snapshot 2025-02-07 01:30:37.661917

This commit is contained in:
Jan Petykiewicz 2025-02-07 01:30:37 -08:00
parent 777ecbc024
commit d0e3fae4b7
17 changed files with 14862 additions and 73 deletions

File diff suppressed because one or more lines are too long

4607
doc.htex Normal file

File diff suppressed because it is too large Load Diff

6494
doc.md Normal file

File diff suppressed because it is too large Load Diff

61
examples/bend.py Normal file
View File

@ -0,0 +1,61 @@
import numpy
from numpy import pi
import gridlock
from meanas.fdfd import waveguide_2d, waveguide_cyl
from matplotlib import pyplot
wl = 1310
dx = 10
radius = 25e3
width = 400
thf = 161
thp = 77
eps_si = 3.51 ** 2
eps_ox = 1.453 ** 2
x0 = (width / 2) % dx
omega = 2 * pi / wl
grid = gridlock.Grid([
numpy.arange(-3000, 3000 + dx, dx),
numpy.arange(-1500, 1500 + dx, dx),
numpy.arange(-1 * dx, 1 * dx + dx, dx)],
periodic=True,
)
epsilon = grid.allocate(eps_ox)
grid.draw_cuboid(epsilon, center=[x0, thf / 2, 0], dimensions=[width, thf, 1e6], foreground=eps_si)
grid.draw_cuboid(epsilon, center=[x0, thp / 2, 0], dimensions=[width + 3e3, thp, 1e6], foreground=eps_si)
grid.draw_cuboid(epsilon, center=[x0 + width / 2 + 2e3, thf / 2, 0], dimensions=[1e3, thf, 1e6], foreground=eps_si)
grid.draw_cuboid(epsilon, center=[x0 - width / 2 - 2e3, thf / 2, 0], dimensions=[1e3, thf, 1e6], foreground=eps_si)
tilt = (1 + grid.xyz[0] / radius)
se = tilt[None, :, None, None] * epsilon
#print(tilt)
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
dxes_2d = [[d[0], d[1]] for d in dxes]
mode_numbers = numpy.arange(6)
args = dict(dxes=dxes_2d, omega=omega, mode_numbers=numpy.arange(6))
e_xys, wavenumbers = waveguide_2d.solve_modes(epsilon=se[:, :, :, 1].ravel(), **args)
ee, hh = waveguide_2d.normalized_fields_e(e_xys[0], wavenumber=wavenumbers[0], dxes=dxes_2d, omega=omega, epsilon=se[:, :, :, 1].ravel())
#print('tilted baseline:' wavenumbers * wl / pi / 2)
rmin = radius + grid.xyz[0].min()
epsv = epsilon[:, :, :, 1].ravel()
e2, angular_wavenumbers2 = waveguide_cyl.solve_modes(epsilon=epsv, rmin=rmin, **args)
print('cylindrical:', angular_wavenumbers2 * wl / pi / 2 / radius)
wavenumbers_2 = waveguide_cyl.linear_wavenumbers(e_xys=e2, angular_wavenumbers=angular_wavenumbers2, rmin=rmin, epsilon=epsv, dxes=dxes_2d)
print('cyl_auto:', wavenumbers_2 * wl / pi / 2)

65
examples/eme.py Normal file
View File

@ -0,0 +1,65 @@
import numpy
from numpy import pi
import gridlock
from gridlock import XYZExtent
from meanas.fdfd import waveguide_2d, waveguide_cyl
from matplotlib import pyplot
wl = 1310
dx = 10
radius = 25e3
width = 400
thf = 161
thp = 77
eps_si = 3.51 ** 2
eps_ox = 1.453 ** 2
x0 = (width / 2) % dx
omega = 2 * pi / wl
grid = gridlock.Grid([
numpy.arange(-3000, 3000 + dx, dx),
numpy.arange(-1500, 1500 + dx, dx),
numpy.arange(-5 * dx, 5 * dx + dx, dx)],
periodic=True,
)
epsilon = grid.allocate(eps_ox)
grid.draw_cuboid(epsilon, extent=XYZExtent(xctr=x0, lx=width + 5e3, ymin=0, ymax=thf, zmin=-1e6, zmax=0), foreground=eps_si)
grid.draw_cuboid(epsilon, extent=XYZExtent(xmax=-width / 2, lx=1.5e3, ymin=thp, ymax=1e6, zmin=-1e6, zmax=0), foreground=eps_ox)
grid.draw_cuboid(epsilon, extent=XYZExtent(xmin= width / 2, lx=1.5e3, ymin=thp, ymax=1e6, zmin=-1e6, zmax=0), foreground=eps_ox)
grid.draw_cuboid(epsilon, extent=XYZExtent(xmax=-(width / 2 + 2.5e3), lx=1e3, ymin=0, ymax=thf, zmin=0, zmax=1e6), foreground=eps_si)
grid.draw_cuboid(epsilon, extent=XYZExtent(xmax= width / 2 + 2.5e3, lx=1e3, ymin=0, ymax=thf, zmin=0, zmax=1e6), foreground=eps_si)
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
dxes_2d = [[d[0], d[1]] for d in dxes]
mode_numbers = numpy.arange(20)
args = dict(dxes=dxes_2d, omega=omega, mode_numbers=mode_numbers)
eps1 = epsilon[:, :, :, 1].ravel()
eps2 = epsilon[:, :, :, -2].ravel()
eL_xys, wavenumbers_L = waveguide_2d.solve_modes(epsilon=eps1, **args)
eR_xys, wavenumbers_R = waveguide_2d.solve_modes(epsilon=eps2, **args)
eh_L = [
waveguide_2d.normalized_fields_e(e_xy, wavenumber=wavenumber, dxes=dxes_2d, omega=omega, epsilon=eps1)
for e_xy, wavenumber in zip(eL_xys, wavenumbers_L)]
eh_R = [
waveguide_2d.normalized_fields_e(e_xy, wavenumber=wavenumber, dxes=dxes_2d, omega=omega, epsilon=eps2)
for e_xy, wavenumber in zip(eR_xys, wavenumbers_R)]
eh_R = [
waveguide_2d.normalized_fields_e(e_xy, wavenumber=wavenumber, dxes=dxes_2d, omega=omega, epsilon=eps2)
for e_xy, wavenumber in zip(eR_xys, wavenumbers_R)]
ss = waveguide_2d.get_s(eh_L, wavenumbers_L, eh_R, wavenumbers_R, dxes=dxes_2d)
ss11 = waveguide_2d.get_s(eh_L, wavenumbers_L, eh_L, wavenumbers_L, dxes=dxes_2d)
ss22 = waveguide_2d.get_s(eh_R, wavenumbers_R, eh_R, wavenumbers_R, dxes=dxes_2d)

105
examples/eme_bend.py Normal file
View File

@ -0,0 +1,105 @@
import numpy
from numpy import pi
import gridlock
from gridlock import XYZExtent
from meanas.fdfd import waveguide_2d, waveguide_cyl
from meanas.fdmath import vec, unvec
from matplotlib import pyplot, colors
from scipy import sparse
import skrf
from skrf import Network
wl = 1310
dx = 10
radius = 25e3
width = 400
thf = 161
thp = 77
eps_si = 3.51 ** 2
eps_ox = 1.453 ** 2
x0 = (width / 2) % dx
omega = 2 * pi / wl
grid = gridlock.Grid([
numpy.arange(-3000, 3000 + dx, dx),
numpy.arange(-1500, 1500 + dx, dx),
numpy.arange(-5 * dx, 5 * dx + dx, dx)],
periodic=True,
)
epsilon = grid.allocate(eps_ox)
grid.draw_cuboid(epsilon, extent=XYZExtent(xctr=x0, lx=width + 5e3, ymin=0, ymax=thf, zmin=-1e6, zmax=0), foreground=eps_si)
grid.draw_cuboid(epsilon, extent=XYZExtent(xmax=-width / 2, lx=1.5e3, ymin=thp, ymax=1e6, zmin=-1e6, zctr=0), foreground=eps_ox)
grid.draw_cuboid(epsilon, extent=XYZExtent(xmin= width / 2, lx=1.5e3, ymin=thp, ymax=1e6, zmin=-1e6, zctr=0), foreground=eps_ox)
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
dxes_2d = [[d[0], d[1]] for d in dxes]
mode_numbers = numpy.arange(20)
args = dict(dxes=dxes_2d, omega=omega, mode_numbers=mode_numbers)
eps = epsilon[:, :, :, 2].ravel()
rmin = radius + grid.xyz[0].min()
eL_xys, wavenumbers_L = waveguide_2d.solve_modes(epsilon=eps, **args)
eR_xys, ang_wavenumbers_R = waveguide_cyl.solve_modes(epsilon=eps, **args, rmin=rmin)
linear_wavenumbers_R = waveguide_cyl.linear_wavenumbers(e_xys=eR_xys, angular_wavenumbers=ang_wavenumbers_R, rmin=rmin, epsilon=eps, dxes=dxes_2d)
eh_L = [
waveguide_2d.normalized_fields_e(e_xy, wavenumber=wavenumber, dxes=dxes_2d, omega=omega, epsilon=eps)
for e_xy, wavenumber in zip(eL_xys, wavenumbers_L)]
eh_R = [
waveguide_cyl.normalized_fields_e(e_xy, angular_wavenumber=ang_wavenumber, dxes=dxes_2d, omega=omega, epsilon=eps, rmin=rmin)
for e_xy, ang_wavenumber in zip(eR_xys, ang_wavenumbers_R)]
ss = waveguide_2d.get_s(eh_L, wavenumbers_L, eh_R, linear_wavenumbers_R, dxes=dxes_2d)
ss11 = waveguide_2d.get_s(eh_L, wavenumbers_L, eh_L, wavenumbers_L, dxes=dxes_2d)
ss22 = waveguide_2d.get_s(eh_R, linear_wavenumbers_R, eh_R, linear_wavenumbers_R, dxes=dxes_2d)
fig, axes = pyplot.subplots(2, 2)
mb0 = axes[0, 0].pcolormesh(numpy.abs(ss[::-1])**2, cmap='hot', vmin=0)
fig.colorbar(mb0)
axes[1, 0].set_title('S Abs^2')
mb2 = axes[1, 0].pcolormesh(ss[::-1].real, cmap='bwr', norm=colors.CenteredNorm())
fig.colorbar(mb2)
axes[1, 0].set_title('S Real')
mb3 = axes[1, 1].pcolormesh(ss[::-1].imag, cmap='bwr', norm=colors.CenteredNorm())
fig.colorbar(mb3)
axes[1, 1].set_title('S Imag')
pyplot.show(block=False)
e1, h1 = eh_L[2]
e2, h2 = eh_R[2]
figE, axesE = pyplot.subplots(3, 2)
figH, axesH = pyplot.subplots(3, 2)
esqmax = max(numpy.abs(e1).max(), numpy.abs(e2).max()) ** 2
hsqmax = max(numpy.abs(h1).max(), numpy.abs(h2).max()) ** 2
for mm, (ee, hh) in enumerate(zip((e1, e2), (h1, h2))):
E = unvec(ee, grid.shape[:2])
H = unvec(hh, grid.shape[:2])
for aa in range(3):
axesE[aa, mm].pcolormesh((numpy.abs(E[aa]) ** 2).T, cmap='bwr', norm=colors.CenteredNorm(halfrange=esqmax))
axesH[aa, mm].pcolormesh((numpy.abs(H[aa]) ** 2).T, cmap='bwr', norm=colors.CenteredNorm(halfrange=hsqmax))
pyplot.show(block=False)
net_wb = Network(f=[1 / wl], s = ss)
net_bw = net_wb.copy()
net_bw.renumber(numpy.arange(40), numpy.roll(numpy.arange(40), 20))
wg_phase = sparse.diags_array(numpy.exp(-1j * wavenumbers_L * 100e3))
bend_phase = sparse.diags_array(numpy.exp(-1j * ang_wavenumbers_R * pi / 2))
net_propwg = Network(f=[1 / wl], s = sparse.block_array(([None, wg_phase], [wg_phase, None])).toarray()[None, ...])
net_propbend = Network(f=[1 / wl], s = sparse.block_array(([None, bend_phase], [bend_phase, None])).toarray()[None, ...])
cir = skrf.network.cascade_list([net_propwg, net_wb, net_propbend, net_bw, net_propwg])

View File

@ -6,13 +6,20 @@ See main() for simulation setup.
import sys
import time
import copy
import numpy
import h5py
from numpy.linalg import norm
from meanas import fdtd
from meanas.fdtd import cpml_params, updates_with_cpml
from masque import Pattern, shapes
from meanas.fdtd.misc import gaussian_packet
from meanas.fdfd.operators import e_full
from meanas.fdfd.scpml import stretch_with_scpml
from meanas.fdmath import vec
from masque import Pattern, Circle, Polygon
import gridlock
import pcgen
@ -41,50 +48,51 @@ def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern:
`masque.Pattern` object containing the L3 design
"""
default_args = {'hole_dose': 1,
'trench_dose': 1,
'hole_layer': 0,
'trench_layer': 1,
'shifts_a': (0.15, 0, 0.075),
'shifts_r': (1.0, 1.0, 1.0),
'xy_size': (10, 10),
'perturbed_radius': 1.1,
'trench_width': 1.2e3,
}
default_args = {
'hole_layer': 0,
'trench_layer': 1,
'shifts_a': (0.15, 0, 0.075),
'shifts_r': (1.0, 1.0, 1.0),
'xy_size': (10, 10),
'perturbed_radius': 1.1,
'trench_width': 1.2e3,
}
kwargs = {**default_args, **kwargs}
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=kwargs['xy_size'],
perturbed_radius=kwargs['perturbed_radius'],
shifts_a=kwargs['shifts_a'],
shifts_r=kwargs['shifts_r'])
xyr = pcgen.l3_shift_perturbed_defect(
mirror_dims=kwargs['xy_size'],
perturbed_radius=kwargs['perturbed_radius'],
shifts_a=kwargs['shifts_a'],
shifts_r=kwargs['shifts_r'],
)
xyr *= a
xyr[:, 2] *= radius
pat = Pattern()
pat.name = f'L3p-a{a:g}r{radius:g}rp{kwargs["perturbed_radius"]:g}'
pat.shapes += [shapes.Circle(radius=r, offset=(x, y),
dose=kwargs['hole_dose'],
layer=kwargs['hole_layer'])
for x, y, r in xyr]
#pat.name = f'L3p-a{a:g}r{radius:g}rp{kwargs["perturbed_radius"]:g}'
pat.shapes[(kwargs['hole_layer'], 0)] += [
Circle(radius=r, offset=(x, y))
for x, y, r in xyr]
maxes = numpy.max(numpy.fabs(xyr), axis=0)
pat.shapes += [shapes.Polygon.rectangle(
lx=(2 * maxes[0]), ly=kwargs['trench_width'],
offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2)),
dose=kwargs['trench_dose'], layer=kwargs['trench_layer'])
for s in (-1, 1)]
pat.shapes[(kwargs['trench_layer'], 0)] += [
Polygon.rectangle(
lx=(2 * maxes[0]), ly=kwargs['trench_width'],
offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2))
)
for s in (-1, 1)]
return pat
def main():
dtype = numpy.float32
max_t = 8000 # number of timesteps
max_t = 3600 # number of timesteps
dx = 40 # discretization (nm/cell)
pml_thickness = 8 # (number of cells)
wl = 1550 # Excitation wavelength and fwhm
dwl = 200
dwl = 100
# Device design parameters
xy_size = numpy.array([10, 10])
@ -107,69 +115,89 @@ def main():
# #### Create the grid, mask, and draw the device ####
grid = gridlock.Grid(edge_coords)
epsilon = grid.allocate(n_air**2, dtype=dtype)
grid.draw_slab(epsilon,
surface_normal=2,
center=[0, 0, 0],
thickness=th,
eps=n_slab**2)
epsilon = grid.allocate(n_air ** 2, dtype=dtype)
grid.draw_slab(
epsilon,
slab = dict(axis='z', center=0, span=th),
foreground = n_slab ** 2,
)
mask = perturbed_l3(a, r)
grid.draw_polygons(
epsilon,
slab = dict(axis='z', center=0, span=2 * th),
foreground = n_air ** 2,
offset2d = (0, 0),
polygons = mask.as_polygons(library=None),
)
grid.draw_polygons(epsilon,
surface_normal=2,
center=[0, 0, 0],
thickness=2 * th,
eps=n_air**2,
polygons=mask.as_polygons())
print(f'{grid.shape=}')
print(grid.shape)
dt = .99/numpy.sqrt(3)
e = [numpy.zeros_like(epsilon[0], dtype=dtype) for _ in range(3)]
h = [numpy.zeros_like(epsilon[0], dtype=dtype) for _ in range(3)]
dt = dx * 0.99 / numpy.sqrt(3)
ee = numpy.zeros_like(epsilon, dtype=dtype)
hh = numpy.zeros_like(epsilon, dtype=dtype)
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
# PMLs in every direction
pml_params = [[cpml_params(axis=dd, polarity=pp, dt=dt,
thickness=pml_thickness, epsilon_eff=1.0**2)
for pp in (-1, +1)]
for dd in range(3)]
update_E, update_H = updates_with_cpml(cpml_params=pml_params, dt=dt,
dxes=dxes, epsilon=epsilon)
pml_params = [
[cpml_params(axis=dd, polarity=pp, dt=dt, thickness=pml_thickness, epsilon_eff=n_air ** 2)
for pp in (-1, +1)]
for dd in range(3)]
update_E, update_H = updates_with_cpml(cpml_params=pml_params, dt=dt, dxes=dxes, epsilon=epsilon)
# sample_interval = numpy.floor(1 / (2 * 1 / wl * dt)).astype(int)
# print(f'Save time interval would be {sample_interval} * dt = {sample_interval * dt:3g}')
# Source parameters and function
w = 2 * numpy.pi * dx / wl
fwhm = dwl * w * w / (2 * numpy.pi * dx)
alpha = (fwhm ** 2) / 8 * numpy.log(2)
delay = 7/numpy.sqrt(2 * alpha)
source_phasor, _delay = gaussian_packet(wl=wl, dwl=100, dt=dt, turn_on=1e-5)
aa, cc, ss = source_phasor(numpy.arange(max_t))
srca_real = aa * cc
src_maxt = numpy.argwhere(numpy.diff(aa < 1e-5))[-1]
assert aa[src_maxt - 1] >= 1e-5
phasor_norm = dt / (aa * cc * cc).sum()
def field_source(i):
t0 = i * dt - delay
return numpy.sin(w * t0) * numpy.exp(-alpha * t0**2)
Jph = numpy.zeros_like(epsilon, dtype=complex)
Jph[1, *(grid.shape // 2)] = epsilon[1, *(grid.shape // 2)]
Eph = numpy.zeros_like(Jph)
# #### Run a bunch of iterations ####
output_file = h5py.File('simulation_output.h5', 'w')
start = time.perf_counter()
for t in range(max_t):
update_E(e, h, epsilon)
for tt in range(max_t):
update_E(ee, hh, epsilon)
e[1][tuple(grid.shape//2)] += field_source(t)
update_H(e, h)
if tt < src_maxt:
ee[1, *(grid.shape // 2)] -= srca_real[tt]
update_H(ee, hh)
avg_rate = (t + 1)/(time.perf_counter() - start))
print(f'iteration {t}: average {avg_rate} iterations per sec')
avg_rate = (tt + 1) / (time.perf_counter() - start)
sys.stdout.flush()
if t % 20 == 0:
r = sum([(f * f * e).sum() for f, e in zip(e, epsilon)])
print('E sum', r)
if tt % 200 == 0:
print(f'iteration {tt}: average {avg_rate} iterations per sec')
E_energy_sum = (ee * ee * epsilon).sum()
print(f'{E_energy_sum=}')
# Save field slices
if (t % 20 == 0 and (max_t - t <= 1000 or t <= 2000)) or t == max_t-1:
print('saving E-field')
for j, f in enumerate(e):
output_file['/E{}_t{}'.format('xyz'[j], t)] = f[:, :, round(f.shape[2]/2)]
if (tt % 20 == 0 and (max_t - tt <= 1000 or tt <= 2000)) or tt == max_t - 1:
print(f'saving E-field at iteration {tt}')
output_file[f'/E_t{tt}'] = ee[:, :, :, ee.shape[3] // 2]
Eph += (cc[tt] - 1j * ss[tt]) * phasor_norm * ee
omega = 2 * pi / wl
Eph *= numpy.exp(-1j * dt / 2 * omega)
b = -1j * omega * Jph
dxes_fdfd = copy.deepcopy(dxes)
for pp in (-1, +1):
for dd in range(3):
stretch_with_scpml(dxes_fdfd, axis=dd, polarity=pp, omega=omega, epsilon_effective=n_air ** 2, thickness=pml_thickness)
A = e_full(omega=omega, dxes=dxes, epsilon=epsilon)
residual = norm(A @ vec(ee) - vec(b)) / norm(vec(b))
print(f'FDFD residual is {residual}')
if __name__ == '__main__':
main()

284
examples/nom.py Normal file
View File

@ -0,0 +1,284 @@
from simphony.elements import Model
from simphony.netlist import Subcircuit
from simphony.simulation import SweepSimulation
from matplotlib import pyplot as plt
class PeriodicLayer(Model):
def __init__(self, left_modes, right_modes, s_params):
self.left_modes = left_modes
self.right_modes = right_modes
self.left_ports = len(self.left_modes)
self.right_ports = len(self.right_modes)
self.normalize_fields()
self.s_params = s_params
def normalize_fields(self):
for mode in range(len(self.left_modes)):
self.left_modes[mode].normalize()
for mode in range(len(self.right_modes)):
self.right_modes[mode].normalize()
class PeriodicEME:
def __init__(self, layers=[], num_periods=1):
self.layers = layers
self.num_periods = num_periods
self.wavelength = wavelength
def propagate(self):
wl = self.wavelength
if not len(self.layers):
raise Exception("Must place layers before propagating")
num_modes = max([l.num_modes for l in self.layers])
iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
eme = EME(layers=self.layers)
left, right = eme.propagate()
self.single_period = eme.s_matrix
period_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
current_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
interface = iface(right, left)
for _ in range(self.num_periods - 1):
current_layer.s_params = cascade(current_layer, interface, wl)
current_layer.s_params = cascade(current_layer, period_layer, wl)
self.s_params = current_layer.s_params
class EME:
def __init__(self, layers=[]):
self.layers = layers
self.wavelength = None
def propagate(self):
layers = self.layers
wl = layers[0].wavelength if self.wavelength is None else self.wavelength
if not len(layers):
raise Exception("Must place layers before propagating")
num_modes = max([l.num_modes for l in layers])
iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
first_layer = layers[0]
current = Current(wl, first_layer)
interface = iface(first_layer, layers[1])
current.s = cascade(current, interface, wl)
current.right_pins = interface.right_pins
for index in range(1, len(layers) - 1):
layer1 = layers[index]
layer2 = layers[index + 1]
interface = iface(layer1, layer2)
current.s = cascade(current, layer1, wl)
current.right_pins = layer1.right_pins
current.s = cascade(current, interface, wl)
current.right_pins = interface.right_pins
last_layer = layers[-1]
current.s = cascade(current, last_layer, wl)
current.right_pins = last_layer.right_pins
self.s_matrix = current.s
return first_layer, last_layer
def stack(sa, sb):
qab = numpy.eye() - sa.r11 @ sb.r11
qba = numpy.eye() - sa.r11 @ sb.r11
#s.t12 = sa.t12 @ numpy.pinv(qab) @ sb.t12
#s.r21 = sa.t12 @ numpy.pinv(qab) @ sb.r22 @ sa.t21 + sa.r22
#s.r12 = sb.t21 @ numpy.pinv(qba) @ sa.r11 @ sb.t12 + sb.r11
#s.t21 = sb.t21 @ numpy.pinv(qba) @ sa.t21
s.t12 = sa.t12 @ numpy.linalg.solve(qab, sb.t12)
s.r21 = sa.t12 @ numpy.linalg.solve(qab, sb.r22 @ sa.t21) + sa.r22
s.r12 = sb.t21 @ numpy.linalg.solve(qba, sa.r11 @ sb.t12) + sb.r11
s.t21 = sb.t21 @ numpy.linalg.solve(qba, sa.t21)
return s
def cascade(first, second, wavelength):
circuit = Subcircuit("Device")
circuit.add([(first, "first"), (second, "second")])
for port in range(first.right_ports):
circuit.connect("first", "right" + str(port), "second", "left" + str(port))
simulation = SweepSimulation(circuit, wavelength, wavelength, num=1)
result = simulation.simulate()
return result.s
class InterfaceSingleMode(Model):
def __init__(self, layer1, layer2, num_modes=1):
self.num_modes = num_modes
self.num_ports = 2 * num_modes
self.s = self.solve(layer1, layer2, num_modes)
def solve(self, layer1, layer2, num_modes):
nm = num_modes
s = numpy.zeros((2 * nm, 2 * nm), dtype=complex)
for ii, left_mode in enumerate(layer1.modes):
for oo, right_mode in enumerate(layer2.modes):
r, t = get_rt(left_mode, right_mode)
s[ oo, ii] = r
s[nm + oo, ii] = t
for ii, right_mode in enumerate(layer2.modes):
for oo, left_mode in enumerate(layer1.modes):
r, t = get_rt(right_mode, left_mode)
s[ oo, nm + ii] = t
s[nm + oo, nm + ii] = r
return s
class InterfaceMultiMode(Model):
def __init__(self, layer1, layer2):
self.s = self.solve(layer1, layer2)
def solve(self, layer1, layer2):
n1p = layer1.num_modes
n2p = layer2.num_modes
num_ports = n1p + n2p
s = numpy.zeros((num_ports, num_ports), dtype=complex)
for l1p in range(n1p):
ts = get_t(l1p, layer1, layer2)
rs = get_r(l1p, layer1, layer2, ts)
s[n1p:, l1p] = ts
s[:n1p, l1p] = rs
for l2p in range(n2p):
ts = get_t(l2p, layer2, layer1)
rs = get_r(l2p, layer2, layer1, ts)
s[:n1p, n1p + l2p] = ts
s[n1p:, n1p + l2p] = rs
return s
def get_t(p, left, right):
A = numpy.empty(left.shape[0], right.shape[0], dtype=complex)
for ll in range(left.shape[0]):
for rr in range(right.shape[0]):
# TODO optimize loop?
A[i, k] = inner_product(right[rr], left[ll]) + inner_product(left[ll], right[rr])
b = numpy.zeros(left.shape[0i])
b[p] = 2 * inner_product(left[p], left[p])
x = numpy.linalg.solve(A, b)
# NOTE: `A` does not depend on `p`, so it might make sense to partially precompute
# the solution (pinv(A), or LU decomposition?)
# Actually solve() can take multiple vectors, so just pass it something with the full diagonal?
xx = numpy.matmul(numpy.linalg.pinv(A), b) #TODO verify
assert(numpy.allclose(xx, x))
return x
def get_r(p, left, right, t):
r = numpy.empty(left.num_modes, dtype=complex)
for ii in range(left.num_modes):
r[ii] = sum((inner_product(right[kk], left[ii]) - inner_product(left[ii], right[kk])) * t[kk]
for kk in range(right.num_modes)
) / (2 * inner_product(left[ii], left[ii]))
return r
def get_rt(left, right):
s = 0.5 * (inner_product(left, right) + inner_product(right, left))
d = 0.5 * (inner_product(left, right) - inner_product(right, left))
t = (s * s - d * d) / s
r = 1 - t / (s + d)
return -r, t
def inner_product(left_E, right_H, dxes):
cross_z = left_E[0] * right_H.conj()[1] - left_E[1] * right_H[0].conj()
# cross_z = numpy.cross(left_E, numpy.conj(right_H), axisa=0, axisb=0, axisc=0)[2]
return numpy.trapz(numpy.trapz(cross_z, dxes[0][0]), dxes[0][1]) / 2 # TODO might need cumsum on dxes
def propagation_matrix(self, modes, wavelength, distance):
eigenv = numpy.array([mode.neff for mode in modes]) * 2 * numpy.pi / wavelength
prop_diag = numpy.diag(numpy.exp(distance * 1j * numpy.hstack((eigenv, eigenv))))
prop_matrix = numpy.roll(prop_diag, len(eigenv), axis=0)
return prop_matrix
def connect_s(A: numpy.ndarray, k: int, B: numpy.ndarray, l: int):
"""
TODO
connect two n-port networks' s-matrices together.
specifically, connect port `k` on network `A` to port `l` on network
`B`. The resultant network has nports = (A.rank + B.rank-2).
Args:
A: S-parameter matrix of `A`, shape is fxnxn
k: port index on `A` (port indices start from 0)
B: S-parameter matrix of `B`, shape is fxnxn
l: port index on `B`
Returns:
C: new S-parameter matrix
"""
if k > A.shape[-1] - 1 or l > B.shape[-1] - 1:
raise (ValueError("port indices are out of range"))
C = scipy.sparse.block_diag((A, B), dtype=complex)
return innerconnect_s(C, k, A.shape[0] + l)
def innerconnect_s(A, k, l):
"""
TODO
n x n x freq
connect two ports of a single n-port network's s-matrix.
Specifically, connect port `k` to port `l` on `A`. This results in
a (n-2)-port network.
Args:
A: S-parameter matrix of `A`, shape is fxnxn
k: port index on `A` (port indices start from 0)
l: port index on `A`
Returns:
C: new S-parameter matrix
Notes:
Relevant papers:
- Compton, R.C.; , "Perspectives in microwave circuit analysis," Circuits and Systems, 1989., Proceedings of the 32nd Midwest Symposium on , vol., no., pp.716-718 vol.2, 14-16 Aug 1989. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=101955&isnumber=3167
- Filipsson, Gunnar; , "A New General Computer Algorithm for S-Matrix Calculation of Interconnected Multiports," Microwave Conference, 1981. 11th European , vol., no., pp.700-704, 7-11 Sept. 1981. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4131699&isnumber=4131585
"""
if k > A.shape[-1] - 1 or l > A.shape[-1] - 1:
raise (ValueError("port indices are out of range"))
l = [l]
k = [k]
mkl = 1 - A[k, l]
mlk = 1 - A[l, k]
C = A + (A[k, :] * A[:, l] * mlk
+ A[l, :] * A[:, k] * mkk
+ A[k, :] * A[l, l] * A[:, k]
+ A[l, :] * A[k, k] * A[:, l]
) / (
mlk * mkl - A[k, k] * A[l, l]
)
# remove connected ports
C = npy.delete(C, (k, l), 1)
C = npy.delete(C, (k, l), 2)
return C

View File

@ -433,8 +433,11 @@ def _normalized_fields(
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
print('\nAAA\n', inner_product(e, h, dxes, prop_phase=prop_phase))
e *= norm_factor
h *= norm_factor
print(f'{sign=} {norm_amplitude=} {norm_angle=} {prop_phase=}')
print(inner_product(e, h, dxes, prop_phase=prop_phase))
return e, h
@ -954,5 +957,3 @@ def inner_product( # TODO documentation
Sz_b = E1[1] * H2[0] * dxes_real[0][0][:, None] * dxes_real[1][1][None, :]
Sz = 0.5 * (Sz_a.sum() - Sz_b.sum())
return Sz

130
meanas/fdtd/misc.py Normal file
View File

@ -0,0 +1,130 @@
from typing import Callable
from collections.abc import Sequence
import logging
import numpy
from numpy.typing import NDArray, ArrayLike
from numpy import pi
logger = logging.getLogger(__name__)
pulse_fn_t = Callable[[int | NDArray], tuple[float, float, float]]
def gaussian_packet(
wl: float,
dwl: float,
dt: float,
turn_on: float = 1e-10,
one_sided: bool = False,
) -> tuple[pulse_fn_t, float]:
"""
Gaussian pulse (or gaussian ramp) for FDTD excitation
exp(-a*t*t) ==> exp(-omega * omega / (4 * a)) [fourier, ignoring leading const.]
FWHM_time is 2 * sqrt(2 * log(2)) * sqrt(2 / a)
FWHM_omega is 2 * sqrt(2 * log(2)) * sqrt(2 * a) = 4 * sqrt(log(2) * a)
"""
# dt * dw = 4 * ln(2)
omega = 2 * pi / wl
freq = 1 / wl
fwhm_omega = dwl * omega * omega / (2 * pi) # dwl -> d_omega (approx)
alpha = (fwhm_omega * fwhm_omega) * numpy.log(2) / 8
delay = numpy.sqrt(-numpy.log(turn_on) / alpha)
delay = numpy.ceil(delay * freq) / freq # force delay to integer number of periods to maintain phase
logger.info(f'src_time {2 * delay / dt}')
def source_phasor(ii: int | NDArray) -> tuple[float, float, float]:
t0 = ii * dt - delay
envelope = numpy.sqrt(numpy.sqrt(2 * alpha / pi)) * numpy.exp(-alpha * t0 * t0)
if one_sided and t0 > 0:
envelope = 1
cc = numpy.cos(omega * t0)
ss = numpy.sin(omega * t0)
return envelope, cc, ss
# nrm = numpy.exp(-omega * omega / alpha) / 2
return source_phasor, delay
def ricker_pulse(
wl: float,
dt: float,
turn_on: float = 1e-10,
) -> tuple[pulse_fn_t, float]:
"""
Ricker wavelet (second derivative of a gaussian pulse)
t0 = ii * dt - delay
R = w_peak * t0 / 2
f(t) = (1 - 2 * (pi * f_peak * t0) ** 2) * exp(-(pi * f_peak * t0)**2
= (1 - (w_peak * t0)**2 / 2 exp(-(w_peak * t0 / 2) **2)
= (1 - 2 * R * R) * exp(-R * R)
# NOTE: don't use cosine/sine for J, just for phasor readout
"""
omega = 2 * pi / wl
freq = 1 / wl
r0 = omega / 2
from scipy.optimize import root_scalar
delay_results = root_scalar(lambda xx: (1 - omega * omega * tt * tt / 2) * numpy.exp(-omega * omega / 4 * tt * tt) - turn_on, x0=0, x1=-2 / omega)
delay = delay_results.root
delay = numpy.ceil(delay * freq) / freq # force delay to integer number of periods to maintain phase
def source_phasor(ii: int | NDArray) -> tuple[float, float, float]:
t0 = ii * dt - delay
rr = omega * t0 / 2
ff = (1 - 2 * rr * rr) * numpy.exp(-rr * rr)
cc = numpy.cos(omega * t0)
ss = numpy.sin(omega * t0)
return ff, cc, ss
return source_phasor, delay
def gaussian_beam(
xyz: list[NDArray],
center: ArrayLike,
w0: float,
tilt: float,
wl: float,
) -> NDArray[numpy.complex128]:
grids = numpy.asarray(numpy.meshgrid(*xyz, indexing='ij'))
grids -= numpy.asarray(center)[:, None, None, None]
rot = numpy.array([
[ numpy.cos(tilt), 0, numpy.sin(tilt)],
[ 0, 1, 0],
[-numpy.sin(tilt), 0, numpy.cos(tilt)],
])
xx, yy, zz = numpy.einsum('ij,jxyz->ixyz', rot, grids)
r2 = xx * xx + yy * yy
z2 = zz * zz
zr = pi * w0 * w0 / wl
zr2 = zr * zr
wz2 = w0 * w0 * (1 + z2 / zr2)
wz = numpy.sqrt(wz2) # == fwhm(z) / sqrt(2 * ln(2))
kk = 2 * pi / wl
Rz = zz * (1 + zr2 / z2)
gouy = numpy.arctan(zz / zr)
gaussian = w0 / wz * numpy.exp(-r2 / wz2) * numpy.exp(1j * (kk * zz + kk * r2 / 2 / Rz - gouy))
row = gaussian[:, :, gaussian.shape[2] // 2]
norm = numpy.sqrt((row * row.conj()).sum())
return gaussian / norm

230
pcgen.py Normal file
View File

@ -0,0 +1,230 @@
"""
Routines for creating normalized 2D lattices and common photonic crystal
cavity designs.
"""
from typing import Sequence
import numpy
from numpy.typing import NDArray
def triangular_lattice(
dims: Sequence[int],
asymmetrical: bool = False
) -> NDArray[numpy.float64]:
"""
Return an ndarray of `[[x0, y0], [x1, y1], ...]` denoting lattice sites for
a triangular lattice in 2D. The lattice will be centered around `(0, 0)`,
unless `asymmetrical=True` in which case there will be extra holes in the +x
direction.
Args:
dims: Number of lattice sites in the [x, y] directions.
asymmetrical: If `True`, each row in x will contain the same number of
lattice sites. If `False`, the structure is symmetrical
around `(0, 0)`.
Returns:
`[[x0, y0], [x1, 1], ...]` denoting lattice sites.
"""
dims = numpy.asarray(dims, dtype=int)
if asymmetrical:
k = 0
else:
k = 1
positions = []
ymax = (dims[1] - 1)/2
for j in numpy.linspace(-ymax, ymax, dims[0]):
j_odd = numpy.floor(j).astype(int) % 2
x_offset = j_odd * 0.5
y_offset = j * numpy.sqrt(3)/2
num_x = dims[0] - k * j_odd
xmax = (dims[0] - 1)/2
xs = numpy.linspace(-xmax, xmax - k * j_odd, num_x) + x_offset
ys = numpy.full_like(xs, y_offset)
positions += [numpy.vstack((xs, ys)).T]
xy = numpy.vstack(tuple(positions))
return xy[xy[:, 0].argsort(), ]
def square_lattice(dims: Sequence[int]) -> NDArray[numpy.float64]:
"""
Return an ndarray of `[[x0, y0], [x1, y1], ...]` denoting lattice sites for
a square lattice in 2D. The lattice will be centered around `(0, 0)`.
Args:
dims: Number of lattice sites in the [x, y] directions.
Returns:
`[[x0, y0], [x1, 1], ...]` denoting lattice sites.
"""
xs, ys = numpy.meshgrid(range(dims[0]), range(dims[1]), 'xy')
xs -= dims[0]/2
ys -= dims[1]/2
xy = numpy.vstack((xs.flatten(), ys.flatten())).T
return xy[xy[:, 0].argsort(), ]
# ### Photonic crystal functions ###
def nanobeam_holes(
a_defect: float,
num_defect_holes: int,
num_mirror_holes: int
) -> NDArray[numpy.float64]:
"""
Returns a list of `[[x0, r0], [x1, r1], ...]` of nanobeam hole positions and radii.
Creates a region in which the lattice constant and radius are progressively
(linearly) altered over `num_defect_holes` holes until they reach the value
specified by `a_defect`, then symmetrically returned to a lattice constant and
radius of 1, which is repeated `num_mirror_holes` times on each side.
Args:
a_defect: Minimum lattice constant for the defect, as a fraction of the
mirror lattice constant (ie., for no defect, `a_defect = 1`).
num_defect_holes: How many holes form the defect (per-side)
num_mirror_holes: How many holes form the mirror (per-side)
Returns:
ndarray `[[x0, r0], [x1, r1], ...]` of nanobeam hole positions and radii.
"""
a_values = numpy.linspace(a_defect, 1, num_defect_holes, endpoint=False)
xs = a_values.cumsum() - (a_values[0] / 2) # Later mirroring makes center distance 2x as long
mirror_xs = numpy.arange(1, num_mirror_holes + 1) + xs[-1]
mirror_rs = numpy.ones_like(mirror_xs)
return numpy.vstack((numpy.hstack((-mirror_xs[::-1], -xs[::-1], xs, mirror_xs)),
numpy.hstack((mirror_rs[::-1], a_values[::-1], a_values, mirror_rs)))).T
def ln_defect(
mirror_dims: Sequence[int],
defect_length: int,
) -> NDArray[numpy.float64]:
"""
N-hole defect in a triangular lattice.
Args:
mirror_dims: `[x, y]` mirror lengths (number of holes). Total number of holes
is `2 * n + 1` in each direction.
defect_length: Length of defect. Should be an odd number.
Returns:
`[[x0, y0], [x1, y1], ...]` for all the holes
"""
if defect_length % 2 != 1:
raise Exception('defect_length must be odd!')
p = triangular_lattice([2 * d + 1 for d in mirror_dims])
half_length = numpy.floor(defect_length / 2)
hole_nums = numpy.arange(-half_length, half_length + 1)
holes_to_keep = numpy.in1d(p[:, 0], hole_nums, invert=True)
return p[numpy.logical_or(holes_to_keep, p[:, 1] != 0), ]
def ln_shift_defect(
mirror_dims: Sequence[int],
defect_length: int,
shifts_a: Sequence[float] = (0.15, 0, 0.075),
shifts_r: Sequence[float] = (1, 1, 1)
) -> NDArray[numpy.float64]:
"""
N-hole defect with shifted holes (intended to give the mode a gaussian profile
in real- and k-space so as to improve both Q and confinement). Holes along the
defect line are shifted and altered according to the `shifts_*` parameters.
Args:
mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
is `2 * n + 1` in each direction.
defect_length: Length of defect. Should be an odd number.
shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
shifts_r: Factor to multiply the radius by. Should match length of `shifts_a`.
Returns:
`[[x0, y0, r0], [x1, y1, r1], ...]` for all the holes
"""
xy = ln_defect(mirror_dims, defect_length)
# Add column for radius
xyr = numpy.hstack((xy, numpy.ones((xy.shape[0], 1))))
# Shift holes
assert len(shifts_a) == len(shifts_r)
x_removed = numpy.floor(defect_length / 2)
for ind in range(len(shifts_a)):
for sign in (-1, 1):
x_val = sign * (x_removed + ind + 1)
which = numpy.logical_and(xyr[:, 0] == x_val, xyr[:, 1] == 0)
xyr[which, ] = (x_val + numpy.sign(x_val) * shifts_a[ind], 0, shifts_r[ind])
return xyr
def r6_defect(
mirror_dims: Sequence[int],
) -> NDArray[numpy.float64]:
"""
R6 defect in a triangular lattice.
Args:
mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
is `2 * n + 1` in each direction.
Returns:
`[[x0, y0], [x1, y1], ...]` specifying hole centers.
"""
xy = triangular_lattice([2 * d + 1 for d in mirror_dims])
rem_holes_plus = numpy.array([[1, 0],
[0.5, +numpy.sqrt(3)/2],
[0.5, -numpy.sqrt(3)/2]])
rem_holes = numpy.vstack((rem_holes_plus, -rem_holes_plus))
for rem_xy in rem_holes:
xy = xy[(xy != rem_xy).any(axis=1), ]
return xy
def l3_shift_perturbed_defect(
mirror_dims: Sequence[int],
perturbed_radius: float = 1.1,
shifts_a: Sequence[float] = (),
shifts_r: Sequence[float] = ()
) -> NDArray[numpy.float64]:
"""
3-hole defect with perturbed hole sizes intended to form an upwards-directed
beam. Can also include shifted holes along the defect line, intended
to give the mode a more gaussian profile to improve Q.
Args:
mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
is `2 * n + 1` in each direction.
perturbed_radius: Amount to perturb the radius of the holes used for beam-forming
shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
shifts_r: Factor to multiply the radius by. Should match length of `shifts_a`
Returns:
`[[x0, y0, r0], [x1, y1, r1], ...]` for all the holes
"""
xyr = ln_shift_defect(mirror_dims, 3, shifts_a, shifts_r)
abs_x, abs_y = (numpy.fabs(xyr[:, i]) for i in (0, 1))
# Sorted unique xs and ys
# Ignore row y=0 because it might have shifted holes
xs = numpy.unique(abs_x[abs_x != 0])
ys = numpy.unique(abs_y)
# which holes should be perturbed? (xs[[3, 7]], ys[1]) and (xs[[2, 6]], ys[2])
perturbed_holes = numpy.array([(xs[a], ys[b]) for a, b in ((3, 1), (7, 1), (2, 2), (6, 2))])
for row in xyr:
if (numpy.fabs(row[:2])[None, :] == perturbed_holes).all(axis=1).any():
row[2] = perturbed_radius
return xyr

1664
pdoc__init__.py Normal file

File diff suppressed because it is too large Load Diff

569
pylintrc Normal file
View File

@ -0,0 +1,569 @@
[MASTER]
# A comma-separated list of package or module names from where C extensions may
# be loaded. Extensions are loading into the active Python interpreter and may
# run arbitrary code.
extension-pkg-whitelist=
# Add files or directories to the blacklist. They should be base names, not
# paths.
ignore=CVS,.git
# Add files or directories matching the regex patterns to the blacklist. The
# regex matches against base names, not paths.
ignore-patterns=
# Python code to execute, usually for sys.path manipulation such as
# pygtk.require().
#init-hook=
# Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
# number of processors available to use.
jobs=1
# Control the amount of potential inferred values when inferring a single
# object. This can help the performance when dealing with large functions or
# complex, nested conditions.
limit-inference-results=100
# List of plugins (as comma separated values of python modules names) to load,
# usually to register additional checkers.
load-plugins=
# Pickle collected data for later comparisons.
persistent=yes
# Specify a configuration file.
#rcfile=
# When enabled, pylint would attempt to guess common misconfiguration and emit
# user-friendly hints instead of false-positive error messages.
suggestion-mode=yes
# Allow loading of arbitrary C extensions. Extensions are imported into the
# active Python interpreter and may run arbitrary code.
unsafe-load-any-extension=no
[MESSAGES CONTROL]
# Only show warnings with the listed confidence levels. Leave empty to show
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED.
confidence=
# Disable the message, report, category or checker with the given id(s). You
# can either give multiple identifiers separated by comma (,) or put this
# option multiple times (only on the command line, not in the configuration
# file where it should appear only once). You can also use "--disable=all" to
# disable everything first and then reenable specific checks. For example, if
# you want to run only the similarities checker, you can use "--disable=all
# --enable=similarities". If you want to run only the classes checker, but have
# no Warning level messages displayed, use "--disable=all --enable=classes
# --disable=W".
disable=print-statement,
parameter-unpacking,
unpacking-in-except,
old-raise-syntax,
backtick,
long-suffix,
old-ne-operator,
old-octal-literal,
import-star-module-level,
non-ascii-bytes-literal,
raw-checker-failed,
bad-inline-option,
locally-disabled,
file-ignored,
suppressed-message,
useless-suppression,
deprecated-pragma,
use-symbolic-message-instead,
apply-builtin,
basestring-builtin,
buffer-builtin,
cmp-builtin,
coerce-builtin,
execfile-builtin,
file-builtin,
long-builtin,
raw_input-builtin,
reduce-builtin,
standarderror-builtin,
unicode-builtin,
xrange-builtin,
coerce-method,
delslice-method,
getslice-method,
setslice-method,
no-absolute-import,
old-division,
dict-iter-method,
dict-view-method,
next-method-called,
metaclass-assignment,
indexing-exception,
raising-string,
reload-builtin,
oct-method,
hex-method,
nonzero-method,
cmp-method,
input-builtin,
round-builtin,
intern-builtin,
unichr-builtin,
map-builtin-not-iterating,
zip-builtin-not-iterating,
range-builtin-not-iterating,
filter-builtin-not-iterating,
using-cmp-argument,
eq-without-hash,
div-method,
idiv-method,
rdiv-method,
exception-message-attribute,
invalid-str-codec,
sys-max-int,
bad-python3-import,
deprecated-string-function,
deprecated-str-translate-call,
deprecated-itertools-function,
deprecated-types-field,
next-method-defined,
dict-items-not-iterating,
dict-keys-not-iterating,
dict-values-not-iterating,
deprecated-operator-function,
deprecated-urllib-function,
xreadlines-attribute,
deprecated-sys-function,
exception-escape,
comprehension-escape,
invalid-name,
missing-function-docstring,
trailing-newlines,
too-many-locals,
too-many-arguments,
too-many-statements,
too-many-instance-attributes,
no-else-return,
pointless-string-statement,
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option
# multiple time (only on the command line, not in the configuration file where
# it should appear only once). See also the "--disable" option for examples.
enable=c-extension-no-member
[REPORTS]
# Python expression which should return a note less than 10 (10 is the highest
# note). You have access to the variables errors warning, statement which
# respectively contain the number of errors / warnings messages and the total
# number of statements analyzed. This is used by the global evaluation report
# (RP0004).
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
# Template used to display messages. This is a python new-style format string
# used to format the message information. See doc for all details.
#msg-template=
# Set the output format. Available formats are text, parseable, colorized, json
# and msvs (visual studio). You can also give a reporter class, e.g.
# mypackage.mymodule.MyReporterClass.
output-format=text
# Tells whether to display a full report or only the messages.
reports=no
# Activate the evaluation score.
score=yes
[REFACTORING]
# Maximum number of nested blocks for function / method body
max-nested-blocks=5
# Complete name of functions that never returns. When checking for
# inconsistent-return-statements if a never returning function is called then
# it will be considered as an explicit return statement and no message will be
# printed.
never-returning-functions=sys.exit
[BASIC]
# Naming style matching correct argument names.
argument-naming-style=snake_case
# Regular expression matching correct argument names. Overrides argument-
# naming-style.
#argument-rgx=
# Naming style matching correct attribute names.
attr-naming-style=snake_case
# Regular expression matching correct attribute names. Overrides attr-naming-
# style.
#attr-rgx=
# Bad variable names which should always be refused, separated by a comma.
bad-names=foo,
bar,
baz,
toto,
tutu,
tata,
nom
# Naming style matching correct class attribute names.
class-attribute-naming-style=any
# Regular expression matching correct class attribute names. Overrides class-
# attribute-naming-style.
#class-attribute-rgx=
# Naming style matching correct class names.
class-naming-style=PascalCase
# Regular expression matching correct class names. Overrides class-naming-
# style.
#class-rgx=
# Naming style matching correct constant names.
const-naming-style=UPPER_CASE
# Regular expression matching correct constant names. Overrides const-naming-
# style.
#const-rgx=
# Minimum line length for functions/classes that require docstrings, shorter
# ones are exempt.
docstring-min-length=-1
# Naming style matching correct function names.
function-naming-style=snake_case
# Regular expression matching correct function names. Overrides function-
# naming-style.
#function-rgx=
# Good variable names which should always be accepted, separated by a comma.
good-names=e, h, s, j, x, y, a, b
ex,
Run,
_
# Include a hint for the correct naming format with invalid-name.
include-naming-hint=no
# Naming style matching correct inline iteration names.
inlinevar-naming-style=any
# Regular expression matching correct inline iteration names. Overrides
# inlinevar-naming-style.
#inlinevar-rgx=
# Naming style matching correct method names.
method-naming-style=snake_case
# Regular expression matching correct method names. Overrides method-naming-
# style.
#method-rgx=
# Naming style matching correct module names.
module-naming-style=snake_case
# Regular expression matching correct module names. Overrides module-naming-
# style.
#module-rgx=
# Colon-delimited sets of names that determine each other's naming style when
# the name regexes allow several styles.
name-group=
# Regular expression which should only match function or class names that do
# not require a docstring.
no-docstring-rgx=^_
# List of decorators that produce properties, such as abc.abstractproperty. Add
# to this list to register other decorators that produce valid properties.
# These decorators are taken in consideration only for invalid-name.
property-classes=abc.abstractproperty
# Naming style matching correct variable names.
variable-naming-style=any
# Regular expression matching correct variable names. Overrides variable-
# naming-style.
#variable-rgx=
[FORMAT]
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
expected-line-ending-format=
# Regexp for a line that is allowed to be longer than the limit.
ignore-long-lines=^\s*(# )?<?https?://\S+>?$
# Number of spaces of indent required inside a hanging or continued line.
indent-after-paren=4
# String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
# tab).
indent-string=' '
# Maximum number of characters on a single line.
max-line-length=160
# Maximum number of lines in a module.
max-module-lines=1000
# List of optional constructs for which whitespace checking is disabled. `dict-
# separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
# `trailing-comma` allows a space between comma and closing bracket: (a, ).
# `empty-line` allows space-only lines.
no-space-check=trailing-comma,
dict-separator
# Allow the body of a class to be on the same line as the declaration if body
# contains single statement.
single-line-class-stmt=no
# Allow the body of an if to be on the same line as the test if there is no
# else.
single-line-if-stmt=no
[LOGGING]
# Format style used to check logging format string. `old` means using %
# formatting, while `new` is for `{}` formatting.
logging-format-style=old
# Logging modules to check that the string format arguments are in logging
# function parameter format.
logging-modules=logging
[MISCELLANEOUS]
# List of note tags to take in consideration, separated by a comma.
notes=FIXME,
XXX,
TODO
[SIMILARITIES]
# Ignore comments when computing similarities.
ignore-comments=yes
# Ignore docstrings when computing similarities.
ignore-docstrings=yes
# Ignore imports when computing similarities.
ignore-imports=yes
# Minimum lines number of a similarity.
min-similarity-lines=4
[SPELLING]
# Limits count of emitted suggestions for spelling mistakes.
max-spelling-suggestions=4
# Spelling dictionary name. Available dictionaries: none. To make it working
# install python-enchant package..
spelling-dict=
# List of comma separated words that should not be checked.
spelling-ignore-words=
# A path to a file that contains private dictionary; one word per line.
spelling-private-dict-file=
# Tells whether to store unknown words to indicated private dictionary in
# --spelling-private-dict-file option instead of raising a message.
spelling-store-unknown-words=no
[TYPECHECK]
# List of decorators that produce context managers, such as
# contextlib.contextmanager. Add to this list to register other decorators that
# produce valid context managers.
contextmanager-decorators=contextlib.contextmanager
# List of members which are set dynamically and missed by pylint inference
# system, and so shouldn't trigger E1101 when accessed. Python regular
# expressions are accepted.
generated-members=
# Tells whether missing members accessed in mixin class should be ignored. A
# mixin class is detected if its name ends with "mixin" (case insensitive).
ignore-mixin-members=yes
# Tells whether to warn about missing members when the owner of the attribute
# is inferred to be None.
ignore-none=yes
# This flag controls whether pylint should warn about no-member and similar
# checks whenever an opaque object is returned when inferring. The inference
# can return multiple potential results while evaluating a Python object, but
# some branches might not be evaluated, which results in partial inference. In
# that case, it might be useful to still emit no-member and other checks for
# the rest of the inferred objects.
ignore-on-opaque-inference=yes
# List of class names for which member attributes should not be checked (useful
# for classes with dynamically set attributes). This supports the use of
# qualified names.
ignored-classes=optparse.Values,thread._local,_thread._local
# List of module names for which member attributes should not be checked
# (useful for modules/projects where namespaces are manipulated during runtime
# and thus existing member attributes cannot be deduced by static analysis. It
# supports qualified module names, as well as Unix pattern matching.
ignored-modules=
# Show a hint with possible names when a member name was not found. The aspect
# of finding the hint is based on edit distance.
missing-member-hint=yes
# The minimum edit distance a name should have in order to be considered a
# similar match for a missing member name.
missing-member-hint-distance=1
# The total number of similar names that should be taken in consideration when
# showing a hint for a missing member.
missing-member-max-choices=1
[VARIABLES]
# List of additional names supposed to be defined in builtins. Remember that
# you should avoid defining new builtins when possible.
additional-builtins=
# Tells whether unused global variables should be treated as a violation.
allow-global-unused-variables=yes
# List of strings which can identify a callback function by name. A callback
# name must start or end with one of those strings.
callbacks=cb_,
_cb
# A regular expression matching the name of dummy variables (i.e. expected to
# not be used).
dummy-variables-rgx=_+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_
# Argument names that match this expression will be ignored. Default to name
# with leading underscore.
ignored-argument-names=_.*|^ignored_|^unused_
# Tells whether we should check for unused import in __init__ files.
init-import=no
# List of qualified module names which can have objects that can redefine
# builtins.
redefining-builtins-modules=six.moves,past.builtins,future.builtins,builtins,io
[CLASSES]
# List of method names used to declare (i.e. assign) instance attributes.
defining-attr-methods=__init__,
__new__,
setUp
# List of member names, which should be excluded from the protected access
# warning.
exclude-protected=_asdict,
_fields,
_replace,
_source,
_make
# List of valid names for the first argument in a class method.
valid-classmethod-first-arg=cls
# List of valid names for the first argument in a metaclass class method.
valid-metaclass-classmethod-first-arg=cls
[DESIGN]
# Maximum number of arguments for function / method.
max-args=5
# Maximum number of attributes for a class (see R0902).
max-attributes=7
# Maximum number of boolean expressions in an if statement.
max-bool-expr=5
# Maximum number of branch for function / method body.
max-branches=12
# Maximum number of locals for function / method body.
max-locals=15
# Maximum number of parents for a class (see R0901).
max-parents=7
# Maximum number of public methods for a class (see R0904).
max-public-methods=20
# Maximum number of return / yield for function / method body.
max-returns=6
# Maximum number of statements in function / method body.
max-statements=50
# Minimum number of public methods for a class (see R0903).
min-public-methods=2
[IMPORTS]
# Allow wildcard imports from modules that define __all__.
allow-wildcard-with-all=no
# Analyse import fallback blocks. This can be used to support both Python 2 and
# 3 compatible code, which means that the block might have code that exists
# only in one or another interpreter, leading to false positives when analysed.
analyse-fallback-blocks=no
# Deprecated modules which should not be used, separated by a comma.
deprecated-modules=optparse,tkinter.tix
# Create a graph of external dependencies in the given file (report RP0402 must
# not be disabled).
ext-import-graph=
# Create a graph of every (i.e. internal and external) dependencies in the
# given file (report RP0402 must not be disabled).
import-graph=
# Create a graph of internal dependencies in the given file (report RP0402 must
# not be disabled).
int-import-graph=
# Force import order to recognize a module as part of the standard
# compatibility libraries.
known-standard-library=
# Force import order to recognize a module as part of a third party library.
known-third-party=enchant
[EXCEPTIONS]
# Exceptions that will emit a warning when being caught. Defaults to
# "Exception".
overgeneral-exceptions=Exception

View File

@ -39,7 +39,7 @@ include = [
]
dynamic = ["version"]
dependencies = [
"numpy>=1.26",
"numpy>=2.0",
"scipy~=1.14",
]

BIN
simulation_output.h5 Normal file

Binary file not shown.

429
test.py Normal file
View File

@ -0,0 +1,429 @@
from typing import Tuple
import multiprocessing
import logging
import copy
from itertools import chain
import pyopencl, meanas, gridlock
import numpy
from numpy import pi, sin, cos, exp
from numpy.linalg import norm
from meanas import fdtd, fdfd
from meanas.fdmath import vec
from meanas.fdfd.waveguide_3d import compute_source, compute_overlap_e
from meanas.fdfd import operators
from meanas.fdtd import maxwell_e, maxwell_h, cpml_params, updates_with_cpml, poynting
numpy.set_printoptions(linewidth=int(1e10))
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('pyopencl').setLevel(logging.WARNING)
logging.getLogger('pytools').setLevel(logging.WARNING)
fh = logging.FileHandler('opt.log')
fh.setLevel(logging.INFO)
logger.addHandler(fh)
def saveplot_2d_mp(*args):
multiprocessing.Process(target=saveplot_2d, args=args).start()
def saveplot_2d(val, name, xz_coords):
val = numpy.squeeze(val)
pyplot.figure(figsize=(8, 6))
xz_grids = numpy.meshgrid(*xz_coords, indexing='ij')
vmax = numpy.abs(val).max()
if (val < 0).any():
args = {'vmin': -vmax, 'vmax': vmax, 'cmap': 'seismic'}
else:
args = {'vmin': 0, 'vmax': vmax, 'cmap': 'hot'}
pyplot.pcolormesh(*xz_grids, val, **args)
pyplot.colorbar(orientation='horizontal')
pyplot.title(f'{name}')
pyplot.gca().set_aspect('equal', adjustable='box')
pyplot.savefig(f'{name}.png', dpi=240)
pyplot.close()
def pulse(wl, dwl, dt, turn_on=1e-10):
# dt * dw = 4 * ln(2)
w = 2 * pi / wl
freq = 1 / wl
fwhm = dwl * w * w / (2 * pi)
alpha = (fwhm * fwhm) / 8 * numpy.log(2)
delay = numpy.sqrt(-numpy.log(turn_on) / alpha)
delay = numpy.ceil(delay * freq) / freq # force delay to integer number of periods to maintain phase
logger.info(f'src_time {2 * delay / dt}')
n = numpy.floor(pi / (w * dt))
logger.info(f'save timestep would be {n} * dt = {n * dt}')
# nrm = numpy.exp(-w * w / alpha) / 2
def source_phasor(i):
t0 = i * dt - delay
envelope = numpy.sqrt(numpy.sqrt(2 * alpha / pi)) * numpy.exp(-alpha * t0**2)
# if t0 < 0:
# envelope = numpy.exp(-alpha * t0**2)
# else:
# envelope = 1
return envelope, numpy.cos(w * t0), numpy.sin(w * t0)
return source_phasor, delay, n #, nrm
def get_wgmode_xp(half_dims, polarity, grid, epsilon, wl, dxes):
dims = [-half_dims, half_dims]
dims[0][0] = dims[1][0]
ind_dims = (grid.pos2ind(dims[0], which_shifts=None).astype(int),
grid.pos2ind(dims[1], which_shifts=None).astype(int))
wg_slices = tuple(slice(i, f+1) for i, f in zip(*ind_dims))
wg_args = {
'omega': 2 * pi / wl,
'slices': wg_slices,
'dxes': dxes,
'axis': 0,
'polarity': polarity,
}
wg_results = fdfd.waveguide_3d.solve_mode(mode_number=0, **wg_args, epsilon=epsilon)
return wg_args, wg_results
def get_gaussian(m, grid, dxes, wl):
def grid2gaussian(xyz, center, w0=4600, tilt=numpy.deg2rad(-8)):
xs, ys, zs = xyz
xs -= center[0]
ys -= center[1]
zs -= center[2]
xg, yg, zg = numpy.meshgrid(xs, ys, zs, indexing='ij')
rot = numpy.array([[ cos(tilt), 0, sin(tilt)],
[ 0, 1, 0],
[-sin(tilt), 0, cos(tilt)]])
x, y, z = (rot @ numpy.stack((xg.ravel(), yg.ravel(), zg.ravel()))).reshape(3, *grid.shape)
r2 = x * x + y * y # sq. distance from beam center along tilted plane
z2 = z * z # sq. distance from waist along centerline
zr = pi * w0 * w0 / wl
zr2 = zr * zr
wz2 = w0 * w0 * (1 + z2 / zr2)
wz = numpy.sqrt(wz2)
k = 2 * pi / wl
Rz = z * (1 + zr2 / z2)
gouy = numpy.arctan(z / zr)
gaussian = w0 / wz * exp(-r2 / wz2) * exp(1j * (k * z + k * r2 / 2 / Rz - gouy))
# window_x = scipy.signal.windows.kaiser(xs.size, 14)
# gaussian *= window_x[:, None, None]
return gaussian
zsEy = grid.shifted_xyz(1)[2]
gaussianEy = grid2gaussian(grid.shifted_xyz(1), [0, 0, zsEy[m[2]]])
normEy = gaussianEy[m[0]:-m[0], :, m[2]]
gaussianEy /= numpy.sqrt((normEy[1].conj() * normEy[1]).sum())
return gaussianEy
def run(pml=(10, 0, 10), dx=20, wl=1310, dwl=130, wg_zh=400, wg_x=-7500, fiber_z=1000, max_t=int(10e3)):
omega = 2 * pi / wl
x_min = -10e3 - pml[0] * dx
x_max = 10e3 + pml[0] * dx
z_min = -600 - pml[2] * dx
z_max = 1400 + pml[2] * dx
ex = numpy.arange(x_min, x_max + dx / 2, dx)
ez = numpy.arange(z_min, z_max + dx / 2, dx)
exyz = [ex, [-dx / 2, dx / 2], ez]
grid = gridlock.Grid(exyz, periodic=True)
epsilon = grid.allocate(1.45**2)
def unvec(f):
return meanas.fdmath.unvec(f, grid.shape)
# grid.draw_slab(epsilon, surface_normal=2, center=[0, 0, 0], thickness=160, eps=3.5**2)
e = numpy.zeros_like(epsilon, dtype=numpy.float32)
h = numpy.zeros_like(epsilon, dtype=numpy.float32)
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
min_dx = min(min(dxn) for dxn in chain(*dxes))
dt = min_dx * .99 / numpy.sqrt(3)
source_phasor, delay, n_fft = pulse(wl, dwl, dt)
if 2 * delay / dt > max_t:
raise Exception('Source extends beyond end of simulation')
m = numpy.array(pml) + 10
m[2] = grid.pos2ind([0, 0, fiber_z], which_shifts=0)[2] - grid.shape[2]
ey_gauss = numpy.zeros_like(epsilon, dtype=complex)
ey_gauss = get_gaussian(m, grid, dxes, wl / 1.45)
e_gauss = numpy.zeros_like(epsilon, dtype=numpy.complex64)
e_gauss[1] = ey_gauss
mask = numpy.zeros_like(epsilon, dtype=int)
mask[..., :m[2]] = 1
src_op = operators.e_boundary_source(mask=vec(mask), omega=omega, dxes=dxes, epsilon=vec(epsilon))
def zero_pmls(c):
for a in range(3):
c[a][:pml[0]+1, :, :] = 0
c[a][-pml[0]-1:, :, :] = 0
c[a][:, :, :pml[2]+1] = 0
c[a][:, :, -pml[2]-1:] = 0
return c
# J = unvec(src_op @ vec(e_gauss))
# J[:, :12, :, :] = 0
# J[:, -12:, :, :] = 0
# J[:, :, :, :12] = 0
# J[:, :, :, -12:] = 0
# zero_pmls(J)
J = numpy.zeros_like(epsilon, dtype=complex)
J[1, 500, 0, 60] = 1
zero_pmls(J)
half_dims = numpy.array([wg_x, dx, wg_zh])
wg_args, wg_results = get_wgmode_xp(half_dims, -1, grid, wl, dxes)
E_out = compute_overlap_e(E=wg_results['E'], wavenumber=wg_results['wavenumber'],
dxes=dxes, axis=0, polarity=+1, slices=wg_args['slices'])
jr = (J.real / epsilon).astype(numpy.float32)
ji = (J.imag / epsilon).astype(numpy.float32)
eph = numpy.zeros_like(e, dtype=numpy.complex64)
ephm = numpy.zeros_like(e, dtype=numpy.complex64)
# powers = numpy.zeros((max_t, 5))
p_ph = 0
pml_params = [[cpml_params(axis=dd, polarity=pp, dt=dt,
thickness=pml[dd], epsilon_eff=1.0**2)
if pml[dd] > 0 else None
for pp in (-1, +1)]
for dd in range(3)]
update_E, update_H = updates_with_cpml(cpml_params=pml_params, dt=dt,
dxes=dxes, epsilon=epsilon)
mov_interval = 10
mov = numpy.empty((max_t // mov_interval, e.shape[1], e.shape[3]), dtype=numpy.float32)
for t in range(max_t):
update_E(e, h, epsilon)
_, cm5, sm5 = source_phasor(t - 0.5)
ephm += (cm5 - 1j * sm5) * e
a, c, s = source_phasor(t)
p_ph += a * c * c
e -= (a * c) * jr - (a * s) * ji
update_H(e, h)
_, cp5, sp5 = source_phasor(t + 0.5)
eph += (cp5 - 1j * sp5) * e
# S = poynting(e, h, epsilon)
#
# powers[t, :] = (
# numpy.sum(S[2, m[0]+3:-m[0]-2, :, m[2]-6]), # below src
# numpy.sum(S[2, m[0]+3:-m[0]-2, :, m[2]+4]), # above src
# numpy.sum(S[2, m[0]+3:-m[0]-2, :, pml[2]+2]), # bottom
# numpy.sum(S[0, +m[0]+2, :, pml[2]+3:m[2]+4]), # left
# numpy.sum(S[0, -m[0]-2, :, pml[2]+3:m[2]+4]), # right
# )
if t % mov_interval == 0:
mov[t // mov_interval] = e[1, :, 0, :].real
eph *= dt / p_ph
ephm *= dt / p_ph
src_power = -(J * eph).real.sum() / 2 * dx ** 3
hph = meanas.fdfd.functional.e2h(omega=omega, dxes=dxes)(eph)
sph = meanas.fdtd.poynting(e=eph, h=hph.conj(), dxes=dxes)
planes_powers = numpy.array((
-sph[0, 11, :, 11:-12].sum(),
+sph[0, -12, :, 11:-12].sum(),
-sph[2, 11:-12, :, 11].sum(),
+sph[2, 11:-12, :, -12].sum(),
)).real / 2
planes_power = planes_powers.sum()
print(f'{src_power=}, {planes_power=}')
# Verify
A = meanas.fdfd.operators.e_full(omega=omega, dxes=dxes, epsilon=vec(epsilon))
b = -1j * omega * vec(J) #* numpy.exp(1j * dt / 2 * omega)
c = A @ vec(eph)
logger.info('FWD inaccuracy: |Ax-b|/|b| = {}'.format(norm(c-b) / norm(b)))
normdiv = norm(b) / norm(c)
logger.info(f'{normdiv=}')
logger.info('FWD renormed inaccuracy: |Ax-b|/|b| = {}'.format(norm(c * normdiv - b) / norm(b)))
b = -1j * omega * vec(J)
logger.info('FWD base inaccuracy: |Ax-b|/|b| = {}'.format(norm(c-b) / norm(b)))
from scipy.optimize import minimize
def resid(x):
b = -1j * omega * vec(J) * numpy.exp(1j * dt * x * omega)
return norm(c - b) / norm(b)
print('min', minimize(resid, 0.25, options={'xatol': 1e-14, 'fatol': 1e-14}))
# fig, ax, anim = plot_movie(mov, balanced=True, interval=300)
# anim.save('output.mp4')
print('solving...')
cdxes = copy.deepcopy(dxes)
for axis in range(3):
thickness = pml[axis]
if not thickness:
continue
for pp, polarity in enumerate((-1, 1)):
print(axis, polarity, thickness)
cdxes = fdfd.scpml.stretch_with_scpml(cdxes, axis=axis, polarity=polarity,
omega=omega, epsilon_effective=1.0**2,
thickness=thickness)
eph2v = meanas.fdfd.solvers.generic(
omega=omega, dxes=cdxes, J=vec(J), epsilon=vec(epsilon),
matrix_solver_opts={'atol': 1e-3, 'tol': 1e-3, 'x0': vec(eph)})
eph2 = unvec(eph2v)
pyplot.figure()
pyplot.pcolormesh(numpy.abs(eph/eph2)[1, 11:-11, 0, 11:-11].real.T)
pyplot.colorbar()
pyplot.title('mag')
pyplot.figure()
pyplot.pcolormesh(numpy.angle(eph/eph2)[1, 11:-11, 0, 11:-11].real.T)
pyplot.colorbar()
pyplot.title('angle')
pyplot.show()
breakpoint()
import matplotlib
from matplotlib import cycler, animation, colors, ticker, pyplot
def set_pyplot_cycle() -> None:
pyplot.rc('lines', linewidth=2.5)
pyplot.rc('axes', prop_cycle(
cycler('color', 'krbgcm')
* cycler('linestyle', ['-', '--', ':', '-.'])
))
def pcm(x, y, z, pca={}, cba={}, bare=False, eq=True) -> Tuple:
z = numpy.array(z)
if numpy.any(z < 0):
vmax = numpy.abs(z).max()
pcolor_args = {'vmin': -vmax, 'vmax': vmax, 'cmap': 'seismic', **pca}
else:
pcolor_args = {'cmap': 'seismic', **pca}
xe = centers2edges(x)
ye = centers2edges(y)
if bare:
fig = pyplot.gcf()
ax = pyplot.gca()
else:
fig, ax = pyplot.subplot()
im = ax.pcolormesh(xe, ye, z.T, **pcolor_args)
if eq:
ax.set_aspect('equal', adjustable='box')
if not bare:
ax.format_coord = lambda xx, yy: format_coord(xx, yy, xe, ye, z.T)
fig.colorbar(im, ax=ax, **cba)
return fig, ax, im
def pcc(x, y, z, cfa={}, cba={}, n_levels: int = 15, bare: bool = False, eq: bool = True) -> Tuple:
z = numpy.array(z)
if numpy.any(z < 0):
vmax = numpy.abs(z).max()
pcolor_args = {'vmin': -vmax, 'vmax': vmax, 'cmap': 'seismic', **cfa}
else:
pcolor_args = {'cmap': 'hot', **cfa}
xe = centers2edges(x)
ye = centers2edges(y)
if bare:
fig = pyplot.gcf()
ax = pyplot.gca()
else:
fig, ax = pyplot.subplot()
levels = ticker.MaxNLocator(nbins=n_levels).tick_values(z.min(), z.max())
cmap = pyplot.get_cmap(pcolor_args['cmap'])
norm = color.BoundaryNorm(levels, ncolors=cmap.N, clip=True)
im = ax.contourf(x, y, z.T, levels=levels, **pcolor_args)
if eq:
ax.set_aspect('equal', adjustable='box')
if not bare:
ax.format_coord = lambda xx, yy: format_coord(xx, yy, xe, ye, z.T)
fig.colorbar(im, ax=ax, **cba)
return fig, ax, im
def centers2edges(centers):
d = numpy.diff(centers) / 2
e = numpy.hstack((centers[0] - d[0], centers[:-1] + d, centers[-1] + d[-1]))
return e
def format_coord(x, y, xs, ys, vs):
col = numpy.digitize(x, xs)
row = numpy.digitize(y, ys)
if 0 < row <= vs.shape[0] and 0 < col <= vs.shape[1]:
z = vs[row - 1, col - 1]
return f'x={x:1.4g}, y={y:1.4g}, z={z:1.4g}'
else:
return f'x={x:1.4g}, y={y:1.4g}'
def plot_movie(arr, balanced=True, interval=300, pca={}):
if balanced:
vmax = numpy.abs(arr).max()
pcolor_args = {'vmin': -vmax, 'vmax': vmax, 'cmap': 'seismic', **pca}
else:
pcolor_args = {'cmap': 'seismic', **pca}
fig, ax = pyplot.subplots()
im = ax.pcolormesh(arr[0, :, :].T, **pcolor_args)
ax.set_aspect('equal', adjustable='box')
def animate(ii):
im.set_array(arr[ii, :, :].T.ravel())
anim = animation.FuncAnimation(fig, animate, frames=arr.shape[0], repeat=True, interval=interval)
return fig, im, anim
if __name__ == '__main__':
run()

121
test_test.py Normal file
View File

@ -0,0 +1,121 @@
import logging
import meanas
from meanas.fdfd.scpml import stretch_with_scpml
from meanas.fdfd.solvers import generic
from meanas.fdtd.misc import gaussian_beam
from meanas.fdmath import vec
from gridlock import Grid
import numpy
from numpy import pi
from matplotlib import pyplot, colors
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
for mm in ('matplotlib', 'PIL'):
logging.getLogger(mm).setLevel(logging.WARNING)
wl = 1310
omega = 2 * pi / wl
eps_bg = 1.45
grid = Grid([
numpy.arange(-20e3, 20e3 + 1, 10),
[-1, 1],
numpy.arange(-1e3, 1e3 + 1, 10),
])
logger.info(grid.shape)
def unvec(vv):
return meanas.fdmath.unvec(vv, grid.shape)
eps = grid.allocate(eps_bg)
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
xx, yy, zz = grid.shifted_xyz(1)
print(zz.min(), zz.max(), zz[-25])
gauss0 = gaussian_beam(xyz=[xx[12:-12], yy, zz], center=[0, 0, zz[-25]], w0=4600, tilt=numpy.deg2rad(-10), wl=wl / eps_bg)
e_gauss = numpy.zeros_like(eps, dtype=complex)
e_gauss[1, 12:-12, :, :] = gauss0
mask = numpy.zeros_like(eps)
mask[..., :-25] = 1
fig, ax = pyplot.subplots()
mb = ax.pcolormesh(mask[0, :, 0, :].T, cmap='hot')
fig.colorbar(mb)
ax.set_aspect('equal')
ax.set_title('mask')
fig, ax = pyplot.subplots()
mb = ax.pcolormesh((e_gauss * mask)[1, :, 0, :].real.T, cmap='bwr', norm=colors.CenteredNorm())
fig.colorbar(mb)
ax.set_aspect('equal')
ax.set_title('e_masked')
pyplot.show()
vecJ = meanas.fdfd.operators.e_boundary_source(mask=vec(mask), omega=omega, dxes=dxes, epsilon=vec(eps)) @ vec(e_gauss)
J = unvec(vecJ)
for pp in (-1, +1):
for aa in (0, 2):
dxes = stretch_with_scpml(
dxes=dxes,
axis=aa,
polarity=pp,
omega=omega,
thickness=10,
)
vecE = generic(omega=omega, dxes=dxes, J=vec(J), epsilon=vec(eps))
vecH = meanas.fdfd.operators.e2h(omega=omega, dxes=dxes) @ vecE
vecS = meanas.fdfd.operators.poynting_e_cross(e=vecE, dxes=dxes) @ vecH.conj()
E = unvec(vecE)
H = unvec(vecH)
S = unvec(vecS)
dxs, dys, dzs = grid.dxyz
EJ = (-E * J.conj()).sum(axis=0) * dxs[:, None, None] * dys[None, : None] * dzs[None, None, :]
P_in = EJ.sum().real / 2
logger.info(f'P_in = {EJ.sum() / 2:3g}')
planes = numpy.array([
-S[0, 11, :, :].sum(),
S[0, -11, :, :].sum(),
-S[2, :, :, 11].sum(),
S[2, :, :, -11].sum(),
]) / 2 / P_in
logger.info(f'{planes=}')
logger.info(f'{planes.sum().real}')
fig, ax = pyplot.subplots()
e2 = (E * E.conj() * eps).real.sum(axis=0)
mb = ax.pcolormesh(e2[:, 0, :].T / P_in, cmap='hot', norm=colors.LogNorm(vmin=e2.max() / 1e10))
fig.colorbar(mb)
ax.set_aspect('equal')
ax.set_title('E^2 * eps')
fig, ax = pyplot.subplots()
mb = ax.pcolormesh(S[0, :, 0, :].real.T / 2 / P_in, cmap='bwr', norm=colors.CenteredNorm())
fig.colorbar(mb)
ax.set_aspect('equal')
ax.set_title('Sx')
fig, ax = pyplot.subplots()
mb = ax.pcolormesh(S[2, :, 0, :].real.T / 2 / P_in, cmap='bwr', norm=colors.CenteredNorm())
fig.colorbar(mb)
ax.set_aspect('equal')
ax.set_title('Sz')
fig, ax = pyplot.subplots()
mb = ax.pcolormesh(EJ[:, 0, :].real.T / 2 / P_in, cmap='bwr', norm=colors.CenteredNorm())
fig.colorbar(mb)
ax.set_aspect('equal')
ax.set_title('-E.J')
pyplot.show()