||||
|
||||
# ### Photonic crystal functions ###
|
||||
|
||||
|
||||
def nanobeam_holes(a_defect: float,
|
||||
num_defect_holes: int,
|
||||
num_mirror_holes: int
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
Returns a list of [[x0, r0], [x1, r1], ...] of nanobeam hole positions and radii.
|
||||
Creates a region in which the lattice constant and radius are progressively
|
||||
(linearly) altered over num_defect_holes holes until they reach the value
|
||||
specified by a_defect, then symmetrically returned to a lattice constant and
|
||||
radius of 1, which is repeated num_mirror_holes times on each side.
|
||||
|
||||
:param a_defect: Minimum lattice constant for the defect, as a fraction of the
|
||||
mirror lattice constant (ie., for no defect, a_defect = 1).
|
||||
:param num_defect_holes: How many holes form the defect (per-side)
|
||||
:param num_mirror_holes: How many holes form the mirror (per-side)
|
||||
:return: Ndarray [[x0, r0], [x1, r1], ...] of nanobeam hole positions and radii.
|
||||
"""
|
||||
a_values = numpy.linspace(a_defect, 1, num_defect_holes, endpoint=False)
|
||||
xs = a_values.cumsum() - (a_values[0] / 2) # Later mirroring makes center distance 2x as long
|
||||
mirror_xs = numpy.arange(1, num_mirror_holes + 1) + xs[-1]
|
||||
mirror_rs = numpy.ones_like(mirror_xs)
|
||||
return numpy.vstack((numpy.hstack((-mirror_xs[::-1], -xs[::-1], xs, mirror_xs)),
|
||||
numpy.hstack((mirror_rs[::-1], a_values[::-1], a_values, mirror_rs)))).T
|
||||
|
||||
|
||||
def ln_defect(mirror_dims: List[int], defect_length: int) -> numpy.ndarray:
|
||||
"""
|
||||
N-hole defect in a triangular lattice.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param defect_length: Length of defect. Should be an odd number.
|
||||
:return: [[x0, y0], [x1, y1], ...] for all the holes
|
||||
"""
|
||||
if defect_length % 2 != 1:
|
||||
raise Exception('defect_length must be odd!')
|
||||
p = triangular_lattice([2 * d + 1 for d in mirror_dims])
|
||||
half_length = numpy.floor(defect_length / 2)
|
||||
hole_nums = numpy.arange(-half_length, half_length + 1)
|
||||
holes_to_keep = numpy.in1d(p[:, 0], hole_nums, invert=True)
|
||||
return p[numpy.logical_or(holes_to_keep, p[:, 1] != 0), ]
|
||||
|
||||
|
||||
def ln_shift_defect(mirror_dims: List[int],
|
||||
defect_length: int,
|
||||
shifts_a: List[float]=(0.15, 0, 0.075),
|
||||
shifts_r: List[float]=(1, 1, 1)
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
N-hole defect with shifted holes (intended to give the mode a gaussian profile
|
||||
in real- and k-space so as to improve both Q and confinement). Holes along the
|
||||
defect line are shifted and altered according to the shifts_* parameters.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param defect_length: Length of defect. Should be an odd number.
|
||||
:param shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
|
||||
:param shifts_r: Factor to multiply the radius by. Should match length of shifts_a
|
||||
:return: [[x0, y0, r0], [x1, y1, r1], ...] for all the holes
|
||||
"""
|
||||
if not hasattr(shifts_a, "__len__") and shifts_a is not None:
|
||||
shifts_a = [shifts_a]
|
||||
if not hasattr(shifts_r, "__len__") and shifts_r is not None:
|
||||
shifts_r = [shifts_r]
|
||||
|
||||
xy = ln_defect(mirror_dims, defect_length)
|
||||
|
||||
# Add column for radius
|
||||
xyr = numpy.hstack((xy, numpy.ones((xy.shape[0], 1))))
|
||||
|
||||
# Shift holes
|
||||
# Expand shifts as necessary
|
||||
n_shifted = max(len(shifts_a), len(shifts_r))
|
||||
|
||||
tmp_a = numpy.array(shifts_a)
|
||||
shifts_a = numpy.ones((n_shifted, ))
|
||||
shifts_a[:len(tmp_a)] = tmp_a
|
||||
|
||||
tmp_r = numpy.array(shifts_r)
|
||||
shifts_r = numpy.ones((n_shifted, ))
|
||||
shifts_r[:len(tmp_r)] = tmp_r
|
||||
|
||||
x_removed = numpy.floor(defect_length / 2)
|
||||
|
||||
for ind in range(n_shifted):
|
||||
for sign in (-1, 1):
|
||||
x_val = sign * (x_removed + ind + 1)
|
||||
which = numpy.logical_and(xyr[:, 0] == x_val, xyr[:, 1] == 0)
|
||||
xyr[which, ] = (x_val + numpy.sign(x_val) * shifts_a[ind], 0, shifts_r[ind])
|
||||
|
||||
return xyr
|
||||
|
||||
|
||||
def r6_defect(mirror_dims: List[int]) -> numpy.ndarray:
|
||||
"""
|
||||
R6 defect in a triangular lattice.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:return: [[x0, y0], [x1, y1], ...] specifying hole centers.
|
||||
"""
|
||||
xy = triangular_lattice([2 * d + 1 for d in mirror_dims])
|
||||
|
||||
rem_holes_plus = numpy.array([[1, 0],
|
||||
[0.5, +numpy.sqrt(3)/2],
|
||||
[0.5, -numpy.sqrt(3)/2]])
|
||||
rem_holes = numpy.vstack((rem_holes_plus, -rem_holes_plus))
|
||||
|
||||
for rem_xy in rem_holes:
|
||||
xy = xy[(xy != rem_xy).any(axis=1), ]
|
||||
|
||||
return xy
|
||||
|
||||
|
||||
def l3_shift_perturbed_defect(mirror_dims: List[int],
|
||||
perturbed_radius: float=1.1,
|
||||
shifts_a: List[float]=(),
|
||||
shifts_r: List[float]=()
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
3-hole defect with perturbed hole sizes intended to form an upwards-directed
|
||||
beam. Can also include shifted holes along the defect line, intended
|
||||
to give the mode a more gaussian profile to improve Q.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param perturbed_radius: Amount to perturb the radius of the holes used for beam-forming
|
||||
:param shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
|
||||
:param shifts_r: Factor to multiply the radius by. Should match length of shifts_a
|
||||
:return: [[x0, y0, r0], [x1, y1, r1], ...] for all the holes
|
||||
"""
|
||||
xyr = ln_shift_defect(mirror_dims, 3, shifts_a, shifts_r)
|
||||
|
||||
abs_x, abs_y = (numpy.fabs(xyr[:, i]) for i in (0, 1))
|
||||
|
||||
# Sorted unique xs and ys
|
||||
# Ignore row y=0 because it might have shifted holes
|
||||
xs = numpy.unique(abs_x[abs_x != 0])
|
||||
ys = numpy.unique(abs_y)
|
||||
|
||||
# which holes should be perturbed? (xs[[3, 7]], ys[1]) and (xs[[2, 6]], ys[2])
|
||||
perturbed_holes = ((xs[a], ys[b]) for a, b in ((3, 1), (7, 1), (2, 2), (6, 2)))
|
||||
for row in xyr:
|
||||
if numpy.fabs(row) in perturbed_holes:
|
||||
row[2] = perturbed_radius
|
||||
return xyr
|
93
pyproject.toml
Normal file
93
pyproject.toml
Normal file
@ -0,0 +1,93 @@
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
[project]
|
||||
name = "opencl_fdtd"
|
||||
description = "OpenCL FDTD solver"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE.md" }
|
||||
authors = [
|
||||
{ name="Jan Petykiewicz", email="jan@mpxd.net" },
|
||||
]
|
||||
homepage = "https://mpxd.net/code/jan/opencl_fdtd"
|
||||
repository = "https://mpxd.net/code/jan/opencl_fdtd"
|
||||
keywords = [
|
||||
"FDTD",
|
||||
"finite",
|
||||
"difference",
|
||||
"time",
|
||||
"domain",
|
||||
"simulation",
|
||||
"optics",
|
||||
"electromagnetic",
|
||||
"dielectric",
|
||||
]
|
||||
classifiers = [
|
||||
"Programming Language :: Python :: 3",
|
||||
"Development Status :: 4 - Beta",
|
||||
"Intended Audience :: Developers",
|
||||
"Intended Audience :: Manufacturing",
|
||||
"Intended Audience :: Science/Research",
|
||||
"License :: OSI Approved :: GNU Affero General Public License v3",
|
||||
"Topic :: Scientific/Engineering",
|
||||
]
|
||||
requires-python = ">=3.11"
|
||||
dynamic = ["version"]
|
||||
dependencies = [
|
||||
"numpy>=1.26",
|
||||
"pyopencl",
|
||||
"jinja2",
|
||||
"meanas>=0.3",
|
||||
]
|
||||
|
||||
[tool.hatch.version]
|
||||
path = "opencl_fdtd/__init__.py"
|
||||
|
||||
|
||||
[tool.ruff]
|
||||
exclude = [
|
||||
".git",
|
||||
"dist",
|
||||
]
|
||||
line-length = 145
|
||||
indent-width = 4
|
||||
lint.dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
|
||||
lint.select = [
|
||||
"NPY", "E", "F", "W", "B", "ANN", "UP", "SLOT", "SIM", "LOG",
|
||||
"C4", "ISC", "PIE", "PT", "RET", "TCH", "PTH", "INT",
|
||||
"ARG", "PL", "R", "TRY",
|
||||
"G010", "G101", "G201", "G202",
|
||||
"Q002", "Q003", "Q004",
|
||||
]
|
||||
lint.ignore = [
|
||||
#"ANN001", # No annotation
|
||||
"ANN002", # *args
|
||||
"ANN003", # **kwargs
|
||||
"ANN401", # Any
|
||||
"ANN101", # self: Self
|
||||
"SIM108", # single-line if / else assignment
|
||||
"RET504", # x=y+z; return x
|
||||
"PIE790", # unnecessary pass
|
||||
"ISC003", # non-implicit string concatenation
|
||||
"C408", # dict(x=y) instead of {'x': y}
|
||||
"PLR09", # Too many xxx
|
||||
"PLR2004", # magic number
|
||||
"PLC0414", # import x as x
|
||||
"TRY003", # Long exception message
|
||||
]
|
||||
|
||||
|
||||
[[tool.mypy.overrides]]
|
||||
module = [
|
||||
"scipy",
|
||||
"scipy.optimize",
|
||||
"scipy.linalg",
|
||||
"scipy.sparse",
|
||||
"scipy.sparse.linalg",
|
||||
"pyopencl",
|
||||
"pyopencl.array",
|
||||
"pyopencl.elementwise",
|
||||
"pyopencl.reduction",
|
||||
]
|
||||
ignore_missing_imports = true
|
30
setup.py
30
setup.py
@ -1,30 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
import opencl_fdtd
|
||||
|
||||
with open('README.md', 'r') as f:
|
||||
long_description = f.read()
|
||||
|
||||
setup(name='opencl_fdtd',
|
||||
version=opencl_fdtd.version,
|
||||
description='OpenCL FDTD solver',
|
||||
long_description=long_description,
|
||||
long_description_content_type='text/markdown',
|
||||
author='Jan Petykiewicz',
|
||||
author_email='anewusername@gmail.com',
|
||||
url='https://mpxd.net/code/jan/opencl_fdtd',
|
||||
packages=find_packages(),
|
||||
package_data={
|
||||
'opencl_fdfd': ['kernels/*']
|
||||
},
|
||||
install_requires=[
|
||||
'numpy',
|
||||
'pyopencl',
|
||||
'jinja2',
|
||||
'fdfd_tools>=0.3',
|
||||
],
|
||||
extras_require={
|
||||
},
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user