remove unused pcgen.py
This commit is contained in:
parent
c75a7e67c9
commit
c2e5c94e14
213
pcgen.py
213
pcgen.py
@ -1,213 +0,0 @@
|
||||
"""
|
||||
Routines for creating normalized 2D lattices and common photonic crystal
|
||||
cavity designs.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
def triangular_lattice(dims: List[int],
|
||||
asymmetrical: bool=False
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
Return an ndarray of [[x0, y0], [x1, y1], ...] denoting lattice sites for
|
||||
a triangular lattice in 2D. The lattice will be centered around (0, 0),
|
||||
unless asymmetrical=True in which case there will be extra holes in the +x
|
||||
direction.
|
||||
|
||||
:param dims: Number of lattice sites in the [x, y] directions.
|
||||
:param asymmetrical: If true, each row in x will contain the same number of
|
||||
lattice sites. If false, the structure is symmetrical around (0, 0).
|
||||
:return: [[x0, y0], [x1, 1], ...] denoting lattice sites.
|
||||
"""
|
||||
dims = numpy.array(dims, dtype=int)
|
||||
|
||||
if asymmetrical:
|
||||
k = 0
|
||||
else:
|
||||
k = 1
|
||||
|
||||
positions = []
|
||||
ymax = (dims[1] - 1)/2
|
||||
for j in numpy.linspace(-ymax, ymax, dims[0]):
|
||||
j_odd = numpy.floor(j) % 2
|
||||
|
||||
x_offset = j_odd * 0.5
|
||||
y_offset = j * numpy.sqrt(3)/2
|
||||
|
||||
num_x = dims[0] - k * j_odd
|
||||
xmax = (dims[0] - 1)/2
|
||||
xs = numpy.linspace(-xmax, xmax - k * j_odd, num_x) + x_offset
|
||||
ys = numpy.full_like(xs, y_offset)
|
||||
|
||||
positions += [numpy.vstack((xs, ys)).T]
|
||||
|
||||
xy = numpy.vstack(tuple(positions))
|
||||
return xy[xy[:, 0].argsort(), ]
|
||||
|
||||
|
||||
def square_lattice(dims: List[int]) -> numpy.ndarray:
|
||||
"""
|
||||
Return an ndarray of [[x0, y0], [x1, y1], ...] denoting lattice sites for
|
||||
a square lattice in 2D. The lattice will be centered around (0, 0).
|
||||
|
||||
:param dims: Number of lattice sites in the [x, y] directions.
|
||||
:return: [[x0, y0], [x1, 1], ...] denoting lattice sites.
|
||||
"""
|
||||
xs, ys = numpy.meshgrid(range(dims[0]), range(dims[1]), 'xy')
|
||||
xs -= dims[0]/2
|
||||
ys -= dims[1]/2
|
||||
xy = numpy.vstack((xs.flatten(), ys.flatten())).T
|
||||
return xy[xy[:, 0].argsort(), ]
|
||||
|
||||
# ### Photonic crystal functions ###
|
||||
|
||||
|
||||
def nanobeam_holes(a_defect: float,
|
||||
num_defect_holes: int,
|
||||
num_mirror_holes: int
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
Returns a list of [[x0, r0], [x1, r1], ...] of nanobeam hole positions and radii.
|
||||
Creates a region in which the lattice constant and radius are progressively
|
||||
(linearly) altered over num_defect_holes holes until they reach the value
|
||||
specified by a_defect, then symmetrically returned to a lattice constant and
|
||||
radius of 1, which is repeated num_mirror_holes times on each side.
|
||||
|
||||
:param a_defect: Minimum lattice constant for the defect, as a fraction of the
|
||||
mirror lattice constant (ie., for no defect, a_defect = 1).
|
||||
:param num_defect_holes: How many holes form the defect (per-side)
|
||||
:param num_mirror_holes: How many holes form the mirror (per-side)
|
||||
:return: Ndarray [[x0, r0], [x1, r1], ...] of nanobeam hole positions and radii.
|
||||
"""
|
||||
a_values = numpy.linspace(a_defect, 1, num_defect_holes, endpoint=False)
|
||||
xs = a_values.cumsum() - (a_values[0] / 2) # Later mirroring makes center distance 2x as long
|
||||
mirror_xs = numpy.arange(1, num_mirror_holes + 1) + xs[-1]
|
||||
mirror_rs = numpy.ones_like(mirror_xs)
|
||||
return numpy.vstack((numpy.hstack((-mirror_xs[::-1], -xs[::-1], xs, mirror_xs)),
|
||||
numpy.hstack((mirror_rs[::-1], a_values[::-1], a_values, mirror_rs)))).T
|
||||
|
||||
|
||||
def ln_defect(mirror_dims: List[int], defect_length: int) -> numpy.ndarray:
|
||||
"""
|
||||
N-hole defect in a triangular lattice.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param defect_length: Length of defect. Should be an odd number.
|
||||
:return: [[x0, y0], [x1, y1], ...] for all the holes
|
||||
"""
|
||||
if defect_length % 2 != 1:
|
||||
raise Exception('defect_length must be odd!')
|
||||
p = triangular_lattice([2 * d + 1 for d in mirror_dims])
|
||||
half_length = numpy.floor(defect_length / 2)
|
||||
hole_nums = numpy.arange(-half_length, half_length + 1)
|
||||
holes_to_keep = numpy.in1d(p[:, 0], hole_nums, invert=True)
|
||||
return p[numpy.logical_or(holes_to_keep, p[:, 1] != 0), ]
|
||||
|
||||
|
||||
def ln_shift_defect(mirror_dims: List[int],
|
||||
defect_length: int,
|
||||
shifts_a: List[float]=(0.15, 0, 0.075),
|
||||
shifts_r: List[float]=(1, 1, 1)
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
N-hole defect with shifted holes (intended to give the mode a gaussian profile
|
||||
in real- and k-space so as to improve both Q and confinement). Holes along the
|
||||
defect line are shifted and altered according to the shifts_* parameters.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param defect_length: Length of defect. Should be an odd number.
|
||||
:param shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
|
||||
:param shifts_r: Factor to multiply the radius by. Should match length of shifts_a
|
||||
:return: [[x0, y0, r0], [x1, y1, r1], ...] for all the holes
|
||||
"""
|
||||
if not hasattr(shifts_a, "__len__") and shifts_a is not None:
|
||||
shifts_a = [shifts_a]
|
||||
if not hasattr(shifts_r, "__len__") and shifts_r is not None:
|
||||
shifts_r = [shifts_r]
|
||||
|
||||
xy = ln_defect(mirror_dims, defect_length)
|
||||
|
||||
# Add column for radius
|
||||
xyr = numpy.hstack((xy, numpy.ones((xy.shape[0], 1))))
|
||||
|
||||
# Shift holes
|
||||
# Expand shifts as necessary
|
||||
n_shifted = max(len(shifts_a), len(shifts_r))
|
||||
|
||||
tmp_a = numpy.array(shifts_a)
|
||||
shifts_a = numpy.ones((n_shifted, ))
|
||||
shifts_a[:len(tmp_a)] = tmp_a
|
||||
|
||||
tmp_r = numpy.array(shifts_r)
|
||||
shifts_r = numpy.ones((n_shifted, ))
|
||||
shifts_r[:len(tmp_r)] = tmp_r
|
||||
|
||||
x_removed = numpy.floor(defect_length / 2)
|
||||
|
||||
for ind in range(n_shifted):
|
||||
for sign in (-1, 1):
|
||||
x_val = sign * (x_removed + ind + 1)
|
||||
which = numpy.logical_and(xyr[:, 0] == x_val, xyr[:, 1] == 0)
|
||||
xyr[which, ] = (x_val + numpy.sign(x_val) * shifts_a[ind], 0, shifts_r[ind])
|
||||
|
||||
return xyr
|
||||
|
||||
|
||||
def r6_defect(mirror_dims: List[int]) -> numpy.ndarray:
|
||||
"""
|
||||
R6 defect in a triangular lattice.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:return: [[x0, y0], [x1, y1], ...] specifying hole centers.
|
||||
"""
|
||||
xy = triangular_lattice([2 * d + 1 for d in mirror_dims])
|
||||
|
||||
rem_holes_plus = numpy.array([[1, 0],
|
||||
[0.5, +numpy.sqrt(3)/2],
|
||||
[0.5, -numpy.sqrt(3)/2]])
|
||||
rem_holes = numpy.vstack((rem_holes_plus, -rem_holes_plus))
|
||||
|
||||
for rem_xy in rem_holes:
|
||||
xy = xy[(xy != rem_xy).any(axis=1), ]
|
||||
|
||||
return xy
|
||||
|
||||
|
||||
def l3_shift_perturbed_defect(mirror_dims: List[int],
|
||||
perturbed_radius: float=1.1,
|
||||
shifts_a: List[float]=(),
|
||||
shifts_r: List[float]=()
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
3-hole defect with perturbed hole sizes intended to form an upwards-directed
|
||||
beam. Can also include shifted holes along the defect line, intended
|
||||
to give the mode a more gaussian profile to improve Q.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param perturbed_radius: Amount to perturb the radius of the holes used for beam-forming
|
||||
:param shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
|
||||
:param shifts_r: Factor to multiply the radius by. Should match length of shifts_a
|
||||
:return: [[x0, y0, r0], [x1, y1, r1], ...] for all the holes
|
||||
"""
|
||||
xyr = ln_shift_defect(mirror_dims, 3, shifts_a, shifts_r)
|
||||
|
||||
abs_x, abs_y = (numpy.fabs(xyr[:, i]) for i in (0, 1))
|
||||
|
||||
# Sorted unique xs and ys
|
||||
# Ignore row y=0 because it might have shifted holes
|
||||
xs = numpy.unique(abs_x[abs_x != 0])
|
||||
ys = numpy.unique(abs_y)
|
||||
|
||||
# which holes should be perturbed? (xs[[3, 7]], ys[1]) and (xs[[2, 6]], ys[2])
|
||||
perturbed_holes = ((xs[a], ys[b]) for a, b in ((3, 1), (7, 1), (2, 2), (6, 2)))
|
||||
for row in xyr:
|
||||
if numpy.fabs(row) in perturbed_holes:
|
||||
row[2] = perturbed_radius
|
||||
return xyr
|
Loading…
Reference in New Issue
Block a user