meanas/doc.md

193 KiB

description lang classoption geometry papersize linkcolor links-as-notes
API documentation for modules: meanas, meanas.eigensolvers, meanas.fdfd, meanas.fdfd.bloch, meanas.fdfd.farfield, meanas.fdfd.functional, meanas.fdfd.operators, meanas.fdfd.scpml, meanas.fdfd.solvers, meanas.fdfd.waveguide_2d, meanas.fdfd.waveguide_3d, meanas.fdfd.waveguide_cyl, meanas.fdmath, meanas.fdmath.functional, meanas.fdmath.operators, meanas.fdmath.types, meanas.fdmath.vectorization, meanas.fdtd, meanas.fdtd.base, meanas.fdtd.boundaries, meanas.fdtd.energy, meanas.fdtd.pml, meanas.test, meanas.test.conftest, meanas.test.test_fdfd, meanas.test.test_fdfd_pml, meanas.test.test_fdtd, meanas.test.utils. en oneside margin=1in a4 blue true

Module meanas

meanas

meanas is a python package for electromagnetic simulations

** UNSTABLE / WORK IN PROGRESS **

Formerly known as fdfd_tools.

This package is intended for building simulation inputs, analyzing simulation outputs, and running short simulations on unspecialized hardware. It is designed to provide tooling and a baseline for other, high-performance purpose- and hardware-specific solvers.

Contents

  • Finite difference frequency domain (FDFD)
    • Library of sparse matrices for representing the electromagnetic wave equation in 3D, as well as auxiliary matrices for conversion between fields
    • Waveguide mode operators
    • Waveguide mode eigensolver
    • Stretched-coordinate PML boundaries (SCPML)
    • Functional versions of most operators
    • Anisotropic media (limited to diagonal elements eps_xx, eps_yy, eps_zz, mu_xx, ...)
    • Arbitrary distributions of perfect electric and magnetic conductors (PEC / PMC)
  • Finite difference time domain (FDTD)
    • Basic Maxwell time-steps
    • Poynting vector and energy calculation
    • Convolutional PMLs

This package does not provide a fast matrix solver, though by default generic()(...) will call scipy.sparse.linalg.qmr(...) to perform a solve. For 2D FDFD problems this should be fine; likewise, the waveguide mode solver uses scipy's eigenvalue solver, with reasonable results.

For solving large (or 3D) FDFD problems, I recommend a GPU-based iterative solver, such as opencl_fdfd or those included in MAGMA. Your solver will need the ability to solve complex symmetric (non-Hermitian) linear systems, ideally with double precision.

Installation

Requirements:

  • python >=3.11
  • numpy
  • scipy

Install from PyPI with pip:

pip3 install 'meanas[dev]'

Development install

Install python3 and git:

# This is for Debian/Ubuntu/other-apt-based systems; you may need an alternative command
sudo apt install python3 build-essential python3-dev git

In-place development install:

# Download using git
git clone https://mpxd.net/code/jan/meanas.git

# If you'd like to create a virtualenv, do so:
python3 -m venv my_venv

# If you are using a virtualenv, activate it
source my_venv/bin/activate

# Install in-place (-e, editable) from ./meanas, including development dependencies ([dev])
pip3 install --user -e './meanas[dev]'

# Run tests
cd meanas
python3 -m pytest -rsxX | tee test_results.txt

See also:

Use

See examples/ for some simple examples; you may need additional packages such as gridlock to run the examples.

Sub-modules


Module meanas.eigensolvers

Solvers for eigenvalue / eigenvector problems

Functions

Function power_iteration

def power_iteration(operator: scipy.sparse._matrix.spmatrix, guess_vector: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]] | None = None, iterations: int = 20) -> tuple[complex, numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

Use power iteration to estimate the dominant eigenvector of a matrix.

Args
-----=
operator
Matrix to analyze.
guess_vector
Starting point for the eigenvector. Default is a randomly chosen vector.
iterations
Number of iterations to perform. Default 20.

Returns -----= (Largest-magnitude eigenvalue, Corresponding eigenvector estimate)

Function rayleigh_quotient_iteration

def rayleigh_quotient_iteration(operator: scipy.sparse._matrix.spmatrix | scipy.sparse.linalg._interface.LinearOperator, guess_vector: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], iterations: int = 40, tolerance: float = 1e-13, solver: collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]] | None = None) -> tuple[complex, numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

Use Rayleigh quotient iteration to refine an eigenvector guess.

Args
-----=
operator
Matrix to analyze.
guess_vector
Eigenvector to refine.
iterations
Maximum number of iterations to perform. Default 40.
tolerance
Stop iteration if (A - I*eigenvalue) @ v < num_vectors * tolerance, Default 1e-13.
solver
Solver function of the form x = solver(A, b). By default, use scipy.sparse.spsolve for sparse matrices and scipy.sparse.bicgstab for general LinearOperator instances.

Returns -----= (eigenvalues, eigenvectors)

Function signed_eigensolve

def signed_eigensolve(operator: scipy.sparse._matrix.spmatrix | scipy.sparse.linalg._interface.LinearOperator, how_many: int, negative: bool = False) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

Find the largest-magnitude positive-only (or negative-only) eigenvalues and eigenvectors of the provided matrix.

Args
-----=
operator
Matrix to analyze.
how_many
How many eigenvalues to find.
negative
Whether to find negative-only eigenvalues. Default False (positive only).

Returns -----= (sorted list of eigenvalues, 2D ndarray of corresponding eigenvectors) eigenvectors[:, k] corresponds to the k-th eigenvalue


Module meanas.fdfd

Tools for finite difference frequency-domain (FDFD) simulations and calculations.

These mostly involve picking a single frequency, then setting up and solving a matrix equation (Ax=b) or eigenvalue problem.

Submodules:

================================================================

From the "Frequency domain" section of meanas.fdmath, we have


 \begin{aligned}
 \tilde{E}_{l, \vec{r}} &= \tilde{E}_{\vec{r}} e^{-\imath \omega l \Delta_t} \\
 \tilde{H}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &= \tilde{H}_{\vec{r} + \frac{1}{2}} e^{-\imath \omega (l - \frac{1}{2}) \Delta_t} \\
 \tilde{J}_{l, \vec{r}} &= \tilde{J}_{\vec{r}} e^{-\imath \omega (l - \frac{1}{2}) \Delta_t} \\
 \tilde{M}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &= \tilde{M}_{\vec{r} + \frac{1}{2}} e^{-\imath \omega l \Delta_t} \\
 \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{\vec{r}})
    -\Omega^2 \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} &= -\imath \Omega \tilde{J}_{\vec{r}} e^{\imath \omega \Delta_t / 2} \\
 \Omega &= 2 \sin(\omega \Delta_t / 2) / \Delta_t
 \end{aligned}

resulting in


 \begin{aligned}
 \tilde{\partial}_t &\Rightarrow -\imath \Omega e^{-\imath \omega \Delta_t / 2}\\
   \hat{\partial}_t &\Rightarrow -\imath \Omega e^{ \imath \omega \Delta_t / 2}\\
 \end{aligned}

Maxwell's equations are then


  \begin{aligned}
  \tilde{\nabla} \times \tilde{E}_{\vec{r}} &=
         \imath \Omega e^{-\imath \omega \Delta_t / 2} \hat{B}_{\vec{r} + \frac{1}{2}}
                                                     - \hat{M}_{\vec{r} + \frac{1}{2}}  \\
  \hat{\nabla} \times \hat{H}_{\vec{r} + \frac{1}{2}} &=
        -\imath \Omega e^{ \imath \omega \Delta_t / 2} \tilde{D}_{\vec{r}}
                                                     + \tilde{J}_{\vec{r}} \\
  \tilde{\nabla} \cdot \hat{B}_{\vec{r} + \frac{1}{2}} &= 0 \\
  \hat{\nabla} \cdot \tilde{D}_{\vec{r}} &= \rho_{\vec{r}}
 \end{aligned}

With \Delta_t \to 0, this simplifies to


 \begin{aligned}
 \tilde{E}_{l, \vec{r}} &\to \tilde{E}_{\vec{r}} \\
 \tilde{H}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &\to \tilde{H}_{\vec{r} + \frac{1}{2}} \\
 \tilde{J}_{l, \vec{r}} &\to \tilde{J}_{\vec{r}} \\
 \tilde{M}_{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} &\to \tilde{M}_{\vec{r} + \frac{1}{2}} \\
 \Omega &\to \omega \\
 \tilde{\partial}_t &\to -\imath \omega \\
   \hat{\partial}_t &\to -\imath \omega \\
 \end{aligned}

and then


  \begin{aligned}
  \tilde{\nabla} \times \tilde{E}_{\vec{r}} &=
         \imath \omega \hat{B}_{\vec{r} + \frac{1}{2}}
                     - \hat{M}_{\vec{r} + \frac{1}{2}}  \\
  \hat{\nabla} \times \hat{H}_{\vec{r} + \frac{1}{2}} &=
        -\imath \omega \tilde{D}_{\vec{r}}
                     + \tilde{J}_{\vec{r}} \\
 \end{aligned}

 \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{\vec{r}})
    -\omega^2 \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} = -\imath \omega \tilde{J}_{\vec{r}} \\

TODO FDFD?

TODO PML

Sub-modules


Module meanas.fdfd.bloch

Bloch eigenmode solver/operators

This module contains functions for generating and solving the 3D Bloch eigenproblem. The approach is to transform the problem into the (spatial) fourier domain, transforming the equation

1/mu * curl(1/eps * curl(H_eigenmode)) = (w/c)^2 H_eigenmode

into

conv(1/mu_k, ik x conv(1/eps_k, ik x H_k)) = (w/c)^2 H_k

where:

  • the _k subscript denotes a 3D fourier transformed field
  • each component of H_k corresponds to a plane wave with wavevector k
  • x is the cross product
  • conv() denotes convolution

Since k and H are orthogonal for each plane wave, we can use each k to create an orthogonal basis (k, m, n), with k x m = n, and |m| = |n| = 1. The cross products are then simplified as follows:

  • h is shorthand for H_k
  • (...)_xyz denotes the (x, y, z) basis
  • (...)_kmn denotes the (k, m, n) basis
  • hm is the component of h in the m direction, etc.

We know

k @ h = kx hx + ky hy + kz hz = 0 = hk
h = hk + hm + hn = hm + hn
k = kk + km + kn = kk = |k|

We can write

k x h = (ky hz - kz hy,
         kz hx - kx hz,
         kx hy - ky hx)_xyz
      = ((k x h) @ k, (k x h) @ m, (k x h) @ n)_kmn
      = (0, (m x k) @ h, (n x k) @ h)_kmn         # triple product ordering
      = (0, kk (-n @ h), kk (m @ h))_kmn          # (m x k) = -|k| n, etc.
      = |k| (0, -h @ n, h @ m)_kmn

which gives us a straightforward way to perform the cross product while simultaneously transforming into the _kmn basis. We can also write

k x h = (km hn - kn hm,
         kn hk - kk hn,
         kk hm - km hk)_kmn
      = (0, -kk hn, kk hm)_kmn
      = (-kk hn)(mx, my, mz)_xyz + (kk hm)(nx, ny, nz)_xyz
      = |k| (hm * (nx, ny, nz)_xyz
           - hn * (mx, my, mz)_xyz)

which gives us a way to perform the cross product while simultaneously trasnforming back into the _xyz basis.

We can also simplify conv(X_k, Y_k) as fftn(X * ifftn(Y_k)).

Using these results and storing H_k as h = (hm, hn), we have

e_xyz = fftn(1/eps * ifftn(|k| (hm * n - hn * m)))
b_mn = |k| (-e_xyz @ n, e_xyz @ m)
h_mn = fftn(1/mu * ifftn(b_m * m + b_n * n))

which forms the operator from the left side of the equation.

We can then use a preconditioned block Rayleigh iteration algorithm, as in SG Johnson and JD Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Optics Express 8, 3, 173-190 (2001) (similar to that used in MPB) to find the eigenvectors for this operator.

===

Typically you will want to do something like

recip_lattice = numpy.diag(1/numpy.array(epsilon[0].shape * dx))
n, v = bloch.eigsolve(5, k0, recip_lattice, epsilon)
f = numpy.sqrt(-numpy.real(n[0]))
n_eff = norm(recip_lattice @ k0) / f

v2e = bloch.hmn_2_exyz(k0, recip_lattice, epsilon)
e_field = v2e(v[0])

k, f = find_k(frequency=1/1550,
              tolerance=(1/1550 - 1/1551),
              direction=[1, 0, 0],
              G_matrix=recip_lattice,
              epsilon=epsilon,
              band=0)

Functions

Function eigsolve

def eigsolve(num_modes: int, k0: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], G_matrix: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, tolerance: float = 1e-07, max_iters: int = 10000, reset_iters: int = 100, y0: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]], ForwardRef(None)] = None, callback: collections.abc.Callable[..., None] | None = None) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector k0 of the specified structure.

Args
-----=
k0
Bloch wavevector, [k0x, k0y, k0z].
G_matrix
3x3 matrix, with reciprocal lattice vectors as columns.
epsilon
Dielectric constant distribution for the simulation. All fields are sampled at cell centers (i.e., NOT Yee-gridded)
mu
Magnetic permability distribution for the simulation. Default None (1 everywhere).
tolerance
Solver stops when fractional change in the objective trace(Z.H @ A @ Z @ inv(Z Z.H)) is smaller than the tolerance
max_iters
TODO
reset_iters
TODO
callback
TODO
y0
TODO, initial guess

Returns -----= (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the vector eigenvectors[i, :]

Function fftn

def fftn(*args: Any, **kwargs: Any) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]

Function find_k

def find_k(frequency: float, tolerance: float, direction: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], G_matrix: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, band: int = 0, k_bounds: tuple[float, float] = (0, 0.5), k_guess: float | None = None, solve_callback: collections.abc.Callable[..., None] | None = None, iter_callback: collections.abc.Callable[..., None] | None = None, v0: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]] | None = None) -> tuple[float, float, numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

Search for a bloch vector that has a given frequency.

Args
-----=
frequency
Target frequency.
tolerance
Target frequency tolerance.
direction
k-vector direction to search along.
G_matrix
3x3 matrix, with reciprocal lattice vectors as columns.
epsilon
Dielectric constant distribution for the simulation. All fields are sampled at cell centers (i.e., NOT Yee-gridded)
mu
Magnetic permability distribution for the simulation. Default None (1 everywhere).
band
Which band to search in. Default 0 (lowest frequency).
k_bounds
Minimum and maximum values for k. Default (0, 0.5).
k_guess
Initial value for k.
solve_callback
TODO
iter_callback
TODO

Returns -----= (k, actual_frequency, eigenvalues, eigenvectors) The found k-vector and its frequency, along with all eigenvalues and eigenvectors.

Function generate_kmn

def generate_kmn(k0: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], G_matrix: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], shape: collections.abc.Sequence[int]) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]

Generate a (k, m, n) orthogonal basis for each k-vector in the simulation grid.

Args
-----=
k0
[k0x, k0y, k0z], Bloch wavevector, in G basis.
G_matrix
3x3 matrix, with reciprocal lattice vectors as columns.
shape
[nx, ny, nz] shape of the simulation grid.

Returns -----= (|k|, m, n) where |k| has shape tuple(shape) + (1,) and m, n have shape tuple(shape) + (3,). All are given in the xyz basis (e.g. |k|[0,0,0] = norm(G_matrix @ k0)).

Function hmn_2_exyz

def hmn_2_exyz(k0: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], G_matrix: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]) -> collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Generate an operator which converts a vectorized spatial-frequency-space h_mn into an E-field distribution, i.e.

ifft(conv(1/eps_k, ik x h_mn))

The operator is a function that acts on a vector h_mn of size 2 * epsilon[0].size.

See the meanas.fdfd.bloch docstring for more information.

Args
-----=
k0
Bloch wavevector, [k0x, k0y, k0z].
G_matrix
3x3 matrix, with reciprocal lattice vectors as columns.
epsilon
Dielectric constant distribution for the simulation. All fields are sampled at cell centers (i.e., NOT Yee-gridded)

Returns -----= Function for converting h_mn into E_xyz

Function hmn_2_hxyz

def hmn_2_hxyz(k0: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], G_matrix: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]) -> collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Generate an operator which converts a vectorized spatial-frequency-space h_mn into an H-field distribution, i.e.

ifft(h_mn)

The operator is a function that acts on a vector h_mn of size 2 * epsilon[0].size.

See the meanas.fdfd.bloch docstring for more information.

Args
-----=
k0
Bloch wavevector, [k0x, k0y, k0z].
G_matrix
3x3 matrix, with reciprocal lattice vectors as columns.
epsilon
Dielectric constant distribution for the simulation. Only epsilon[0].shape is used.

Returns -----= Function for converting h_mn into H_xyz

Function ifftn

def ifftn(*args: Any, **kwargs: Any) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]

Function inner_product

def inner_product(eL, hL, eR, hR) -> complex

Function inverse_maxwell_operator_approx

def inverse_maxwell_operator_approx(k0: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], G_matrix: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

Generate an approximate inverse of the Maxwell operator,

ik x conv(eps_k, ik x conv(mu_k, ___))

which can be used to improve the speed of ARPACK in shift-invert mode.

See the meanas.fdfd.bloch docstring for more information.

Args
-----=
k0
Bloch wavevector, [k0x, k0y, k0z].
G_matrix
3x3 matrix, with reciprocal lattice vectors as columns.
epsilon
Dielectric constant distribution for the simulation. All fields are sampled at cell centers (i.e., NOT Yee-gridded)
mu
Magnetic permability distribution for the simulation. Default None (1 everywhere).

Returns -----= Function which applies the approximate inverse of the maxwell operator to h_mn.

Function maxwell_operator

def maxwell_operator(k0: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], G_matrix: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

Generate the Maxwell operator

conv(1/mu_k, ik x conv(1/eps_k, ik x ___))

which is the spatial-frequency-space representation of

1/mu * curl(1/eps * curl(___))

The operator is a function that acts on a vector h_mn of size 2 * epsilon[0].size

See the meanas.fdfd.bloch docstring for more information.

Args
-----=
k0
Bloch wavevector, [k0x, k0y, k0z].
G_matrix
3x3 matrix, with reciprocal lattice vectors as columns.
epsilon
Dielectric constant distribution for the simulation. All fields are sampled at cell centers (i.e., NOT Yee-gridded)
mu
Magnetic permability distribution for the simulation. Default None (1 everywhere).

Returns -----= Function which applies the maxwell operator to h_mn.

Function trq

def trq(eI, hI, eO, hO) -> tuple[complex, complex]


Module meanas.fdfd.farfield

Functions for performing near-to-farfield transformation (and the reverse).

Functions

Function far_to_nearfield

def far_to_nearfield(E_far: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], H_far: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], dkx: float, dky: float, padded_size: list[int] | int | None = None) -> dict[str, typing.Any]

Compute the farfield, i.e. the distribution of the fields after propagation through several wavelengths of uniform medium.

The input fields should be complex phasors.

Args
-----=
E_far
List of 2 ndarrays containing the 2D phasor field slices for the transverse E fields (e.g. [Ex, Ey] for calculating the nearfield toward the z-direction). Fields should be normalized so that E_far = E_far_actual / (i k exp(-i k r) / (4 pi r))
H_far
List of 2 ndarrays containing the 2D phasor field slices for the transverse H fields (e.g. [Hx, hy] for calculating the nearfield toward the z-direction). Fields should be normalized so that H_far = H_far_actual / (i k exp(-i k r) / (4 pi r))
dkx
kx discretization, in units of wavelength.
dky
ky discretization, in units of wavelength.
padded_size
Shape of the output. A single integer n will be expanded to (n, n). Powers of 2 are most efficient for FFT computation. Default is the smallest power of 2 larger than the input, for each axis.

Returns -----= Dict with keys

  • E: E-field nearfield
  • H: H-field nearfield
  • dx, dy: spatial discretization, normalized to wavelength (dimensionless)

Function near_to_farfield

def near_to_farfield(E_near: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], H_near: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], dx: float, dy: float, padded_size: list[int] | int | None = None) -> dict[str, typing.Any]

Compute the farfield, i.e. the distribution of the fields after propagation through several wavelengths of uniform medium.

The input fields should be complex phasors.

Args
-----=
E_near
List of 2 ndarrays containing the 2D phasor field slices for the transverse E fields (e.g. [Ex, Ey] for calculating the farfield toward the z-direction).
H_near
List of 2 ndarrays containing the 2D phasor field slices for the transverse H fields (e.g. [Hx, hy] for calculating the farfield towrad the z-direction).
dx
Cell size along x-dimension, in units of wavelength.
dy
Cell size along y-dimension, in units of wavelength.
padded_size
Shape of the output. A single integer n will be expanded to (n, n). Powers of 2 are most efficient for FFT computation. Default is the smallest power of 2 larger than the input, for each axis.

Returns -----= Dict with keys

  • E_far: Normalized E-field farfield; multiply by (i k exp(-i k r) / (4 pi r)) to get the actual field value.
  • H_far: Normalized H-field farfield; multiply by (i k exp(-i k r) / (4 pi r)) to get the actual field value.
  • kx, ky: Wavevector values corresponding to the x- and y- axes in E_far and H_far, normalized to wavelength (dimensionless).
  • dkx, dky: step size for kx and ky, normalized to wavelength.
  • theta: arctan2(ky, kx) corresponding to each (kx, ky). This is the angle in the x-y plane, counterclockwise from above, starting from +x.
  • phi: arccos(kz / k) corresponding to each (kx, ky). This is the angle away from +z.

Module meanas.fdfd.functional

Functional versions of many FDFD operators. These can be useful for performing FDFD calculations without needing to construct large matrices in memory.

The functions generated here expect cfdfield_t inputs with shape (3, X, Y, Z), e.g. E = [E_x, E_y, E_z] where each (complex) component has shape (X, Y, Z)

Functions

Function e2h

def e2h(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Utility operator for converting the E field into the H field. For use with e_full() -- assumes that there is no magnetic current M.

Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
mu
Magnetic permeability (default 1 everywhere)

Returns -----= Function f for converting E to H, f(E) -> H

Function e_full

def e_full(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Wave operator for use with E-field. See operators.e_full for details.

Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Dielectric constant
mu
Magnetic permeability (default 1 everywhere)

Returns -----= Function f implementing the wave operator f(E) -> -i * omega * J

Function e_tfsf_source

def e_tfsf_source(TF_region: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Operator that turns an E-field distribution into a total-field/scattered-field (TFSF) source.

Args
-----=
TF_region
mask which is set to 1 in the total-field region, and 0 elsewhere (i.e. in the scattered-field region). Should have the same shape as the simulation grid, e.g. epsilon[0].shape.
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Dielectric constant distribution
mu
Magnetic permeability (default 1 everywhere)

Returns -----= Function f which takes an E field and returns a current distribution, f(E) -> J

Function eh_full

def eh_full(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]], tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]]

Wave operator for full (both E and H) field representation. See operators.eh_full.

Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Dielectric constant
mu
Magnetic permeability (default 1 everywhere)

Returns -----= Function f implementing the wave operator f(E, H) -> (J, -M)

Function m2j

def m2j(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Utility operator for converting magnetic current M distribution into equivalent electric current distribution J. For use with e.g. e_full().

Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
mu
Magnetic permeability (default 1 everywhere)

Returns -----= Function f for converting M to J, f(M) -> J

Function poynting_e_cross_h

def poynting_e_cross_h(dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]]) -> collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Generates a function that takes the single-frequency E and H fields and calculates the cross product E x H = E \times H as required for the Poynting vector, S = E \times H

Note -----= This function also shifts the input E field by one cell as required for computing the Poynting cross product (see meanas.fdfd module docs).

Note -----= If E and H are peak amplitudes as assumed elsewhere in this code, the time-average of the poynting vector is <S> = Re(S)/2 = Re(E x H*) / 2. The factor of 1/2 can be omitted if root-mean-square quantities are used instead.

Args
-----=
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types

Returns -----= Function f that returns E x H as required for the poynting vector.


Module meanas.fdfd.operators

Sparse matrix operators for use with electromagnetic wave equations.

These functions return sparse-matrix (scipy.sparse.spmatrix) representations of a variety of operators, intended for use with E and H fields vectorized using the vec() and unvec() functions.

E- and H-field values are defined on a Yee cell; epsilon values should be calculated for cells centered at each E component (mu at each H component).

Many of these functions require a dxes parameter, of type dx_lists_t; see the meanas.fdmath.types submodule for details.

The following operators are included:

  • E-only wave operator
  • H-only wave operator
  • EH wave operator
  • Curl for use with E, H fields
  • E to H conversion
  • M to J conversion
  • Poynting cross products
  • Circular shifts
  • Discrete derivatives
  • Averaging operators
  • Cross product matrices

Functions

Function e2h

def e2h(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Utility operator for converting the E field into the H field. For use with e_full() -- assumes that there is no magnetic current M.

Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
mu
Vectorized magnetic permeability (default 1 everywhere)
pmc
Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted as containing a perfect magnetic conductor (PMC). The PMC is applied per-field-component (i.e. pmc.size == epsilon.size)

Returns -----= Sparse matrix for converting E to H.

Function e_boundary_source

def e_boundary_source(mask: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, periodic_mask_edges: bool = False) -> scipy.sparse._matrix.spmatrix

Operator that turns an E-field distrubtion into a current (J) distribution along the edges (external and internal) of the provided mask. This is just an e_tfsf_source() with an additional masking step.

Args
-----=
mask
The current distribution is generated at the edges of the mask, i.e. any points where shifting the mask by one cell in any direction would change its value.
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Vectorized dielectric constant
mu
Vectorized magnetic permeability (default 1 everywhere).

Returns -----= Sparse matrix that turns an E-field into a current (J) distribution.

Function e_full

def e_full(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pec: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Wave operator

\nabla \times (\frac{1}{\mu} \nabla \times) - \Omega^2 \epsilon
del x (1/mu * del x) - omega**2 * epsilon

for use with the E-field, with wave equation

(\nabla \times (\frac{1}{\mu} \nabla \times) - \Omega^2 \epsilon) E = -\imath \omega J
(del x (1/mu * del x) - omega**2 * epsilon) E = -i * omega * J

To make this matrix symmetric, use the preconditioners from e_full_preconditioners().

Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Vectorized dielectric constant
mu
Vectorized magnetic permeability (default 1 everywhere).
pec
Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted as containing a perfect electrical conductor (PEC). The PEC is applied per-field-component (i.e. pec.size == epsilon.size)
pmc
Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted as containing a perfect magnetic conductor (PMC). The PMC is applied per-field-component (i.e. pmc.size == epsilon.size)

Returns -----= Sparse matrix containing the wave operator.

Function e_full_preconditioners

def e_full_preconditioners(dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]]) -> tuple[scipy.sparse._matrix.spmatrix, scipy.sparse._matrix.spmatrix]

Left and right preconditioners (Pl, Pr) for symmetrizing the e_full() wave operator.

The preconditioned matrix A_symm = (Pl @ A @ Pr) is complex-symmetric (non-Hermitian unless there is no loss or PMLs).

The preconditioner matrices are diagonal and complex, with Pr = 1 / Pl

Args
-----=
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types

Returns -----= Preconditioner matrices (Pl, Pr).

Function e_tfsf_source

def e_tfsf_source(TF_region: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Operator that turns a desired E-field distribution into a total-field/scattered-field (TFSF) source.

TODO: Reference Rumpf paper

Args
-----=
TF_region
Mask, which is set to 1 inside the total-field region and 0 in the scattered-field region
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Vectorized dielectric constant
mu
Vectorized magnetic permeability (default 1 everywhere).

Returns -----= Sparse matrix that turns an E-field into a current (J) distribution.

Function eh_full

def eh_full(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pec: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Wave operator for [E, H] field representation. This operator implements Maxwell's equations without cancelling out either E or H. The operator is $$ \begin{bmatrix} -\imath \omega \epsilon & \nabla \times \ \nabla \times & \imath \omega \mu \end{bmatrix} $$

[[-i * omega * epsilon,  del x         ],
 [del x,                 i * omega * mu]]

for use with a field vector of the form cat(vec(E), vec(H)): $$ \begin{bmatrix} -\imath \omega \epsilon & \nabla \times \ \nabla \times & \imath \omega \mu \end{bmatrix} \begin{bmatrix} E \ H \end{bmatrix} = \begin{bmatrix} J \ -M \end{bmatrix} $$

Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Vectorized dielectric constant
mu
Vectorized magnetic permeability (default 1 everywhere)
pec
Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted as containing a perfect electrical conductor (PEC). The PEC is applied per-field-component (i.e. pec.size == epsilon.size)
pmc
Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted as containing a perfect magnetic conductor (PMC). The PMC is applied per-field-component (i.e. pmc.size == epsilon.size)

Returns -----= Sparse matrix containing the wave operator.

Function h_full

def h_full(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pec: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Wave operator

\nabla \times (\frac{1}{\epsilon} \nabla \times) - \omega^2 \mu
del x (1/epsilon * del x) - omega**2 * mu

for use with the H-field, with wave equation

(\nabla \times (\frac{1}{\epsilon} \nabla \times) - \omega^2 \mu) E = \imath \omega M
(del x (1/epsilon * del x) - omega**2 * mu) E = i * omega * M
Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Vectorized dielectric constant
mu
Vectorized magnetic permeability (default 1 everywhere)
pec
Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted as containing a perfect electrical conductor (PEC). The PEC is applied per-field-component (i.e. pec.size == epsilon.size)
pmc
Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted as containing a perfect magnetic conductor (PMC). The PMC is applied per-field-component (i.e. pmc.size == epsilon.size)

Returns -----= Sparse matrix containing the wave operator.

Function m2j

def m2j(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Operator for converting a magnetic current M into an electric current J. For use with eg. e_full().

Args
-----=
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
mu
Vectorized magnetic permeability (default 1 everywhere)

Returns -----= Sparse matrix for converting M to J.

Function poynting_e_cross

def poynting_e_cross(e: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]]) -> scipy.sparse._matrix.spmatrix

Operator for computing the Poynting vector, containing the (E x) portion of the Poynting vector.

Args
-----=
e
Vectorized E-field for the ExH cross product
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types

Returns -----= Sparse matrix containing (E x) portion of Poynting cross product.

Function poynting_h_cross

def poynting_h_cross(h: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]]) -> scipy.sparse._matrix.spmatrix

Operator for computing the Poynting vector, containing the (H x) portion of the Poynting vector.

Args
-----=
h
Vectorized H-field for the HxE cross product
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types

Returns -----= Sparse matrix containing (H x) portion of Poynting cross product.


Module meanas.fdfd.scpml

Functions for creating stretched coordinate perfectly matched layer (PML) absorbers.

Variables

Variable s_function_t

Typedef for s-functions, see prepare_s_function()

Functions

Function prepare_s_function

def prepare_s_function(ln_R: float = -16, m: float = 4) -> collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]], numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]

Create an s_function to pass to the SCPML functions. This is used when you would like to customize the PML parameters.

Args
-----=
ln_R
Natural logarithm of the desired reflectance
m
Polynomial order for the PML (imaginary part increases as distance ** m)

Returns -----= An s_function, which takes an ndarray (distances) and returns an ndarray (complex part of the cell width; needs to be divided by sqrt(epilon_effective) * real(omega)) before use.

Function stretch_with_scpml

def stretch_with_scpml(dxes: list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]], axis: int, polarity: int, omega: float, epsilon_effective: float = 1.0, thickness: int = 10, s_function: collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]], numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]] | None = None) -> list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]]

Stretch dxes to contain a stretched-coordinate PML (SCPML) in one direction along one axis.

Args
-----=
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
axis
axis to stretch (0=x, 1=y, 2=z)
polarity
direction to stretch (-1 for -ve, +1 for +ve)
omega
Angular frequency for the simulation
epsilon_effective
Effective epsilon of the PML. Match this to the material at the edge of your grid. Default 1.
thickness
number of cells to use for pml (default 10)
s_function
Created by prepare_s_function()(...), allowing customization of pml parameters. Default uses prepare_s_function() with no parameters.

Returns -----= Complex cell widths (dx_lists_mut) as discussed in meanas.fdmath.types. Multiple calls to this function may be necessary if multiple absorpbing boundaries are needed.

Function uniform_grid_scpml

def uniform_grid_scpml(shape: collections.abc.Sequence[int], thicknesses: collections.abc.Sequence[int], omega: float, epsilon_effective: float = 1.0, s_function: collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]], numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]] | None = None) -> list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]]

Create dx arrays for a uniform grid with a cell width of 1 and a pml.

If you want something more fine-grained, check out stretch_with_scpml()(...).

Args
-----=
shape
Shape of the grid, including the PMLs (which are 2*thicknesses thick)
thicknesses
[th_x, th_y, th_z] Thickness of the PML in each direction. Both polarities are added. Each th_ of pml is applied twice, once on each edge of the grid along the given axis. th_* may be zero, in which case no pml is added.
omega
Angular frequency for the simulation
epsilon_effective
Effective epsilon of the PML. Match this to the material at the edge of your grid. Default 1.
s_function
created by prepare_s_function()(...), allowing customization of pml parameters. Default uses prepare_s_function() with no parameters.

Returns -----= Complex cell widths (dx_lists_mut) as discussed in meanas.fdmath.types.


Module meanas.fdfd.solvers

Solvers and solver interface for FDFD problems.

Functions

Function generic

def generic(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], J: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pec: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, adjoint: bool = False, matrix_solver: collections.abc.Callable[..., typing.Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[typing.Union[bool, int, float, complex, str, bytes]]]] = <function _scipy_qmr>, matrix_solver_opts: dict[str, typing.Any] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]

Conjugate gradient FDFD solver using CSR sparse matrices.

All ndarray arguments should be 1D arrays, as returned by vec().

Args
-----=
omega
Complex frequency to solve at.
dxes
[[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes) as discussed in meanas.fdmath.types
J
Electric current distribution (at E-field locations)
epsilon
Dielectric constant distribution (at E-field locations)
mu
Magnetic permeability distribution (at H-field locations)
pec
Perfect electric conductor distribution (at E-field locations; non-zero value indicates PEC is present)
pmc
Perfect magnetic conductor distribution (at H-field locations; non-zero value indicates PMC is present)
adjoint
If true, solves the adjoint problem.
matrix_solver
Called as matrix_solver(A, b, **matrix_solver_opts) -> x, where A: scipy.sparse.csr_matrix; b: ArrayLike; x: ArrayLike; Default is a wrapped version of scipy.sparse.linalg.qmr() which doesn't return convergence info and logs the residual every 100 iterations.
matrix_solver_opts
Passed as kwargs to matrix_solver(...)

Returns -----= E-field which solves the system.


Module meanas.fdfd.waveguide_2d

Operators and helper functions for waveguides with unchanging cross-section.

The propagation direction is chosen to be along the z axis, and all fields are given an implicit z-dependence of the form exp(-1 * wavenumber * z).

As the z-dependence is known, all the functions in this file assume a 2D grid (i.e. dxes = [[[dx_e[0], dx_e[1], ...], [dy_e[0], ...]], [[dx_h[0], ...], [dy_h[0], ...]]]).

===============

Consider Maxwell's equations in continuous space, in the frequency domain. Assuming a structure with some (x, y) cross-section extending uniformly into the z dimension, with a diagonal \epsilon tensor, we have


\begin{aligned}
\nabla \times \vec{E}(x, y, z) &= -\imath \omega \mu \vec{H} \\
\nabla \times \vec{H}(x, y, z) &=  \imath \omega \epsilon \vec{E} \\
\vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\imath \beta z} \\
\vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\imath \beta z} \\
\end{aligned}

Expanding the first two equations into vector components, we get


\begin{aligned}
-\imath \omega \mu_{xx} H_x &= \partial_y E_z - \partial_z E_y \\
-\imath \omega \mu_{yy} H_y &= \partial_z E_x - \partial_x E_z \\
-\imath \omega \mu_{zz} H_z &= \partial_x E_y - \partial_y E_x \\
\imath \omega \epsilon_{xx} E_x &= \partial_y H_z - \partial_z H_y \\
\imath \omega \epsilon_{yy} E_y &= \partial_z H_x - \partial_x H_z \\
\imath \omega \epsilon_{zz} E_z &= \partial_x H_y - \partial_y H_x \\
\end{aligned}

Substituting in our expressions for \vec{E}, \vec{H} and discretizing:


\begin{aligned}
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta E_y \\
-\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \tilde{\partial}_x E_z \\
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta H_y \\
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \hat{\partial}_x H_z \\
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
\end{aligned}

Rewrite the last three equations as


\begin{aligned}
\imath \beta H_y &=  \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
\end{aligned}

Now apply \imath \beta \tilde{\partial}_x to the last equation, then substitute in for \imath \beta H_x and \imath \beta H_y:


\begin{aligned}
\imath \beta \tilde{\partial}_x \imath \omega E_z &= \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
                                                   - \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
        &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z)
         - \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z)  \\
        &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x)
         - \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y)  \\
\imath \beta \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
                                     + \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
\end{aligned}

With a similar approach (but using \imath \beta \tilde{\partial}_y instead), we can get


\begin{aligned}
\imath \beta \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
                                     + \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
\end{aligned}

We can combine this equation for \imath \beta \tilde{\partial}_y E_z with the unused \imath \omega \mu_{xx} H_x and \imath \omega \mu_{yy} H_y equations to get


\begin{aligned}
-\imath \omega \mu_{xx} \imath \beta H_x &=  -\beta^2 E_y + \imath \beta \tilde{\partial}_y E_z \\
-\imath \omega \mu_{xx} \imath \beta H_x &=  -\beta^2 E_y + \tilde{\partial}_y (
                                      \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
                                    + \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
                                    )\\
\end{aligned}

and


\begin{aligned}
-\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \imath \beta \tilde{\partial}_x E_z \\
-\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \tilde{\partial}_x (
                                      \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
                                    + \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
                                    )\\
\end{aligned}

However, based on our rewritten equation for \imath \beta H_x and the so-far unused equation for \imath \omega \mu_{zz} H_z we can also write


\begin{aligned}
-\imath \omega \mu_{xx} (\imath \beta H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
                 &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y + \imath \omega \mu_{xx} \hat{\partial}_x (
                         \frac{1}{-\imath \omega \mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x)) \\
                 &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
                         -\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
\end{aligned}

and, similarly,


\begin{aligned}
-\imath \omega \mu_{yy} (\imath \beta H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
                                           +\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
\end{aligned}

By combining both pairs of expressions, we get


\begin{aligned}
\beta^2 E_x - \tilde{\partial}_x (
    \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
  + \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
    ) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
        +\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
-\beta^2 E_y + \tilde{\partial}_y (
    \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
  + \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
    ) &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
         -\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
\end{aligned}

Using these, we can construct the eigenvalue problem


\beta^2 \begin{bmatrix} E_x \\
                        E_y \end{bmatrix} =
    (\omega^2 \begin{bmatrix} \mu_{yy} \epsilon_{xx} & 0 \\
                                                   0 & \mu_{xx} \epsilon_{yy} \end{bmatrix} +
              \begin{bmatrix} -\mu_{yy} \hat{\partial}_y \\
                               \mu_{xx} \hat{\partial}_x \end{bmatrix} \mu_{zz}^{-1}
              \begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
      \begin{bmatrix} \tilde{\partial}_x \\
                      \tilde{\partial}_y \end{bmatrix} \epsilon_{zz}^{-1}
                 \begin{bmatrix} \hat{\partial}_x \epsilon_{xx} & \hat{\partial}_y \epsilon_{yy} \end{bmatrix})
    \begin{bmatrix} E_x \\
                    E_y \end{bmatrix}

In the literature, \beta is usually used to denote the lossless/real part of the propagation constant, but in meanas it is allowed to be complex.

An equivalent eigenvalue problem can be formed using the H_x and H_y fields, if those are more convenient.

Note that E_z was never discretized, so \beta will need adjustment to account for numerical dispersion if the result is introduced into a space with a discretized z-axis.

Functions

Function curl_e

def curl_e(wavenumber: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]]) -> scipy.sparse._matrix.spmatrix

Discretized curl operator for use with the waveguide E field.

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z)
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)

Returns -----= Sparse matrix representation of the operator.

Function curl_h

def curl_h(wavenumber: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]]) -> scipy.sparse._matrix.spmatrix

Discretized curl operator for use with the waveguide H field.

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z)
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)

Returns -----= Sparse matrix representation of the operator.

Function e2h

def e2h(wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Returns an operator which, when applied to a vectorized E eigenfield, produces the vectorized H eigenfield.

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z)
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representation of the operator.

Function e_err

def e_err(e: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> float

Calculates the relative error in the E field

Args
-----=
e
Vectorized E field
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z)
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Relative error norm(A_e @ e) / norm(e).

Function exy2e

def exy2e(wavenumber: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]) -> scipy.sparse._matrix.spmatrix

Operator which transforms the vector e_xy containing the vectorized E_x and E_y fields, into a vectorized E containing all three E components

From the operator derivation (see module docs), we have


\imath \omega \epsilon_{zz} E_z = \hat{\partial}_x H_y - \hat{\partial}_y H_x \\

as well as the intermediate equations


\begin{aligned}
\imath \beta H_y &=  \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
\end{aligned}

Combining these, we get


\begin{aligned}
E_z &= \frac{1}{- \omega \beta \epsilon_{zz}} ((
         \hat{\partial}_y \hat{\partial}_x H_z
        -\hat{\partial}_x \hat{\partial}_y H_z)
      + \imath \omega (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y))
    &= \frac{1}{\imath \beta \epsilon_{zz}} (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y)
\end{aligned}
Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z) It should satisfy operator_e() @ e_xy == wavenumber**2 * e_xy
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid

Returns -----= Sparse matrix representing the operator.

Function exy2h

def exy2h(wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Operator which transforms the vector e_xy containing the vectorized E_x and E_y fields, into a vectorized H containing all three H components

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z). It should satisfy operator_e() @ e_xy == wavenumber**2 * e_xy
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representing the operator.

Function get_abcd

def get_abcd(eL_xys, wavenumbers_L, eR_xys, wavenumbers_R, **kwargs)

Function get_s

def get_s(eL_xys, wavenumbers_L, eR_xys, wavenumbers_R, force_nogain: bool = False, force_reciprocal: bool = False, **kwargs)

Function get_tr

def get_tr(ehL, wavenumbers_L, ehR, wavenumbers_R, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]])

Function h2e

def h2e(wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]) -> scipy.sparse._matrix.spmatrix

Returns an operator which, when applied to a vectorized H eigenfield, produces the vectorized E eigenfield.

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z)
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid

Returns -----= Sparse matrix representation of the operator.

Function h_err

def h_err(h: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> float

Calculates the relative error in the H field

Args
-----=
h
Vectorized H field
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z)
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Relative error norm(A_h @ h) / norm(h).

Function hxy2e

def hxy2e(wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Operator which transforms the vector h_xy containing the vectorized H_x and H_y fields, into a vectorized E containing all three E components

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z). It should satisfy operator_h() @ h_xy == wavenumber**2 * h_xy
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representing the operator.

Function hxy2h

def hxy2h(wavenumber: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Operator which transforms the vector h_xy containing the vectorized H_x and H_y fields, into a vectorized H containing all three H components

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z). It should satisfy operator_h() @ h_xy == wavenumber**2 * h_xy
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representing the operator.

Function inner_product

def inner_product(e1: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], h2: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], prop_phase: float = 0, conj_h: bool = False, trapezoid: bool = False) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Function normalized_fields_e

def normalized_fields_e(e_xy: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, prop_phase: float = 0) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Given a vector e_xy containing the vectorized E_x and E_y fields, returns normalized, vectorized E and H fields for the system.

Args
-----=
e_xy
Vector containing E_x and E_y fields
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z). It should satisfy operator_e() @ e_xy == wavenumber**2 * e_xy
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)
prop_phase
Phase shift (dz * corrected_wavenumber) over 1 cell in propagation direction. Default 0 (continuous propagation direction, i.e. dz->0).

Returns -----= (e, h), where each field is vectorized, normalized, and contains all three vector components.

Function normalized_fields_h

def normalized_fields_h(h_xy: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, prop_phase: float = 0) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Given a vector h_xy containing the vectorized H_x and H_y fields, returns normalized, vectorized E and H fields for the system.

Args
-----=
h_xy
Vector containing H_x and H_y fields
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z). It should satisfy operator_h() @ h_xy == wavenumber**2 * h_xy
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)
prop_phase
Phase shift (dz * corrected_wavenumber) over 1 cell in propagation direction. Default 0 (continuous propagation direction, i.e. dz->0).

Returns -----= (e, h), where each field is vectorized, normalized, and contains all three vector components.

Function operator_e

def operator_e(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Waveguide operator of the form

omega**2 * mu * epsilon +
mu * [[-Dy], [Dx]] / mu * [-Dy, Dx] +
[[Dx], [Dy]] / epsilon * [Dx, Dy] * epsilon

for use with a field vector of the form cat([E_x, E_y]).

More precisely, the operator is


\omega^2 \begin{bmatrix} \mu_{yy} \epsilon_{xx} & 0 \\
                                                  0 & \mu_{xx} \epsilon_{yy} \end{bmatrix} +
             \begin{bmatrix} -\mu_{yy} \hat{\partial}_y \\
                               \mu_{xx} \hat{\partial}_x \end{bmatrix} \mu_{zz}^{-1}
             \begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
  \begin{bmatrix} \tilde{\partial}_x \\
                   \tilde{\partial}_y \end{bmatrix} \epsilon_{zz}^{-1}
             \begin{bmatrix} \hat{\partial}_x \epsilon_{xx} & \hat{\partial}_y \epsilon_{yy} \end{bmatrix}

\tilde{\partial}_x and \hat{\partial}_x are the forward and backward derivatives along x, and each \epsilon_{xx}, \mu_{yy}, etc. is a diagonal matrix containing the vectorized material property distribution.

This operator can be used to form an eigenvalue problem of the form operator_e(...) @ [E_x, E_y] = wavenumber**2 * [E_x, E_y]

which can then be solved for the eigenmodes of the system (an exp(-i * wavenumber * z) z-dependence is assumed for the fields).

Args
-----=
omega
The angular frequency of the system.
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representation of the operator.

Function operator_h

def operator_h(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Waveguide operator of the form

omega**2 * epsilon * mu +
epsilon * [[-Dy], [Dx]] / epsilon * [-Dy, Dx] +
[[Dx], [Dy]] / mu * [Dx, Dy] * mu

for use with a field vector of the form cat([H_x, H_y]).

More precisely, the operator is


\omega^2 \begin{bmatrix} \epsilon_{yy} \mu_{xx} & 0 \\
                                              0 & \epsilon_{xx} \mu_{yy} \end{bmatrix} +
             \begin{bmatrix} -\epsilon_{yy} \tilde{\partial}_y \\
                              \epsilon_{xx} \tilde{\partial}_x \end{bmatrix} \epsilon_{zz}^{-1}
             \begin{bmatrix} -\hat{\partial}_y & \hat{\partial}_x \end{bmatrix} +
  \begin{bmatrix} \hat{\partial}_x \\
                  \hat{\partial}_y \end{bmatrix} \mu_{zz}^{-1}
             \begin{bmatrix} \tilde{\partial}_x \mu_{xx} & \tilde{\partial}_y \mu_{yy} \end{bmatrix}

\tilde{\partial}_x and \hat{\partial}_x are the forward and backward derivatives along x, and each \epsilon_{xx}, \mu_{yy}, etc. is a diagonal matrix containing the vectorized material property distribution.

This operator can be used to form an eigenvalue problem of the form operator_h(...) @ [H_x, H_y] = wavenumber**2 * [H_x, H_y]

which can then be solved for the eigenmodes of the system (an exp(-i * wavenumber * z) z-dependence is assumed for the fields).

Args
-----=
omega
The angular frequency of the system.
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representation of the operator.

Function sensitivity

def sensitivity(e_norm: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], h_norm: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]

Given a waveguide structure (dxes, epsilon, mu) and mode fields (e_norm, h_norm, wavenumber, omega), calculates the sensitivity of the wavenumber \beta to changes in the dielectric structure \epsilon.

The output is a vector of the same size as vec(epsilon), with each element specifying the sensitivity of wavenumber to changes in the corresponding element in vec(epsilon), i.e.

sens_{i} = \frac{\partial\beta}{\partial\epsilon_i}

An adjoint approach is used to calculate the sensitivity; the derivation is provided here:

Starting with the eigenvalue equation

\beta^2 E_{xy} = A_E E_{xy}

where A_E is the waveguide operator from operator_e(), and $E_{xy} = \begin{bmatrix} E_x \ E_y \end{bmatrix}$, we can differentiate with respect to one of the \epsilon elements (i.e. at one Yee grid point), \epsilon_i:


(2 \beta) \partial_{\epsilon_i}(\beta) E_{xy} + \beta^2 \partial_{\epsilon_i} E_{xy}
    = \partial_{\epsilon_i}(A_E) E_{xy} + A_E \partial_{\epsilon_i} E_{xy}

We then multiply by H_{yx}^\star = \begin{bmatrix}H_y^\star \\ -H_x^\star \end{bmatrix} from the left:


(2 \beta) \partial_{\epsilon_i}(\beta) H_{yx}^\star E_{xy} + \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy}
    = H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} + H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy}

However, H_{yx}^\star is actually a left-eigenvector of A_E. This can be verified by inspecting the form of operator_h() (A_H) and comparing its conjugate transpose to operator_e() (A_E). Also, note H_{yx}^\star \cdot E_{xy} = H^\star \times E recalls the mode orthogonality relation. See doi:10.5194/ars-9-85-201 for a similar approach. Therefore,


H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy} = \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy}

and we can simplify to


\partial_{\epsilon_i}(\beta)
    = \frac{1}{2 \beta} \frac{H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} }{H_{yx}^\star E_{xy}}

This expression can be quickly calculated for all i by writing out the various terms of \partial_{\epsilon_i} A_E and recognizing that the vector-matrix-vector products (i.e. scalars) sens_i = \vec{v}_{left} \partial_{\epsilon_i} (\epsilon_{xyz}) \vec{v}_{right}, indexed by i, can be expressed as elementwise multiplications \vec{sens} = \vec{v}_{left} \star \vec{v}_{right}

Args
-----=
e_norm
Normalized, vectorized E_xyz field for the mode. E.g. as returned by normalized_fields_e().
h_norm
Normalized, vectorized H_xyz field for the mode. E.g. as returned by normalized_fields_e().
wavenumber
Propagation constant for the mode. The z-axis is assumed to be continuous (i.e. without numerical dispersion).
omega
The angular frequency of the system.
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representation of the operator.

Function solve_mode

def solve_mode(mode_number: int, *args: Any, **kwargs: Any) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], complex]

Wrapper around solve_modes() that solves for a single mode.

Args
-----=
mode_number
0-indexed mode number to solve for
*args
passed to solve_modes()
**kwargs
passed to solve_modes()

Returns -----= (e_xy, wavenumber)

Function solve_modes

def solve_modes(mode_numbers: collections.abc.Sequence[int], omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, mode_margin: int = 2) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

Given a 2D region, attempts to solve for the eigenmode with the specified mode numbers.

Args
-----=
mode_numbers
List of 0-indexed mode numbers to solve for
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
epsilon
Dielectric constant
mu
Magnetic permeability (default 1 everywhere)
mode_margin
The eigensolver will actually solve for (max(mode_number) + mode_margin) modes, but only return the target mode. Increasing this value can improve the solver's ability to find the correct mode. Default 2.
Returns
-----=
e_xys
NDArray of vfdfield_t specifying fields. First dimension is mode number.
wavenumbers
list of wavenumbers

Module meanas.fdfd.waveguide_3d

Tools for working with waveguide modes in 3D domains.

This module relies heavily on waveguide_2d and mostly just transforms its parameters into 2D equivalents and expands the results back into 3D.

Functions

Function compute_overlap_e

def compute_overlap_e(E: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], wavenumber: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], axis: int, polarity: int, slices: collections.abc.Sequence[slice]) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]

Given an eigenmode obtained by solve_mode(), calculates an overlap_e for the mode orthogonality relation Integrate(((E x H_mode) + (E_mode x H)) dot dn) [assumes reflection symmetry].

TODO: add reference

Args
-----=
E
E-field of the mode
H
H-field of the mode (advanced by half of a Yee cell from E)
wavenumber
Wavenumber of the mode
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
axis
Propagation axis (0=x, 1=y, 2=z)
polarity
Propagation direction (+1 for +ve, -1 for -ve)
slices
epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one item.
mu
Magnetic permeability (default 1 everywhere)

Returns -----= overlap_e such that numpy.sum(overlap_e * other_e.conj()) computes the overlap integral

Function compute_source

def compute_source(E: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], axis: int, polarity: int, slices: collections.abc.Sequence[slice], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]

Given an eigenmode obtained by solve_mode(), returns the current source distribution necessary to position a unidirectional source at the slice location.

Args
-----=
E
E-field of the mode
wavenumber
Wavenumber of the mode
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
axis
Propagation axis (0=x, 1=y, 2=z)
polarity
Propagation direction (+1 for +ve, -1 for -ve)
slices
epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one item.
mu
Magnetic permeability (default 1 everywhere)

Returns -----= J distribution for the unidirectional source

Function expand_e

def expand_e(E: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], wavenumber: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], axis: int, polarity: int, slices: collections.abc.Sequence[slice]) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]

Given an eigenmode obtained by solve_mode(), expands the E-field from the 2D slice where the mode was calculated to the entire domain (along the propagation axis). This assumes the epsilon cross-section remains constant throughout the entire domain; it is up to the caller to truncate the expansion to any regions where it is valid.

Args
-----=
E
E-field of the mode
wavenumber
Wavenumber of the mode
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
axis
Propagation axis (0=x, 1=y, 2=z)
polarity
Propagation direction (+1 for +ve, -1 for -ve)
slices
epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one item.

Returns -----= E, with the original field expanded along the specified axis.

Function solve_mode

def solve_mode(mode_number: int, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], axis: int, polarity: int, slices: collections.abc.Sequence[slice], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> dict[str, complex | numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]]]

Given a 3D grid, selects a slice from the grid and attempts to solve for an eigenmode propagating through that slice.

Args
-----=
mode_number
Number of the mode, 0-indexed
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types
axis
Propagation axis (0=x, 1=y, 2=z)
polarity
Propagation direction (+1 for +ve, -1 for -ve)
slices
epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one item.
epsilon
Dielectric constant
mu
Magnetic permeability (default 1 everywhere)

Returns -----=

{
    'E': NDArray[complexfloating],
    'H': NDArray[complexfloating],
    'wavenumber': complex,
}

Module meanas.fdfd.waveguide_cyl

Operators and helper functions for cylindrical waveguides with unchanging cross-section.

WORK IN PROGRESS, CURRENTLY BROKEN

As the z-dependence is known, all the functions in this file assume a 2D grid (i.e. dxes = [[[dr_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dr_h_0, ...], [dy_h_0, ...]]]).

Functions

Function cylindrical_operator

def cylindrical_operator(omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], rmin: float) -> scipy.sparse._matrix.spmatrix

Cylindrical coordinate waveguide operator of the form

(NOTE: See 10.1364/OL.33.001848) TODO: consider 10.1364/OE.20.021583

TODO

for use with a field vector of the form [E_r, E_y].

This operator can be used to form an eigenvalue problem of the form A @ [E_r, E_y] = wavenumber**2 * [E_r, E_y]

which can then be solved for the eigenmodes of the system (an exp(-i * wavenumber * theta) theta-dependence is assumed for the fields).

Args
-----=
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
rmin
Radius at the left edge of the simulation domain (minimum 'x')

Returns -----= Sparse matrix representation of the operator

Function dxes2T

def dxes2T(dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], rmin=builtins.float) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]

Function e2h

def e2h(wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Returns an operator which, when applied to a vectorized E eigenfield, produces the vectorized H eigenfield.

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z)
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representation of the operator.

Function exy2e

def exy2e(wavenumber: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]) -> scipy.sparse._matrix.spmatrix

Operator which transforms the vector e_xy containing the vectorized E_x and E_y fields, into a vectorized E containing all three E components

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z) It should satisfy operator_e() @ e_xy == wavenumber**2 * e_xy
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid

Returns -----= Sparse matrix representing the operator.

Function exy2h

def exy2h(wavenumber: complex, omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None) -> scipy.sparse._matrix.spmatrix

Operator which transforms the vector e_xy containing the vectorized E_x and E_y fields, into a vectorized H containing all three H components

Args
-----=
wavenumber
Wavenumber assuming fields have z-dependence of exp(-i * wavenumber * z). It should satisfy operator_e() @ e_xy == wavenumber**2 * e_xy
omega
The angular frequency of the system
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
epsilon
Vectorized dielectric constant grid
mu
Vectorized magnetic permeability grid (default 1 everywhere)

Returns -----= Sparse matrix representing the operator.

Function linear_wavenumbers

def linear_wavenumbers(e_xys: numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], angular_wavenumbers: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], rmin: float) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]

Calculate linear wavenumbers (1/distance) based on angular wavenumbers (1/rad) and the mode's energy distribution.

Args
-----=
e_xys
Vectorized mode fields with shape [num_modes, 2 * x *y)
angular_wavenumbers
Angular wavenumbers corresponding to the fields in e_xys
epsilon
Vectorized dielectric constant grid with shape (3, x, y)
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types (2D)
rmin
Radius at the left edge of the simulation domain (minimum 'x')

Returns -----= NDArray containing the calculated linear (1/distance) wavenumbers

Function solve_mode

def solve_mode(mode_number: int, *args: Any, **kwargs: Any) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], complex]

Wrapper around solve_modes() that solves for a single mode.

Args
-----=
mode_number
0-indexed mode number to solve for
*args
passed to solve_modes()
**kwargs
passed to solve_modes()

Returns -----= (e_xy, angular_wavenumber)

Function solve_modes

def solve_modes(mode_numbers: collections.abc.Sequence[int], omega: complex, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], rmin: float, mode_margin: int = 2) -> tuple[numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]]

TODO: fixup Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode of the bent waveguide with the specified mode number.

Args
-----=
mode_number
Number of the mode, 0-indexed
omega
Angular frequency of the simulation
dxes
Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types. The first coordinate is assumed to be r, the second is y.
epsilon
Dielectric constant
rmin
Radius of curvature for the simulation. This should be the minimum value of r within the simulation domain.
Returns
-----=
e_xys
NDArray of vfdfield_t specifying fields. First dimension is mode number.
angular_wavenumbers
list of wavenumbers in 1/rad units.

Module meanas.fdmath

Basic discrete calculus for finite difference (fd) simulations.

Fields, Functions, and Operators

Discrete fields are stored in one of two forms:

  • The fdfield_t form is a multidimensional numpy.NDArray
    • For a scalar field, this is just U[m, n, p], where m, n, and p are discrete indices referring to positions on the x, y, and z axes respectively.
    • For a vector field, the first index specifies which vector component is accessed: E[:, m, n, p] = [Ex[m, n, p], Ey[m, n, p], Ez[m, n, p]].
  • The vfdfield_t form is simply a vectorzied (i.e. 1D) version of the fdfield_t, as obtained by vec() (effectively just numpy.ravel)

Operators which act on fields also come in two forms: + Python functions, created by the functions in meanas.fdmath.functional. The generated functions act on fields in the fdfield_t form. + Linear operators, usually 2D sparse matrices using scipy.sparse, created by meanas.fdmath.operators. These operators act on vectorized fields in the vfdfield_t form.

The operations performed should be equivalent: functional.op(*args)(E) should be equivalent to unvec(operators.op(*args) @ vec(E), E.shape[1:]).

Generally speaking the field_t form is easier to work with, but can be harder or less efficient to compose (e.g. it is easy to generate a single matrix by multiplying a series of other matrices).

Discrete calculus

This documentation and approach is roughly based on W.C. Chew's excellent "Electromagnetic Theory on a Lattice" (doi:10.1063/1.355770), which covers a superset of this material with similar notation and more detail.

Scalar Derivatives And Cell Shifts

Define the discrete forward derivative as

[\tilde{\partial}_x f]_{m + \frac{1}{2}} = \frac{1}{\Delta_{x, m}} (f_{m + 1} - f_m)

where f is a function defined at discrete locations on the x-axis (labeled using m). The value at m occupies a length \Delta_{x, m} along the x-axis. Note that m is an index along the x-axis, not necessarily an x-coordinate, since each length \Delta_{x, m}, \Delta_{x, m+1}, ... is independently chosen.

If we treat f as a 1D array of values, with the i-th value f[i] taking up a length dx[i] along the x-axis, the forward derivative is

deriv_forward(f)[i] = (f[i + 1] - f[i]) / dx[i]

Likewise, discrete reverse derivative is

[\hat{\partial}_x f ]_{m - \frac{1}{2}} = \frac{1}{\Delta_{x, m}} (f_{m} - f_{m - 1})

or

deriv_back(f)[i] = (f[i] - f[i - 1]) / dx[i]

The derivatives' values are shifted by a half-cell relative to the original function, and will have different cell widths if all the dx[i] ( \Delta_{x, m} ) are not identical:

[figure: derivatives and cell sizes]
    dx0   dx1      dx2      dx3      cell sizes for function
   ----- ----- ----------- -----
   ______________________________
        |     |           |     |
     f0 |  f1 |     f2    |  f3 |    function
   _____|_____|___________|_____|
     |     |        |        |
     | Df0 |   Df1  |   Df2  | Df3   forward derivative (periodic boundary)
   __|_____|________|________|___

 dx'3] dx'0   dx'1     dx'2  [dx'3   cell sizes for forward derivative
   -- ----- -------- -------- ---
 dx'0] dx'1   dx'2     dx'3  [dx'0   cell sizes for reverse derivative
   ______________________________
     |     |        |        |
     | df1 |  df2   |   df3  | df0   reverse derivative (periodic boundary)
   __|_____|________|________|___

Periodic boundaries are used here and elsewhere unless otherwise noted.

In the above figure, f0 = f_0, f1 = f_1 Df0 = [\tilde{\partial}f]_{0 + \frac{1}{2}} Df1 = [\tilde{\partial}f]_{1 + \frac{1}{2}} df0 = [\hat{\partial}f]_{0 - \frac{1}{2}} etc.

The fractional subscript m + \frac{1}{2} is used to indicate values defined at shifted locations relative to the original m, with corresponding lengths

\Delta_{x, m + \frac{1}{2}} = \frac{1}{2} * (\Delta_{x, m} + \Delta_{x, m + 1})

Just as m is not itself an x-coordinate, neither is m + \frac{1}{2}; carefully note the positions of the various cells in the above figure vs their labels. If the positions labeled with m are considered the "base" or "original" grid, the positions labeled with m + \frac{1}{2} are said to lie on a "dual" or "derived" grid.

For the remainder of the Discrete calculus section, all figures will show constant-length cells in order to focus on the vector derivatives themselves. See the Grid description section below for additional information on this topic and generalization to three dimensions.

Gradients and fore-vectors

Expanding to three dimensions, we can define two gradients $$ [\tilde{\nabla} f]{m,n,p} = \vec{x} [\tilde{\partial}x f]{m + \frac{1}{2},n,p} + \vec{y} [\tilde{\partial}y f]{m,n + \frac{1}{2},p} + \vec{z} [\tilde{\partial}z f]{m,n,p + \frac{1}{2}} $$ $$ [\hat{\nabla} f]{m,n,p} = \vec{x} [\hat{\partial}x f]{m + \frac{1}{2},n,p} + \vec{y} [\hat{\partial}y f]{m,n + \frac{1}{2},p} + \vec{z} [\hat{\partial}z f]{m,n,p + \frac{1}{2}} $$

or

[code: gradients]
grad_forward(f)[i,j,k] = [Dx_forward(f)[i, j, k],
                          Dy_forward(f)[i, j, k],
                          Dz_forward(f)[i, j, k]]
                       = [(f[i + 1, j, k] - f[i, j, k]) / dx[i],
                          (f[i, j + 1, k] - f[i, j, k]) / dy[i],
                          (f[i, j, k + 1] - f[i, j, k]) / dz[i]]

grad_back(f)[i,j,k] = [Dx_back(f)[i, j, k],
                       Dy_back(f)[i, j, k],
                       Dz_back(f)[i, j, k]]
                    = [(f[i, j, k] - f[i - 1, j, k]) / dx[i],
                       (f[i, j, k] - f[i, j - 1, k]) / dy[i],
                       (f[i, j, k] - f[i, j, k - 1]) / dz[i]]

The three derivatives in the gradient cause shifts in different directions, so the x/y/z components of the resulting "vector" are defined at different points: the x-component is shifted in the x-direction, y in y, and z in z.

We call the resulting object a "fore-vector" or "back-vector", depending on the direction of the shift. We write it as $$ \tilde{g}{m,n,p} = \vec{x} g^x{m + \frac{1}{2},n,p} + \vec{y} g^y_{m,n + \frac{1}{2},p} + \vec{z} g^z_{m,n,p + \frac{1}{2}} $$ $$ \hat{g}{m,n,p} = \vec{x} g^x{m - \frac{1}{2},n,p} + \vec{y} g^y_{m,n - \frac{1}{2},p} + \vec{z} g^z_{m,n,p - \frac{1}{2}} $$

[figure: gradient / fore-vector]
   (m, n+1, p+1) ______________ (m+1, n+1, p+1)
                /:            /|
               / :           / |
              /  :          /  |
  (m, n, p+1)/_____________/   |     The forward derivatives are defined
             |   :         |   |     at the Dx, Dy, Dz points,
             |   :.........|...|     but the forward-gradient fore-vector
 z y        Dz  /          |  /      is the set of all three
 |/_x        | Dy          | /       and is said to be "located" at (m,n,p)
             |/            |/
    (m, n, p)|_____Dx______| (m+1, n, p)

Divergences

There are also two divergences,

$$ d_{n,m,p} = [\tilde{\nabla} \cdot \hat{g}]_{n,m,p} = [\tilde{\partial}x g^x]{m,n,p} + [\tilde{\partial}y g^y]{m,n,p} + [\tilde{\partial}z g^z]{m,n,p} $$

$$ d_{n,m,p} = [\hat{\nabla} \cdot \tilde{g}]_{n,m,p} = [\hat{\partial}x g^x]{m,n,p} + [\hat{\partial}y g^y]{m,n,p} + [\hat{\partial}z g^z]{m,n,p} $$

or

[code: divergences]
div_forward(g)[i,j,k] = Dx_forward(gx)[i, j, k] +
                        Dy_forward(gy)[i, j, k] +
                        Dz_forward(gz)[i, j, k]
                      = (gx[i + 1, j, k] - gx[i, j, k]) / dx[i] +
                        (gy[i, j + 1, k] - gy[i, j, k]) / dy[i] +
                        (gz[i, j, k + 1] - gz[i, j, k]) / dz[i]

div_back(g)[i,j,k] = Dx_back(gx)[i, j, k] +
                     Dy_back(gy)[i, j, k] +
                     Dz_back(gz)[i, j, k]
                   = (gx[i, j, k] - gx[i - 1, j, k]) / dx[i] +
                     (gy[i, j, k] - gy[i, j - 1, k]) / dy[i] +
                     (gz[i, j, k] - gz[i, j, k - 1]) / dz[i]

where g = [gx, gy, gz] is a fore- or back-vector field.

Since we applied the forward divergence to the back-vector (and vice-versa), the resulting scalar value is defined at the back-vector's (fore-vector's) location (m,n,p) and not at the locations of its components (m \pm \frac{1}{2},n,p) etc.

[figure: divergence]
                                ^^
     (m-1/2, n+1/2, p+1/2) _____||_______ (m+1/2, n+1/2, p+1/2)
                          /:    ||  ,,  /|
                         / :    || //  / |      The divergence at (m, n, p) (the center
                        /  :      //  /  |      of this cube) of a fore-vector field
  (m-1/2, n-1/2, p+1/2)/_____________/   |      is the sum of the outward-pointing
                       |   :         |   |      fore-vector components, which are
     z y            <==|== :.........|.====>    located at the face centers.
     |/_x              |  /          |  /
                       | /    //     | /       Note that in a nonuniform grid, each
                       |/    // ||   |/        dimension is normalized by the cell width.
  (m-1/2, n-1/2, p-1/2)|____//_______| (m+1/2, n-1/2, p-1/2)
                           ''   ||
                                VV

Curls

The two curls are then

$$ \begin{aligned} \hat{h}{m + \frac{1}{2}, n + \frac{1}{2}, p + \frac{1}{2}} &= \ [\tilde{\nabla} \times \tilde{g}]{m + \frac{1}{2}, n + \frac{1}{2}, p + \frac{1}{2}} &= \vec{x} (\tilde{\partial}y g^z{m,n,p + \frac{1}{2}} - \tilde{\partial}z g^y{m,n + \frac{1}{2},p}) \ &+ \vec{y} (\tilde{\partial}z g^x{m + \frac{1}{2},n,p} - \tilde{\partial}x g^z{m,n,p + \frac{1}{2}}) \ &+ \vec{z} (\tilde{\partial}x g^y{m,n + \frac{1}{2},p} - \tilde{\partial}y g^z{m + \frac{1}{2},n,p}) \end{aligned} $$

and

$$ \tilde{h}{m - \frac{1}{2}, n - \frac{1}{2}, p - \frac{1}{2}} = [\hat{\nabla} \times \hat{g}]{m - \frac{1}{2}, n - \frac{1}{2}, p - \frac{1}{2}} $$

where \hat{g} and \tilde{g} are located at (m,n,p) with components at (m \pm \frac{1}{2},n,p) etc., while \hat{h} and \tilde{h} are located at (m \pm \frac{1}{2}, n \pm \frac{1}{2}, p \pm \frac{1}{2}) with components at (m, n \pm \frac{1}{2}, p \pm \frac{1}{2}) etc.

[code: curls]
curl_forward(g)[i,j,k] = [Dy_forward(gz)[i, j, k] - Dz_forward(gy)[i, j, k],
                          Dz_forward(gx)[i, j, k] - Dx_forward(gz)[i, j, k],
                          Dx_forward(gy)[i, j, k] - Dy_forward(gx)[i, j, k]]

curl_back(g)[i,j,k] = [Dy_back(gz)[i, j, k] - Dz_back(gy)[i, j, k],
                       Dz_back(gx)[i, j, k] - Dx_back(gz)[i, j, k],
                       Dx_back(gy)[i, j, k] - Dy_back(gx)[i, j, k]]

For example, consider the forward curl, at (m, n, p), of a back-vector field g, defined on a grid containing (m + 1/2, n + 1/2, p + 1/2). The curl will be a fore-vector, so its z-component will be defined at (m, n, p + 1/2). Take the nearest x- and y-components of g in the xy plane where the curl's z-component is located; these are

[curl components]
(m,       n + 1/2, p + 1/2) : x-component of back-vector at (m + 1/2, n + 1/2, p + 1/2)
(m + 1,   n + 1/2, p + 1/2) : x-component of back-vector at (m + 3/2, n + 1/2, p + 1/2)
(m + 1/2, n      , p + 1/2) : y-component of back-vector at (m + 1/2, n + 1/2, p + 1/2)
(m + 1/2, n + 1  , p + 1/2) : y-component of back-vector at (m + 1/2, n + 3/2, p + 1/2)

These four xy-components can be used to form a loop around the curl's z-component; its magnitude and sign is set by their loop-oriented sum (i.e. two have their signs flipped to complete the loop).

[figure: z-component of curl]
                          :             |
    z y                   :    ^^       |
    |/_x                  :....||.<.....|  (m+1, n+1, p+1/2)
                          /    ||      /
                       | v     ||   | ^
                       |/           |/
         (m, n, p+1/2) |_____>______|  (m+1, n, p+1/2)

Maxwell's Equations

If we discretize both space (m,n,p) and time (l), Maxwell's equations become

$$ \begin{aligned} \tilde{\nabla} \times \tilde{E}{l,\vec{r}} &= -\tilde{\partial}t \hat{B}{l-\frac{1}{2}, \vec{r} + \frac{1}{2}} - \hat{M}{l, \vec{r} + \frac{1}{2}} \ \hat{\nabla} \times \hat{H}{l-\frac{1}{2},\vec{r} + \frac{1}{2}} &= \hat{\partial}t \tilde{D}{l, \vec{r}} + \tilde{J}{l-\frac{1}{2},\vec{r}} \ \tilde{\nabla} \cdot \hat{B}{l-\frac{1}{2}, \vec{r} + \frac{1}{2}} &= 0 \ \hat{\nabla} \cdot \tilde{D}{l,\vec{r}} &= \rho_{l,\vec{r}} \end{aligned} $$

with

$$ \begin{aligned} \hat{B}{\vec{r}} &= \mu{\vec{r} + \frac{1}{2}} \cdot \hat{H}{\vec{r} + \frac{1}{2}} \ \tilde{D}{\vec{r}} &= \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} \end{aligned} $$

where the spatial subscripts are abbreviated as \vec{r} = (m, n, p) and \vec{r} + \frac{1}{2} = (m + \frac{1}{2}, n + \frac{1}{2}, p + \frac{1}{2}), \tilde{E} and \hat{H} are the electric and magnetic fields, \tilde{J} and \hat{M} are the electric and magnetic current distributions, and \epsilon and \mu are the dielectric permittivity and magnetic permeability.

The above is Yee's algorithm, written in a form analogous to Maxwell's equations. The time derivatives can be expanded to form the update equations:

[code: Maxwell's equations updates]
H[i, j, k] -= dt * (curl_forward(E)[i, j, k] + M[t, i, j, k]) /      mu[i, j, k]
E[i, j, k] += dt * (curl_back(   H)[i, j, k] + J[t, i, j, k]) / epsilon[i, j, k]

Note that the E-field fore-vector and H-field back-vector are offset by a half-cell, resulting in distinct locations for all six E- and H-field components:

[figure: Field components]

        (m - 1/2,=> ____________Hx__________[H] <= r + 1/2 = (m + 1/2,
         n + 1/2,  /:           /:          /|                n + 1/2,
   z y   p + 1/2) / :          / :         / |                p + 1/2)
   |/_x          /  :         /  :        /  |
                /   :       Ez__________Hy   |      Locations of the E- and
               /    :        :   :      /|   |      H-field components for the
 (m - 1/2,    /     :        :  Ey...../.|..Hz      [E] fore-vector at r = (m,n,p)
  n - 1/2, =>/________________________/  |  /|      (the large cube's center)
  p + 1/2)   |      :        : /      |  | / |      and [H] back-vector at r + 1/2
             |      :        :/       |  |/  |      (the top right corner)
             |      :       [E].......|.Ex   |
             |      :.................|......| <= (m + 1/2, n + 1/2, p + 1/2)
             |     /                  |     /
             |    /                   |    /
             |   /                    |   /         This is the Yee discretization
             |  /                     |  /          scheme ("Yee cell").
r - 1/2 =    | /                      | /
 (m - 1/2,   |/                       |/
  n - 1/2,=> |________________________| <= (m + 1/2, n - 1/2, p - 1/2)
  p - 1/2)

Each component forms its own grid, offset from the others:

[figure: E-fields for adjacent cells]

              H1__________Hx0_________H0
  z y        /:                       /|
  |/_x      / :                      / |    This figure shows H back-vector locations
           /  :                     /  |    H0, H1, etc. and their associated components
         Hy1  :                   Hy0  |    H0 = (Hx0, Hy0, Hz0) etc.
         /    :                   /    |
        /    Hz1                 /     Hz0
       H2___________Hx3_________H3     |    The equivalent drawing for E would have
       |      :                 |      |    fore-vectors located at the cube's
       |      :                 |      |    center (and the centers of adjacent cubes),
       |      :                 |      |    with components on the cube's faces.
       |      H5..........Hx4...|......H4
       |     /                  |     /
      Hz2   /                  Hz2   /
       |   /                    |   /
       | Hy6                    | Hy4
       | /                      | /
       |/                       |/
       H6__________Hx7__________H7

The divergence equations can be derived by taking the divergence of the curl equations and combining them with charge continuity,

\hat{\nabla} \cdot \tilde{J} + \hat{\partial}_t \rho = 0

implying that the discrete Maxwell's equations do not produce spurious charges.

Wave Equation

Taking the backward curl of the \tilde{\nabla} \times \tilde{E} equation and replacing the resulting \hat{\nabla} \times \hat{H} term using its respective equation, and setting \hat{M} to zero, we can form the discrete wave equation:


  \begin{aligned}
  \tilde{\nabla} \times \tilde{E}_{l,\vec{r}} &=
     -\tilde{\partial}_t \hat{B}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}}
                       - \hat{M}_{l-1, \vec{r} + \frac{1}{2}}  \\
  \mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}} &=
   -\tilde{\partial}_t \hat{H}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}}  \\
  \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}}) &=
   \hat{\nabla} \times (-\tilde{\partial}_t \hat{H}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}})  \\
  \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}}) &=
   -\tilde{\partial}_t \hat{\nabla} \times \hat{H}_{l-\frac{1}{2}, \vec{r} + \frac{1}{2}}  \\
  \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}}) &=
   -\tilde{\partial}_t \hat{\partial}_t \epsilon_{\vec{r}} \tilde{E}_{l, \vec{r}} + \hat{\partial}_t \tilde{J}_{l-\frac{1}{2},\vec{r}} \\
  \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{l,\vec{r}})
           + \tilde{\partial}_t \hat{\partial}_t \epsilon_{\vec{r}} \cdot \tilde{E}_{l, \vec{r}}
           &= \tilde{\partial}_t \tilde{J}_{l - \frac{1}{2}, \vec{r}}
  \end{aligned}

Frequency Domain

We can substitute in a time-harmonic fields


 \begin{aligned}
 \tilde{E}_{l, \vec{r}} &= \tilde{E}_{\vec{r}} e^{-\imath \omega l \Delta_t} \\
 \tilde{J}_{l, \vec{r}} &= \tilde{J}_{\vec{r}} e^{-\imath \omega (l - \frac{1}{2}) \Delta_t}
 \end{aligned}

resulting in


 \begin{aligned}
 \tilde{\partial}_t &\Rightarrow (e^{ \imath \omega \Delta_t} - 1) / \Delta_t = \frac{-2 \imath}{\Delta_t} \sin(\omega \Delta_t / 2) e^{-\imath \omega \Delta_t / 2} = -\imath \Omega e^{-\imath \omega \Delta_t / 2}\\
   \hat{\partial}_t &\Rightarrow (1 - e^{-\imath \omega \Delta_t}) / \Delta_t = \frac{-2 \imath}{\Delta_t} \sin(\omega \Delta_t / 2) e^{ \imath \omega \Delta_t / 2} = -\imath \Omega e^{ \imath \omega \Delta_t / 2}\\
 \Omega &= 2 \sin(\omega \Delta_t / 2) / \Delta_t
 \end{aligned}

This gives the frequency-domain wave equation,


 \hat{\nabla} \times (\mu^{-1}_{\vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}_{\vec{r}})
    -\Omega^2 \epsilon_{\vec{r}} \cdot \tilde{E}_{\vec{r}} = -\imath \Omega \tilde{J}_{\vec{r}} e^{\imath \omega \Delta_t / 2} \\

Plane Waves And Dispersion Relation

With uniform material distribution and no sources


 \begin{aligned}
 \mu_{\vec{r} + \frac{1}{2}} &= \mu \\
 \epsilon_{\vec{r}} &= \epsilon \\
 \tilde{J}_{\vec{r}} &= 0 \\
 \end{aligned}

the frequency domain wave equation simplifies to

\hat{\nabla} \times \tilde{\nabla} \times \tilde{E}_{\vec{r}} - \Omega^2 \epsilon \mu \tilde{E}_{\vec{r}} = 0

Since \hat{\nabla} \cdot \tilde{E}_{\vec{r}} = 0, we can simplify


 \begin{aligned}
 \hat{\nabla} \times \tilde{\nabla} \times \tilde{E}_{\vec{r}}
  &= \tilde{\nabla}(\hat{\nabla} \cdot \tilde{E}_{\vec{r}}) - \hat{\nabla} \cdot \tilde{\nabla} \tilde{E}_{\vec{r}} \\
  &= - \hat{\nabla} \cdot \tilde{\nabla} \tilde{E}_{\vec{r}} \\
  &= - \tilde{\nabla}^2 \tilde{E}_{\vec{r}}
 \end{aligned}

and we get

\tilde{\nabla}^2 \tilde{E}_{\vec{r}} + \Omega^2 \epsilon \mu \tilde{E}_{\vec{r}} = 0

We can convert this to three scalar-wave equations of the form

(\tilde{\nabla}^2 + K^2) \phi_{\vec{r}} = 0

with K^2 = \Omega^2 \mu \epsilon. Now we let

\phi_{\vec{r}} = A e^{\imath (k_x m \Delta_x + k_y n \Delta_y + k_z p \Delta_z)}

resulting in


 \begin{aligned}
 \tilde{\partial}_x &\Rightarrow (e^{ \imath k_x \Delta_x} - 1) / \Delta_t = \frac{-2 \imath}{\Delta_x} \sin(k_x \Delta_x / 2) e^{ \imath k_x \Delta_x / 2} = \imath K_x e^{ \imath k_x \Delta_x / 2}\\
   \hat{\partial}_x &\Rightarrow (1 - e^{-\imath k_x \Delta_x}) / \Delta_t = \frac{-2 \imath}{\Delta_x} \sin(k_x \Delta_x / 2) e^{-\imath k_x \Delta_x / 2} = \imath K_x e^{-\imath k_x \Delta_x / 2}\\
 K_x &= 2 \sin(k_x \Delta_x / 2) / \Delta_x \\
 \end{aligned}

with similar expressions for the y and z dimnsions (and K_y, K_z).

This implies


  \tilde{\nabla}^2 = -(K_x^2 + K_y^2 + K_z^2) \phi_{\vec{r}} \\
  K_x^2 + K_y^2 + K_z^2 = \Omega^2 \mu \epsilon = \Omega^2 / c^2

where c = \sqrt{\mu \epsilon}.

Assuming real (k_x, k_y, k_z), \omega will be real only if

c^2 \Delta_t^2 = \frac{\Delta_t^2}{\mu \epsilon} < 1/(\frac{1}{\Delta_x^2} + \frac{1}{\Delta_y^2} + \frac{1}{\Delta_z^2})

If \Delta_x = \Delta_y = \Delta_z, this simplifies to c \Delta_t < \Delta_x / \sqrt{3}. This last form can be interpreted as enforcing causality; the distance that light travels in one timestep (i.e., c \Delta_t) must be less than the diagonal of the smallest cell ( \Delta_x / \sqrt{3} when on a uniform cubic grid).

Grid description

As described in the section on scalar discrete derivatives above, cell widths (dx[i], dy[j], dz[k]) along each axis can be arbitrary and independently defined. Moreover, all field components are actually defined at "derived" or "dual" positions, in-between the "base" grid points on one or more axes.

To get a better sense of how this works, let's start by drawing a grid with uniform dy and dz and nonuniform dx. We will only draw one cell in the y and z dimensions to make the illustration simpler; we need at least two cells in the x dimension to demonstrate how nonuniform dx affects the various components.

Place the E fore-vectors at integer indices r = (m, n, p) and the H back-vectors at fractional indices $r + \frac{1}{2} = (m + \frac{1}{2}, n + \frac{1}{2}, p + \frac{1}{2})$. Remember that these are indices and not coordinates; they can correspond to arbitrary (monotonically increasing) coordinates depending on the cell widths.

Draw lines to denote the planes on which the H components and back-vectors are defined. For simplicity, don't draw the equivalent planes for the E components and fore-vectors, except as necessary to show their locations -- it's easiest to just connect them to their associated H-equivalents.

The result looks something like this:

[figure: Component centers]
                                                             p=
          [H]__________Hx___________[H]_____Hx______[H]   __ +1/2
  z y     /:           /:           /:      /:      /|     |      |
  |/_x   / :          / :          / :     / :     / |     |      |
        /  :         /  :         /  :    /  :    /  |     |      |
      Hy   :       Ez...........Hy   :  Ez......Hy   |     |      |
      /:   :        :   :       /:   :   :   :  /|   |     |      |
     / :  Hz        :  Ey....../.:..Hz   :  Ey./.|..Hz    __ 0    | dz[0]
    /  :  /:        :  /      /  :  /:   :  / /  |  /|     |      |
   /_________________________/_______________/   | / |     |      |
   |   :/  :        :/       |   :/  :   :/  |   |/  |     |      |
   |  Ex   :       [E].......|..Ex   :  [E]..|..Ex   |     |      |
   |       :                 |       :       |       |     |      |
   |      [H]..........Hx....|......[H].....H|x.....[H]   __ --------- (n=+1/2, p=-1/2)
   |      /                  |      /        |      /     /       /
  Hz     /                  Hz     /        Hz     /     /       /
   |    /                    |    /          |    /     /       /
   |  Hy                     |  Hy           |  Hy    __ 0     / dy[0]
   |  /                      |  /            |  /     /       /
   | /                       | /             | /     /       /
   |/                        |/              |/     /       /
  [H]__________Hx___________[H]_____Hx______[H]   __ -1/2  /
                                                       =n
   |------------|------------|-------|-------|
 -1/2           0          +1/2     +1     +3/2 = m

    ------------------------- ----------------
              dx[0]                  dx[1]

  Part of a nonuniform "base grid", with labels specifying
  positions of the various field components. [E] fore-vectors
  are at the cell centers, and [H] back-vectors are at the
  vertices. H components along the near (-y) top (+z) edge
  have been omitted to make the insides of the cubes easier
  to visualize.

The above figure shows where all the components are located; however, it is also useful to show what volumes those components correspond to. Consider the Ex component at m = +1/2: it is shifted in the x-direction by a half-cell from the E fore-vector at m = 0 (labeled [E] in the figure). It corresponds to a volume between m = 0 and m = +1 (the other dimensions are not shifted, i.e. they are still bounded by n, p = +-1/2). (See figure below). Since m is an index and not an x-coordinate, the Ex component is not necessarily at the center of the volume it represents, and the x-length of its volume is the derived quantity dx'[0] = (dx[0] + dx[1]) / 2 rather than the base dx. (See also Scalar derivatives and cell shifts).

[figure: Ex volumes]
                                                             p=
           <_________________________________________>   __ +1/2
  z y     <<           /:           /       /:      >>    |      |
  |/_x   < <          / :          /       / :     > >    |      |
        <  <         /  :         /       /  :    >  >    |      |
       <   <        /   :        /       /   :   >   >    |      |
      <:   <       /    :        :      /    :  >:   >    |      |
     < :   <      /     :        :     /     : > :   >   __ 0    | dz[0]
    <  :   <     /      :        :    /      :>  :   >    |      |
   <____________/____________________/_______>   :   >    |      |
   <   :   <    |       :        :   |       >   :   >    |      |
   <  Ex   <    |       :       Ex   |       >  Ex   >    |      |
   <   :   <    |       :        :   |       >   :   >    |      |
   <   :   <....|.......:........:...|.......>...:...>   __ --------- (n=+1/2, p=-1/2)
   <   :  <     |      /         :  /|      />   :  >    /       /
   <   : <      |     /          : / |     / >   : >    /       /
   <   :<       |    /           :/  |    /  >   :>    /       /
   <   <        |   /            :   |   /   >   >    _ 0     / dy[0]
   <  <         |  /                 |  /    >  >    /       /
   < <          | /                  | /     > >    /       /
   <<           |/                   |/      >>    /       /
   <____________|____________________|_______>   __ -1/2  /
                                                     =n
   |------------|------------|-------|-------|
 -1/2           0          +1/2      +1    +3/2 = m

   ~------------ -------------------- -------~
     dx'[-1]          dx'[0]           dx'[1]

 The Ex values are positioned on the x-faces of the base
 grid. They represent the Ex field in volumes shifted by
 a half-cell in the x-dimension, as shown here. Only the
 center cell (with width dx'[0]) is fully shown; the
 other two are truncated (shown using >< markers).

 Note that the Ex positions are the in the same positions
 as the previous figure; only the cell boundaries have moved.
 Also note that the points at which Ex is defined are not
 necessarily centered in the volumes they represent; non-
 uniform cell sizes result in off-center volumes like the
 center cell here.

The next figure shows the volumes corresponding to the Hy components, which are shifted in two dimensions (x and z) compared to the base grid.

[figure: Hy volumes]
                                                             p=
  z y     mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm   __ +1/2  s
  |/_x   <<           m:                    m:      >>    |       |
        < <          m :                   m :     > >    |       | dz'[1]
       <  <         m  :                  m  :    >  >    |       |
     Hy........... m........Hy...........m......Hy   >    |       |
     <    <       m    :                m    :  >    >    |       |
    <     ______ m_____:_______________m_____:_>______   __ 0
   <      <     m     /:              m     / >      >    |       |
  mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm       >    |       |
  <       <    |    /  :             |    /  >       >    |       | dz'[0]
  <       <    |   /   :             |   /   >       >    |       |
  <       <    |  /    :             |  /    >       >    |       |
  <       wwwww|w/wwwwwwwwwwwwwwwwwww|w/wwwww>wwwwwwww   __       s
  <      <     |/     w              |/     w>      >    /         /
  _____________|_____________________|________     >    /         /
  <    <       |    w                |    w  >    >    /         /
  <  Hy........|...w........Hy.......|...w...>..Hy    _ 0       / dy[0]
  < <          |  w                  |  w    >  >    /         /
  <<           | w                   | w     > >    /         /
  <            |w                    |w      >>    /         /
  wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww   __ -1/2    /

  |------------|------------|--------|-------|
-1/2           0          +1/2      +1     +3/2 = m

  ~------------ --------------------- -------~
     dx'[-1]            dx'[0]         dx'[1]

 The Hy values are positioned on the y-edges of the base
 grid. Again here, the 'Hy' labels represent the same points
 as in the basic grid figure above; the edges have shifted
 by a half-cell along the x- and z-axes.

 The grid lines _|:/ are edges of the area represented by
 each Hy value, and the lines drawn using <m>.w represent
 edges where a cell's faces extend beyond the drawn area
 (i.e. where the drawing is truncated in the x- or z-
 directions).

Datastructure: dx_lists_t

In this documentation, the E fore-vectors are placed on the base grid. An equivalent formulation could place the H back-vectors on the base grid instead. However, in the case of a non-uniform grid, the operation to get from the "base" cell widths to "derived" ones is not its own inverse.

The base grid's cell sizes could be fully described by a list of three 1D arrays, specifying the cell widths along all three axes:

[dx, dy, dz] = [[dx[0], dx[1], ...], [dy[0], ...], [dz[0], ...]]

Note that this is a list-of-arrays rather than a 2D array, as the simulation domain may have a different number of cells along each axis.

Knowing the base grid's cell widths and the boundary conditions (periodic unless otherwise noted) is enough information to calculate the cell widths dx', dy', and dz' for the derived grids.

However, since most operations are trivially generalized to allow either E or H to be defined on the base grid, they are written to take the a full set of base and derived cell widths, distinguished by which field they apply to rather than their "base" or "derived" status. This removes the need for each function to generate the derived widths, and makes the "base" vs "derived" distinction unnecessary in the code.

The resulting data structure containing all the cell widths takes the form of a list-of-lists-of-arrays. The first list-of-arrays provides the cell widths for the E-field fore-vectors, while the second list-of-arrays does the same for the H-field back-vectors:

 [[[dx_e[0], dx_e[1], ...], [dy_e[0], ...], [dz_e[0], ...]],
  [[dx_h[0], dx_h[1], ...], [dy_h[0], ...], [dz_h[0], ...]]]

where dx_e[0] is the x-width of the m=0 cells, as used when calculating dE/dx, and dy_h[0] is the y-width of the n=0 cells, as used when calculating dH/dy, etc.

Permittivity and Permeability

Since each vector component of E and H is defined in a different location and represents a different volume, the value of the spatially-discrete epsilon and mu can also be different for all three field components, even when representing a simple planar interface between two isotropic materials.

As a result, epsilon and mu are taken to have the same dimensions as the field, and composed of the three diagonal tensor components:

[equations: epsilon_and_mu]
epsilon = [epsilon_xx, epsilon_yy, epsilon_zz]
mu = [mu_xx, mu_yy, mu_zz]

or


 \epsilon = \begin{bmatrix} \epsilon_{xx} & 0 & 0 \\
                            0 & \epsilon_{yy} & 0 \\
                            0 & 0 & \epsilon_{zz} \end{bmatrix}

 \mu = \begin{bmatrix} \mu_{xx} & 0 & 0 \\
                         0 & \mu_{yy} & 0 \\
                         0 & 0 & \mu_{zz} \end{bmatrix}

where the off-diagonal terms (e.g. epsilon_xy) are assumed to be zero.

High-accuracy volumetric integration of shapes on multiple grids can be performed by the gridlock module.

The values of the vacuum permittivity and permability effectively become scaling factors that appear in several locations (e.g. between the E and H fields). In order to limit floating-point inaccuracy and simplify calculations, they are often set to 1 and relative permittivities and permeabilities are used in their places; the true values can be multiplied back in after the simulation is complete if non- normalized results are needed.

Sub-modules


Module meanas.fdmath.functional

Math functions for finite difference simulations

Basic discrete calculus etc.

Functions

Function curl_back

def curl_back(dx_h: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]] | None = None) -> collections.abc.Callable[[~TT], ~TT]

Create a function which takes the backward curl of a field.

Args
-----=
dx_h
Lists of cell sizes for all axes [[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...].

Returns -----= Function f for taking the discrete backward curl of a field, f(H) -> curlH = \nabla_b \times H

Function curl_back_parts

def curl_back_parts(dx_h: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]] | None = None) -> collections.abc.Callable

Function curl_forward

def curl_forward(dx_e: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]] | None = None) -> collections.abc.Callable[[~TT], ~TT]

Curl operator for use with the E field.

Args
-----=
dx_e
Lists of cell sizes for all axes [[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...].

Returns -----= Function f for taking the discrete forward curl of a field, f(E) -> curlE = \nabla_f \times E

Function curl_forward_parts

def curl_forward_parts(dx_e: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]] | None = None) -> collections.abc.Callable

Function deriv_back

def deriv_back(dx_h: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]] | None = None) -> tuple[collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]], collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]], collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]]

Utility operators for taking discretized derivatives (forward variant).

Args
-----=
dx_h
Lists of cell sizes for all axes [[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...].

Returns -----= List of functions for taking forward derivatives along each axis.

Function deriv_forward

def deriv_forward(dx_e: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]] | None = None) -> tuple[collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]], collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]], collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]]

Utility operators for taking discretized derivatives (backward variant).

Args
-----=
dx_e
Lists of cell sizes for all axes [[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...].

Returns -----= List of functions for taking forward derivatives along each axis.


Module meanas.fdmath.operators

Matrix operators for finite difference simulations

Basic discrete calculus etc.

Functions

Function avg_back

def avg_back(axis: int, shape: collections.abc.Sequence[int]) -> scipy.sparse._matrix.spmatrix

Backward average operator (x4 = (x4 + x3) / 2)

Args
-----=
axis
Axis to average along (x=0, y=1, z=2)
shape
Shape of the grid to average

Returns -----= Sparse matrix for backward average operation.

Function avg_forward

def avg_forward(axis: int, shape: collections.abc.Sequence[int]) -> scipy.sparse._matrix.spmatrix

Forward average operator (x4 = (x4 + x5) / 2)

Args
-----=
axis
Axis to average along (x=0, y=1, z=2)
shape
Shape of the grid to average

Returns -----= Sparse matrix for forward average operation.

Function cross

def cross(B: collections.abc.Sequence[scipy.sparse._matrix.spmatrix]) -> scipy.sparse._matrix.spmatrix

Cross product operator

Args
-----=
B
List [Bx, By, Bz] of sparse matrices corresponding to the x, y, z portions of the operator on the left side of the cross product.

Returns -----= Sparse matrix corresponding to (B x), where x is the cross product.

Function curl_back

def curl_back(dx_h: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]) -> scipy.sparse._matrix.spmatrix

Curl operator for use with the H field.

Args
-----=
dx_h
Lists of cell sizes for all axes [[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...].

Returns -----= Sparse matrix for taking the discretized curl of the H-field

Function curl_forward

def curl_forward(dx_e: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]) -> scipy.sparse._matrix.spmatrix

Curl operator for use with the E field.

Args
-----=
dx_e
Lists of cell sizes for all axes [[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...].

Returns -----= Sparse matrix for taking the discretized curl of the E-field

Function deriv_back

def deriv_back(dx_h: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]) -> list[scipy.sparse._matrix.spmatrix]

Utility operators for taking discretized derivatives (backward variant).

Args
-----=
dx_h
Lists of cell sizes for all axes [[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...].

Returns -----= List of operators for taking forward derivatives along each axis.

Function deriv_forward

def deriv_forward(dx_e: collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]) -> list[scipy.sparse._matrix.spmatrix]

Utility operators for taking discretized derivatives (forward variant).

Args
-----=
dx_e
Lists of cell sizes for all axes [[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...].

Returns -----= List of operators for taking forward derivatives along each axis.

Function shift_circ

def shift_circ(axis: int, shape: collections.abc.Sequence[int], shift_distance: int = 1) -> scipy.sparse._matrix.spmatrix

Utility operator for performing a circular shift along a specified axis by a specified number of elements.

Args
-----=
axis
Axis to shift along. x=0, y=1, z=2
shape
Shape of the grid being shifted
shift_distance
Number of cells to shift by. May be negative. Default 1.

Returns -----= Sparse matrix for performing the circular shift.

Function shift_with_mirror

def shift_with_mirror(axis: int, shape: collections.abc.Sequence[int], shift_distance: int = 1) -> scipy.sparse._matrix.spmatrix

Utility operator for performing an n-element shift along a specified axis, with mirror boundary conditions applied to the cells beyond the receding edge.

Args
-----=
axis
Axis to shift along. x=0, y=1, z=2
shape
Shape of the grid being shifted
shift_distance
Number of cells to shift by. May be negative. Default 1.

Returns -----= Sparse matrix for performing the shift-with-mirror.

Function vec_cross

def vec_cross(b: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]) -> scipy.sparse._matrix.spmatrix

Vector cross product operator

Args
-----=
b
Vector on the left side of the cross product.

Returns -----= Sparse matrix corresponding to (b x), where x is the cross product.


Module meanas.fdmath.types

Types shared across multiple submodules

Variables

Variable cfdfield_t

Complex vector field with shape (3, X, Y, Z) (e.g. [E_x, E_y, E_z])

Variable cfdfield_updater_t

Convenience type for functions which take and return an cfdfield_t

Variable dx_lists_mut

Mutable version of dx_lists_t

Variable dx_lists_t

'dxes' datastructure which contains grid cell width information in the following format:

[[[dx_e[0], dx_e[1], ...], [dy_e[0], ...], [dz_e[0], ...]],
 [[dx_h[0], dx_h[1], ...], [dy_h[0], ...], [dz_h[0], ...]]]

where dx_e[0] is the x-width of the x=0 cells, as used when calculating dE/dx, and dy_h[0] is the y-width of the y=0 cells, as used when calculating dH/dy, etc.

Variable fdfield_t

Vector field with shape (3, X, Y, Z) (e.g. [E_x, E_y, E_z])

Variable fdfield_updater_t

Convenience type for functions which take and return an fdfield_t

Variable vcfdfield_t

Linearized complex vector field (single vector of length 3XY*Z)

Variable vfdfield_t

Linearized vector field (single vector of length 3XY*Z)


Module meanas.fdmath.vectorization

Functions for moving between a vector field (list of 3 ndarrays, [f_x, f_y, f_z]) and a 1D array representation of that field [f_x0, f_x1, f_x2,... f_y0,... f_z0,...]. Vectorized versions of the field use row-major (ie., C-style) ordering.

Functions

Function unvec

def unvec(v: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]] | None, shape: collections.abc.Sequence[int], nvdim: int = 3) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]] | None

Perform the inverse of vec(): take a 1D ndarray and output an nvdim-component field of form e.g. [f_x, f_y, f_z] (nvdim=3) where each of f_* is a len(shape)-dimensional ndarray.

Returns None if called with v=None.

Args
-----=
v
1D ndarray representing a vector field of shape shape (or None)
shape
shape of the vector field
nvdim
Number of components in each vector

Returns -----= [f_x, f_y, f_z] where each f_ is a len(shape) dimensional ndarray (or None)

Function vec

def vec(f: Union[numpy.ndarray[Any, numpy.dtype[numpy.floating]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating]], collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]], ForwardRef(None)]) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | numpy.ndarray[typing.Any, numpy.dtype[numpy.complexfloating]] | None

Create a 1D ndarray from a vector field which spans a 1-3D region.

Returns None if called with f=None.

Args
-----=
f
A vector field, e.g. [f_x, f_y, f_z] where each f_ component is a 1- to 3-D ndarray (f_* should all be the same size). Doesn't fail with f=None.

Returns -----= 1D ndarray containing the linearized field (or None)


Module meanas.fdtd

Utilities for running finite-difference time-domain (FDTD) simulations

See the discussion of Maxwell's Equations in meanas.fdmath for basic mathematical background.

Timestep

From the discussion of "Plane waves and the Dispersion relation" in meanas.fdmath, we have

c^2 \Delta_t^2 = \frac{\Delta_t^2}{\mu \epsilon} < 1/(\frac{1}{\Delta_x^2} + \frac{1}{\Delta_y^2} + \frac{1}{\Delta_z^2})

or, if \Delta_x = \Delta_y = \Delta_z, then c \Delta_t < \frac{\Delta_x}{\sqrt{3}}.

Based on this, we can set

dt = sqrt(mu.min() * epsilon.min()) / sqrt(1/dx_min**2 + 1/dy_min**2 + 1/dz_min**2)

The dx_min, dy_min, dz_min should be the minimum value across both the base and derived grids.

Poynting Vector and Energy Conservation

Let

$$ \begin{aligned} \tilde{S}{l, l', \vec{r}} &=& &\tilde{E}{l, \vec{r}} \otimes \hat{H}{l', \vec{r} + \frac{1}{2}} \ &=& &\vec{x} (\tilde{E}^y{l,m+1,n,p} \hat{H}^z_{l',\vec{r} + \frac{1}{2}} - \tilde{E}^z_{l,m+1,n,p} \hat{H}^y_{l', \vec{r} + \frac{1}{2}}) \ & &+ &\vec{y} (\tilde{E}^z_{l,m,n+1,p} \hat{H}^x_{l',\vec{r} + \frac{1}{2}} - \tilde{E}^x_{l,m,n+1,p} \hat{H}^z_{l', \vec{r} + \frac{1}{2}}) \ & &+ &\vec{z} (\tilde{E}^x_{l,m,n,p+1} \hat{H}^y_{l',\vec{r} + \frac{1}{2}} - \tilde{E}^y_{l,m,n,p+1} \hat{H}^z_{l', \vec{r} + \frac{1}{2}}) \end{aligned}



where $\vec{r} = (m, n, p)$ and $\otimes$ is a modified cross product
in which the $\tilde{E}$ terms are shifted as indicated.

By taking the divergence and rearranging terms, we can show that

\begin{aligned} \hat{\nabla} \cdot \tilde{S}{l, l', \vec{r}} &= \hat{\nabla} \cdot (\tilde{E}{l, \vec{r}} \otimes \hat{H}{l', \vec{r} + \frac{1}{2}}) \ &= \hat{H}{l', \vec{r} + \frac{1}{2}} \cdot \tilde{\nabla} \times \tilde{E}{l, \vec{r}} - \tilde{E}{l, \vec{r}} \cdot \hat{\nabla} \times \hat{H}{l', \vec{r} + \frac{1}{2}} \ &= \hat{H}{l', \vec{r} + \frac{1}{2}} \cdot (-\tilde{\partial}t \mu{\vec{r} + \frac{1}{2}} \hat{H}{l - \frac{1}{2}, \vec{r} + \frac{1}{2}} - \hat{M}{l, \vec{r} + \frac{1}{2}}) - \tilde{E}{l, \vec{r}} \cdot (\hat{\partial}t \tilde{\epsilon}{\vec{r}} \tilde{E}{l'+\frac{1}{2}, \vec{r}} + \tilde{J}{l', \vec{r}}) \ &= \hat{H}{l'} \cdot (-\mu / \Delta_t)(\hat{H}{l + \frac{1}{2}} - \hat{H}{l - \frac{1}{2}}) - \tilde{E}l \cdot (\epsilon / \Delta_t )(\tilde{E}{l'+\frac{1}{2}} - \tilde{E}{l'-\frac{1}{2}}) - \hat{H}{l'} \cdot \hat{M}_{l} - \tilde{E}l \cdot \tilde{J}{l'} \ \end{aligned}



where in the last line the spatial subscripts have been dropped to emphasize
the time subscripts $l, l'$, i.e.

\begin{aligned} \tilde{E}l &= \tilde{E}{l, \vec{r}} \ \hat{H}l &= \tilde{H}{l, \vec{r} + \frac{1}{2}} \ \tilde{\epsilon} &= \tilde{\epsilon}_{\vec{r}} \ \end{aligned}



etc.
For $l' = l + \frac{1}{2}$ we get

\begin{aligned} \hat{\nabla} \cdot \tilde{S}{l, l + \frac{1}{2}} &= \hat{H}{l + \frac{1}{2}} \cdot (-\mu / \Delta_t)(\hat{H}{l + \frac{1}{2}} - \hat{H}{l - \frac{1}{2}}) - \tilde{E}l \cdot (\epsilon / \Delta_t)(\tilde{E}{l+1} - \tilde{E}l) - \hat{H}{l'} \cdot \hat{M}l - \tilde{E}l \cdot \tilde{J}{l + \frac{1}{2}} \ &= (-\mu / \Delta_t)(\hat{H}^2{l + \frac{1}{2}} - \hat{H}{l + \frac{1}{2}} \cdot \hat{H}{l - \frac{1}{2}}) - (\epsilon / \Delta_t)(\tilde{E}{l+1} \cdot \tilde{E}l - \tilde{E}^2_l) - \hat{H}{l'} \cdot \hat{M}l - \tilde{E}l \cdot \tilde{J}{l + \frac{1}{2}} \ &= -(\mu \hat{H}^2{l + \frac{1}{2}} +\epsilon \tilde{E}{l+1} \cdot \tilde{E}l) / \Delta_t \ +(\mu \hat{H}{l + \frac{1}{2}} \cdot \hat{H}{l - \frac{1}{2}} +\epsilon \tilde{E}^2_l) / \Delta_t \ - \hat{H}{l+\frac{1}{2}} \cdot \hat{M}_l \ - \tilde{E}l \cdot \tilde{J}{l+\frac{1}{2}} \ \end{aligned}



and for $l' = l - \frac{1}{2}$,

\begin{aligned} \hat{\nabla} \cdot \tilde{S}{l, l - \frac{1}{2}} &= (\mu \hat{H}^2{l - \frac{1}{2}} +\epsilon \tilde{E}{l-1} \cdot \tilde{E}l) / \Delta_t \ -(\mu \hat{H}{l + \frac{1}{2}} \cdot \hat{H}{l - \frac{1}{2}} +\epsilon \tilde{E}^2_l) / \Delta_t \ - \hat{H}_{l-\frac{1}{2}} \cdot \hat{M}_l \ - \tilde{E}l \cdot \tilde{J}{l-\frac{1}{2}} \ \end{aligned}



These two results form the discrete time-domain analogue to Poynting's theorem.
They hint at the expressions for the energy, which can be calculated at the same
time-index as either the E or H field:

\begin{aligned} U_l &= \epsilon \tilde{E}^2_l + \mu \hat{H}{l + \frac{1}{2}} \cdot \hat{H}{l - \frac{1}{2}} \ U_{l + \frac{1}{2}} &= \epsilon \tilde{E}l \cdot \tilde{E}{l + 1} + \mu \hat{H}^2_{l + \frac{1}{2}} \ \end{aligned}



Rewriting the Poynting theorem in terms of the energy expressions,

\begin{aligned} (U_{l+\frac{1}{2}} - U_l) / \Delta_t &= -\hat{\nabla} \cdot \tilde{S}{l, l + \frac{1}{2}} \ - \hat{H}{l+\frac{1}{2}} \cdot \hat{M}l \ - \tilde{E}l \cdot \tilde{J}{l+\frac{1}{2}} \ (U_l - U{l-\frac{1}{2}}) / \Delta_t &= -\hat{\nabla} \cdot \tilde{S}{l, l - \frac{1}{2}} \ - \hat{H}{l-\frac{1}{2}} \cdot \hat{M}_l \ - \tilde{E}l \cdot \tilde{J}{l-\frac{1}{2}} \ \end{aligned}



This result is exact and should practically hold to within numerical precision. No time-
or spatial-averaging is necessary.

Note that each value of $J$ contributes to the energy twice (i.e. once per field update)
despite only causing the value of $E$ to change once (same for $M$ and $H$).


Sources
=============

It is often useful to excite the simulation with an arbitrary broadband pulse and then
extract the frequency-domain response by performing an on-the-fly Fourier transform
of the time-domain fields.

The Ricker wavelet (normalized second derivative of a Gaussian) is commonly used for the pulse
shape. It can be written

$$ f_r(t) = (1 - \frac{1}{2} (\omega (t - \tau))^2) e^{-(\frac{\omega (t - \tau)}{2})^2} $$

with $\tau > \frac{2 * \pi}{\omega}$ as a minimum delay to avoid a discontinuity at
t=0 (assuming the source is off for t<0 this gives $\sim 10^{-3}$ error at t=0).



Boundary conditions
===================
# TODO notes about boundaries / PMLs


    
## Sub-modules

* [meanas.fdtd.base](#meanas.fdtd.base)
* [meanas.fdtd.boundaries](#meanas.fdtd.boundaries)
* [meanas.fdtd.energy](#meanas.fdtd.energy)
* [meanas.fdtd.pml](#meanas.fdtd.pml)






-------------------------------------------


    
# Module `meanas.fdtd.base` {#meanas.fdtd.base}

Basic FDTD field updates




    
## Functions


    
### Function `maxwell_e` {#meanas.fdtd.base.maxwell_e}





    
> `def maxwell_e(dt: float, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]`


Build a function which performs a portion the time-domain E-field update,

    E += curl_back(H[t]) / epsilon

The full update should be

    E += (curl_back(H[t]) + J) / epsilon

which requires an additional step of `E += J / epsilon` which is not performed
by the generated function.

See <code>[meanas.fdmath](#meanas.fdmath)</code> for descriptions of

- This update step: "Maxwell's equations" section
- <code>dxes</code>: "Datastructure: dx_lists_t" section
- <code>epsilon</code>: "Permittivity and Permeability" section

Also see the "Timestep" section of <code>[meanas.fdtd](#meanas.fdtd)</code> for a discussion of
the <code>dt</code> parameter.


Args
-----=
**```dt```**
:   Timestep. See <code>[meanas.fdtd](#meanas.fdtd)</code> for details.


**```dxes```**
:   Grid description; see <code>[meanas.fdmath](#meanas.fdmath)</code>.



Returns
-----=
Function `f(E_old, H_old, epsilon) -> E_new`.

    
### Function `maxwell_h` {#meanas.fdtd.base.maxwell_h}





    
> `def maxwell_h(dt: float, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]`


Build a function which performs part of the time-domain H-field update,

    H -= curl_forward(E[t]) / mu

The full update should be

    H -= (curl_forward(E[t]) + M) / mu

which requires an additional step of `H -= M / mu` which is not performed
by the generated function; this step can be omitted if there is no magnetic
current <code>M</code>.

See <code>[meanas.fdmath](#meanas.fdmath)</code> for descriptions of

- This update step: "Maxwell's equations" section
- <code>dxes</code>: "Datastructure: dx_lists_t" section
- <code>mu</code>: "Permittivity and Permeability" section

Also see the "Timestep" section of <code>[meanas.fdtd](#meanas.fdtd)</code> for a discussion of
the <code>dt</code> parameter.


Args
-----=
**```dt```**
:   Timestep. See <code>[meanas.fdtd](#meanas.fdtd)</code> for details.


**```dxes```**
:   Grid description; see <code>[meanas.fdmath](#meanas.fdmath)</code>.



Returns
-----=
Function `f(E_old, H_old, epsilon) -> E_new`.




-------------------------------------------


    
# Module `meanas.fdtd.boundaries` {#meanas.fdtd.boundaries}

Boundary conditions

#TODO conducting boundary documentation




    
## Functions


    
### Function `conducting_boundary` {#meanas.fdtd.boundaries.conducting_boundary}





    
> `def conducting_boundary(direction: int, polarity: int) -> tuple[collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]], collections.abc.Callable[..., numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]]]`







-------------------------------------------


    
# Module `meanas.fdtd.energy` {#meanas.fdtd.energy}






    
## Functions


    
### Function `delta_energy_e2h` {#meanas.fdtd.energy.delta_energy_e2h}





    
> `def delta_energy_e2h(dt: float, h0: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], e1: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], h2: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], e3: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]`


Change in energy during the half-step from <code>e1</code> to <code>h2</code>.

This is just from (h2 * h2 + e3 * e1) - (e1 * e1 + h0 * h2)


Args
-----=
**```h0```**
:   E-field one half-timestep before the start of the energy delta.


**```e1```**
:   H-field at the start of the energy delta.


**```h2```**
:   E-field at the end of the energy delta (one half-timestep after <code>e1</code>).


**```e3```**
:   H-field one half-timestep after the end of the energy delta.


**```epsilon```**
:   Dielectric constant distribution.


**```mu```**
:   Magnetic permeability distribution.


**```dxes```**
:   Grid description; see <code>[meanas.fdmath](#meanas.fdmath)</code>.



Returns
-----=
Change in energy from the time of <code>e1</code> to the time of <code>h2</code>.

    
### Function `delta_energy_h2e` {#meanas.fdtd.energy.delta_energy_h2e}





    
> `def delta_energy_h2e(dt: float, e0: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], h1: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], e2: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], h3: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]`


Change in energy during the half-step from <code>h1</code> to <code>e2</code>.

This is just from (e2 * e2 + h3 * h1) - (h1 * h1 + e0 * e2)


Args
-----=
**```e0```**
:   E-field one half-timestep before the start of the energy delta.


**```h1```**
:   H-field at the start of the energy delta.


**```e2```**
:   E-field at the end of the energy delta (one half-timestep after <code>h1</code>).


**```h3```**
:   H-field one half-timestep after the end of the energy delta.


**```epsilon```**
:   Dielectric constant distribution.


**```mu```**
:   Magnetic permeability distribution.


**```dxes```**
:   Grid description; see <code>[meanas.fdmath](#meanas.fdmath)</code>.



Returns
-----=
Change in energy from the time of <code>h1</code> to the time of <code>e2</code>.

    
### Function `delta_energy_j` {#meanas.fdtd.energy.delta_energy_j}





    
> `def delta_energy_j(j0: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], e1: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]`


Calculate

Note that each value of $J$ contributes to the energy twice (i.e. once per field update)
despite only causing the value of $E$ to change once (same for $M$ and $H$).

    
### Function `dxmul` {#meanas.fdtd.energy.dxmul}





    
> `def dxmul(ee: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], hh: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | float | None = None, mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | float | None = None, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]`




    
### Function `energy_estep` {#meanas.fdtd.energy.energy_estep}





    
> `def energy_estep(h0: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], e1: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], h2: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]`


Calculate energy <code>U</code> at the time of the provided E-field <code>e1</code>.

TODO: Figure out what this means spatially.


Args
-----=
**```h0```**
:   H-field one half-timestep before the energy.


**```e1```**
:   E-field (at the same timestep as the energy).


**```h2```**
:   H-field one half-timestep after the energy.


**```epsilon```**
:   Dielectric constant distribution.


**```mu```**
:   Magnetic permeability distribution.


**```dxes```**
:   Grid description; see <code>[meanas.fdmath](#meanas.fdmath)</code>.



Returns
-----=
Energy, at the time of the E-field <code>e1</code>.

    
### Function `energy_hstep` {#meanas.fdtd.energy.energy_hstep}





    
> `def energy_hstep(e0: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], h1: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], e2: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, mu: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]`


Calculate energy <code>U</code> at the time of the provided H-field <code>h1</code>.

TODO: Figure out what this means spatially.


Args
-----=
**```e0```**
:   E-field one half-timestep before the energy.


**```h1```**
:   H-field (at the same timestep as the energy).


**```e2```**
:   E-field one half-timestep after the energy.


**```epsilon```**
:   Dielectric constant distribution.


**```mu```**
:   Magnetic permeability distribution.


**```dxes```**
:   Grid description; see <code>[meanas.fdmath](#meanas.fdmath)</code>.



Returns
-----=
Energy, at the time of the H-field <code>h1</code>.

    
### Function `poynting` {#meanas.fdtd.energy.poynting}





    
> `def poynting(e: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], h: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]`


Calculate the poynting vector <code>S</code> ($S$).

This is the energy transfer rate (amount of energy <code>U</code> per <code>dt</code> transferred
between adjacent cells) in each direction that happens during the half-step
bounded by the two provided fields.

The returned vector field <code>S</code> is the energy flow across +x, +y, and +z
boundaries of the corresponding <code>U</code> cell. For example,

```
    mx = numpy.roll(mask, -1, axis=0)
    my = numpy.roll(mask, -1, axis=1)
    mz = numpy.roll(mask, -1, axis=2)

    u_hstep = fdtd.energy_hstep(e0=es[ii - 1], h1=hs[ii], e2=es[ii],     **args)
    u_estep = fdtd.energy_estep(h0=hs[ii],     e1=es[ii], h2=hs[ii + 1], **args)
    delta_j_B = fdtd.delta_energy_j(j0=js[ii], e1=es[ii], dxes=dxes)
    du_half_h2e = u_estep - u_hstep - delta_j_B

    s_h2e = -fdtd.poynting(e=es[ii], h=hs[ii], dxes=dxes) * dt
    planes = [s_h2e[0, mask].sum(), -s_h2e[0, mx].sum(),
              s_h2e[1, mask].sum(), -s_h2e[1, my].sum(),
              s_h2e[2, mask].sum(), -s_h2e[2, mz].sum()]

    assert_close(sum(planes), du_half_h2e[mask])
```

(see <code>meanas.tests.test\_fdtd.test\_poynting\_planes</code>)

The full relationship is

\begin{aligned} (U_{l+\frac{1}{2}} - U_l) / \Delta_t &= -\hat{\nabla} \cdot \tilde{S}{l, l + \frac{1}{2}} \ - \hat{H}{l+\frac{1}{2}} \cdot \hat{M}l \ - \tilde{E}l \cdot \tilde{J}{l+\frac{1}{2}} \ (U_l - U{l-\frac{1}{2}}) / \Delta_t &= -\hat{\nabla} \cdot \tilde{S}{l, l - \frac{1}{2}} \ - \hat{H}{l-\frac{1}{2}} \cdot \hat{M}_l \ - \tilde{E}l \cdot \tilde{J}{l-\frac{1}{2}} \ \end{aligned}



These equalities are exact and should practically hold to within numerical precision.
No time- or spatial-averaging is necessary. (See <code>[meanas.fdtd](#meanas.fdtd)</code> docs for derivation.)


Args
-----=
**```e```**
:   E-field


**```h```**
:   H-field (one half-timestep before or after <code>e</code>)


**```dxes```**
:   Grid description; see <code>[meanas.fdmath](#meanas.fdmath)</code>.



Returns
-----=
<code>s</code>
:   Vector field. Components indicate the energy transfer rate from the
    corresponding energy cell into its +x, +y, and +z neighbors during
    the half-step from the time of the earlier input field until the
    time of later input field.



    
### Function `poynting_divergence` {#meanas.fdtd.energy.poynting_divergence}





    
> `def poynting_divergence(s: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, *, e: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, h: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]] | None = None, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]] | None = None) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]`


Calculate the divergence of the poynting vector.

This is the net energy flow for each cell, i.e. the change in energy <code>U</code>
per <code>dt</code> caused by transfer of energy to nearby cells (rather than
absorption/emission by currents <code>J</code> or <code>M</code>).

See <code>[poynting()](#meanas.fdtd.energy.poynting)</code> and <code>[meanas.fdtd](#meanas.fdtd)</code> for more details.

Args
-----=
**```s```**
:   Poynting vector, as calculated with <code>[poynting()](#meanas.fdtd.energy.poynting)</code>. Optional; caller
    can provide <code>e</code> and <code>h</code> instead.


**```e```**
:   E-field (optional; need either <code>s</code> or both <code>e</code> and <code>h</code>)


**```h```**
:   H-field (optional; need either <code>s</code> or both <code>e</code> and <code>h</code>)


**```dxes```**
:   Grid description; see <code>[meanas.fdmath](#meanas.fdmath)</code>.



Returns
-----=
<code>ds</code>
:   Divergence of the poynting vector.
    Entries indicate the net energy flow out of the corresponding
    energy cell.






-------------------------------------------


    
# Module `meanas.fdtd.pml` {#meanas.fdtd.pml}

PML implementations

#TODO discussion of PMLs
#TODO cpml documentation




    
## Functions


    
### Function `cpml_params` {#meanas.fdtd.pml.cpml_params}





    
> `def cpml_params(axis: int, polarity: int, dt: float, thickness: int = 8, ln_R_per_layer: float = -1.6, epsilon_eff: float = 1, mu_eff: float = 1, m: float = 3.5, ma: float = 1, cfs_alpha: float = 0) -> dict[str, typing.Any]`




    
### Function `updates_with_cpml` {#meanas.fdtd.pml.updates_with_cpml}





    
> `def updates_with_cpml(cpml_params: collections.abc.Sequence[collections.abc.Sequence[dict[str, typing.Any] | None]], dt: float, dxes: collections.abc.Sequence[collections.abc.Sequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], *, dtype: Union[numpy.dtype[Any], ForwardRef(None), type[Any], numpy._typing._dtype_like._SupportsDType[numpy.dtype[Any]], str, tuple[Any, int], tuple[Any, Union[SupportsIndex, collections.abc.Sequence[SupportsIndex]]], list[Any], numpy._typing._dtype_like._DTypeDict, tuple[Any, Any]] = numpy.float32) -> tuple[collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]], None], collections.abc.Callable[[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]], numpy.ndarray[typing.Any, numpy.dtype[numpy.floating]]], None]]`







-------------------------------------------


    
# Module `meanas.test` {#meanas.test}

Tests (run with `python3 -m pytest -rxPXs | tee results.txt`)


    
## Sub-modules

* [meanas.test.conftest](#meanas.test.conftest)
* [meanas.test.test_fdfd](#meanas.test.test_fdfd)
* [meanas.test.test_fdfd_pml](#meanas.test.test_fdfd_pml)
* [meanas.test.test_fdtd](#meanas.test.test_fdtd)
* [meanas.test.utils](#meanas.test.utils)






-------------------------------------------


    
# Module `meanas.test.conftest` {#meanas.test.conftest}

Test fixtures




    
## Functions


    
### Function `dx` {#meanas.test.conftest.dx}





    
> `def dx(request: Any) -> float`




    
### Function `dxes` {#meanas.test.conftest.dxes}





    
> `def dxes(request: Any, shape: tuple[int, ...], dx: float) -> list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]]`




    
### Function `epsilon` {#meanas.test.conftest.epsilon}





    
> `def epsilon(request: Any, shape: tuple[int, ...], epsilon_bg: float, epsilon_fg: float) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]`




    
### Function `epsilon_bg` {#meanas.test.conftest.epsilon_bg}





    
> `def epsilon_bg(request: Any) -> float`




    
### Function `epsilon_fg` {#meanas.test.conftest.epsilon_fg}





    
> `def epsilon_fg(request: Any) -> float`




    
### Function `j_mag` {#meanas.test.conftest.j_mag}





    
> `def j_mag(request: Any) -> float`




    
### Function `shape` {#meanas.test.conftest.shape}





    
> `def shape(request: Any) -> tuple[int, ...]`







-------------------------------------------


    
# Module `meanas.test.test_fdfd` {#meanas.test.test_fdfd}






    
## Functions


    
### Function `j_distribution` {#meanas.test.test_fdfd.j_distribution}





    
> `def j_distribution(request: Any, shape: tuple[int, ...], j_mag: float) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]`




    
### Function `omega` {#meanas.test.test_fdfd.omega}





    
> `def omega(request: Any) -> float`




    
### Function `pec` {#meanas.test.test_fdfd.pec}





    
> `def pec(request: Any) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None`




    
### Function `pmc` {#meanas.test.test_fdfd.pmc}





    
> `def pmc(request: Any) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None`




    
### Function `sim` {#meanas.test.test_fdfd.sim}





    
> `def sim(request: Any, shape: tuple[int, ...], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], dxes: list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]], j_distribution: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], omega: float, pec: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None, pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None) -> meanas.test.test_fdfd.FDResult`


Build simulation from parts

    
### Function `test_poynting_planes` {#meanas.test.test_fdfd.test_poynting_planes}





    
> `def test_poynting_planes(sim: FDResult) -> None`




    
### Function `test_residual` {#meanas.test.test_fdfd.test_residual}





    
> `def test_residual(sim: FDResult) -> None`





    
## Classes


    
### Class `FDResult` {#meanas.test.test_fdfd.FDResult}


    
[[view code]](https://mpxd.net/code/jan/meanas/src/commit/651e255704ecd14e72a49f0a5662cc304accfd9f/meanas/test/test_fdfd.py#L102-L111)



> `class FDResult(shape: tuple[int, ...], dxes: list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], omega: complex, j: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], e: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None, pec: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None)`


FDResult(shape: tuple[int, ...], dxes: list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], omega: complex, j: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], e: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None, pec: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None)




    
#### Class variables


    
##### Variable `dxes` {#meanas.test.test_fdfd.FDResult.dxes}



    
##### Variable `e` {#meanas.test.test_fdfd.FDResult.e}



    
##### Variable `epsilon` {#meanas.test.test_fdfd.FDResult.epsilon}



    
##### Variable `j` {#meanas.test.test_fdfd.FDResult.j}



    
##### Variable `omega` {#meanas.test.test_fdfd.FDResult.omega}



    
##### Variable `pec` {#meanas.test.test_fdfd.FDResult.pec}



    
##### Variable `pmc` {#meanas.test.test_fdfd.FDResult.pmc}



    
##### Variable `shape` {#meanas.test.test_fdfd.FDResult.shape}








-------------------------------------------


    
# Module `meanas.test.test_fdfd_pml` {#meanas.test.test_fdfd_pml}






    
## Functions


    
### Function `dxes` {#meanas.test.test_fdfd_pml.dxes}





    
> `def dxes(request: Any, shape: tuple[int, ...], dx: float, omega: float, epsilon_fg: float) -> list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]]`




    
### Function `epsilon` {#meanas.test.test_fdfd_pml.epsilon}





    
> `def epsilon(request: Any, shape: tuple[int, ...], epsilon_bg: float, epsilon_fg: float) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]`




    
### Function `j_distribution` {#meanas.test.test_fdfd_pml.j_distribution}





    
> `def j_distribution(request: Any, shape: tuple[int, ...], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], dxes: collections.abc.MutableSequence[collections.abc.MutableSequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], omega: float, src_polarity: int) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]]`




    
### Function `omega` {#meanas.test.test_fdfd_pml.omega}





    
> `def omega(request: Any) -> float`




    
### Function `pec` {#meanas.test.test_fdfd_pml.pec}





    
> `def pec(request: Any) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None`




    
### Function `pmc` {#meanas.test.test_fdfd_pml.pmc}





    
> `def pmc(request: Any) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None`




    
### Function `shape` {#meanas.test.test_fdfd_pml.shape}





    
> `def shape(request: Any) -> tuple[int, int, int]`




    
### Function `sim` {#meanas.test.test_fdfd_pml.sim}





    
> `def sim(request: Any, shape: tuple[int, ...], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], dxes: collections.abc.MutableSequence[collections.abc.MutableSequence[numpy.ndarray[typing.Any, numpy.dtype[numpy.floating | numpy.complexfloating]]]], j_distribution: numpy.ndarray[typing.Any, numpy.dtype[numpy.complex128]], omega: float, pec: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None, pmc: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None) -> meanas.test.test_fdfd.FDResult`




    
### Function `src_polarity` {#meanas.test.test_fdfd_pml.src_polarity}





    
> `def src_polarity(request: Any) -> int`




    
### Function `test_pml` {#meanas.test.test_fdfd_pml.test_pml}





    
> `def test_pml(sim: meanas.test.test_fdfd.FDResult, src_polarity: int) -> None`







-------------------------------------------


    
# Module `meanas.test.test_fdtd` {#meanas.test.test_fdtd}






    
## Functions


    
### Function `dt` {#meanas.test.test_fdtd.dt}





    
> `def dt(request: Any) -> float`




    
### Function `j_distribution` {#meanas.test.test_fdtd.j_distribution}





    
> `def j_distribution(request: Any, shape: tuple[int, ...], j_mag: float) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]`




    
### Function `j_steps` {#meanas.test.test_fdtd.j_steps}





    
> `def j_steps(request: Any) -> tuple[int, ...]`




    
### Function `sim` {#meanas.test.test_fdtd.sim}





    
> `def sim(request: Any, shape: tuple[int, ...], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], dxes: list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]], dt: float, j_distribution: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], j_steps: tuple[int, ...]) -> meanas.test.test_fdtd.TDResult`




    
### Function `test_energy_conservation` {#meanas.test.test_fdtd.test_energy_conservation}





    
> `def test_energy_conservation(sim: TDResult) -> None`


Assumes fields start at 0 before J0 is added

    
### Function `test_initial_energy` {#meanas.test.test_fdtd.test_initial_energy}





    
> `def test_initial_energy(sim: TDResult) -> None`


Assumes fields start at 0 before J0 is added

    
### Function `test_initial_fields` {#meanas.test.test_fdtd.test_initial_fields}





    
> `def test_initial_fields(sim: TDResult) -> None`




    
### Function `test_poynting_divergence` {#meanas.test.test_fdtd.test_poynting_divergence}





    
> `def test_poynting_divergence(sim: TDResult) -> None`




    
### Function `test_poynting_planes` {#meanas.test.test_fdtd.test_poynting_planes}





    
> `def test_poynting_planes(sim: TDResult) -> None`





    
## Classes


    
### Class `TDResult` {#meanas.test.test_fdtd.TDResult}


    
[[view code]](https://mpxd.net/code/jan/meanas/src/commit/651e255704ecd14e72a49f0a5662cc304accfd9f/meanas/test/test_fdtd.py#L158-L168)



> `class TDResult(shape: tuple[int, ...], dt: float, dxes: list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], j_distribution: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], j_steps: tuple[int, ...], es: list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]] = <factory>, hs: list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]] = <factory>, js: list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]] = <factory>)`


TDResult(shape: tuple[int, ...], dt: float, dxes: list[list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]]], epsilon: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], j_distribution: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]], j_steps: tuple[int, ...], es: list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]] = <factory>, hs: list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]] = <factory>, js: list[numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]] = <factory>)




    
#### Class variables


    
##### Variable `dt` {#meanas.test.test_fdtd.TDResult.dt}



    
##### Variable `dxes` {#meanas.test.test_fdtd.TDResult.dxes}



    
##### Variable `epsilon` {#meanas.test.test_fdtd.TDResult.epsilon}



    
##### Variable `es` {#meanas.test.test_fdtd.TDResult.es}



    
##### Variable `hs` {#meanas.test.test_fdtd.TDResult.hs}



    
##### Variable `j_distribution` {#meanas.test.test_fdtd.TDResult.j_distribution}



    
##### Variable `j_steps` {#meanas.test.test_fdtd.TDResult.j_steps}



    
##### Variable `js` {#meanas.test.test_fdtd.TDResult.js}



    
##### Variable `shape` {#meanas.test.test_fdtd.TDResult.shape}








-------------------------------------------


    
# Module `meanas.test.utils` {#meanas.test.utils}






    
## Functions


    
### Function `assert_close` {#meanas.test.utils.assert_close}





    
> `def assert_close(x: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], y: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], *args, **kwargs) -> None`




    
### Function `assert_fields_close` {#meanas.test.utils.assert_fields_close}





    
> `def assert_fields_close(x: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], y: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], *args, **kwargs) -> None`






-----
Generated by *pdoc* 0.11.1 (<https://pdoc3.github.io>).