You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
masque/masque/shapes/ellipse.py

220 lines
7.4 KiB
Python

from typing import List, Dict, Sequence, Optional
import copy
import math
import numpy # type: ignore
from numpy import pi
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
from .. import PatternError
from ..repetition import Repetition
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t, AutoSlots, annotations_t
from ..traits import LockableImpl
class Ellipse(Shape, metaclass=AutoSlots):
"""
An ellipse, which has a position, two radii, and a rotation.
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
"""
__slots__ = ('_radii', '_rotation',
'poly_num_points', 'poly_max_arclen')
_radii: numpy.ndarray
""" Ellipse radii """
_rotation: float
""" Angle from x-axis to first radius (ccw, radians) """
poly_num_points: Optional[int]
""" Sets the default number of points for `.polygonize()` """
poly_max_arclen: Optional[float]
""" Sets the default max segement length for `.polygonize()` """
# radius properties
@property
def radii(self) -> numpy.ndarray:
"""
Return the radii `[rx, ry]`
"""
return self._radii
@radii.setter
def radii(self, val: vector2):
val = numpy.array(val).flatten()
if not val.size == 2:
raise PatternError('Radii must have length 2')
if not val.min() >= 0:
raise PatternError('Radii must be non-negative')
self._radii = val
@property
def radius_x(self) -> float:
return self.radii[0]
@radius_x.setter
def radius_x(self, val: float):
if not val >= 0:
raise PatternError('Radius must be non-negative')
self.radii[0] = val
@property
def radius_y(self) -> float:
return self.radii[1]
@radius_y.setter
def radius_y(self, val: float):
if not val >= 0:
raise PatternError('Radius must be non-negative')
self.radii[1] = val
# Rotation property
@property
def rotation(self) -> float:
"""
Rotation of rx from the x axis. Uses the interval [0, pi) in radians (counterclockwise
is positive)
Returns:
counterclockwise rotation in radians
"""
return self._rotation
@rotation.setter
def rotation(self, val: float):
if not is_scalar(val):
raise PatternError('Rotation must be a scalar')
self._rotation = val % pi
def __init__(self,
radii: vector2,
*,
poly_num_points: Optional[int] = DEFAULT_POLY_NUM_POINTS,
poly_max_arclen: Optional[float] = None,
offset: vector2 = (0.0, 0.0),
rotation: float = 0,
mirrored: Sequence[bool] = (False, False),
layer: layer_t = 0,
dose: float = 1.0,
repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None,
locked: bool = False,
raw: bool = False,
):
LockableImpl.unlock(self)
self.identifier = ()
if raw:
self._radii = radii
self._offset = offset
self._rotation = rotation
self._repetition = repetition
self._annotations = annotations if annotations is not None else {}
self._layer = layer
self._dose = dose
else:
self.radii = radii
self.offset = offset
self.rotation = rotation
self.repetition = repetition
self.annotations = annotations if annotations is not None else {}
self.layer = layer
self.dose = dose
[self.mirror(a) for a, do in enumerate(mirrored) if do]
self.poly_num_points = poly_num_points
self.poly_max_arclen = poly_max_arclen
self.set_locked(locked)
def __deepcopy__(self, memo: Dict = None) -> 'Ellipse':
memo = {} if memo is None else memo
new = copy.copy(self).unlock()
new._offset = self._offset.copy()
new._radii = self._radii.copy()
new._annotations = copy.deepcopy(self._annotations)
new.set_locked(self.locked)
return new
def to_polygons(self,
poly_num_points: Optional[int] = None,
poly_max_arclen: Optional[float] = None,
) -> List[Polygon]:
if poly_num_points is None:
poly_num_points = self.poly_num_points
if poly_max_arclen is None:
poly_max_arclen = self.poly_max_arclen
if (poly_num_points is None) and (poly_max_arclen is None):
raise PatternError('Number of points and arclength left unspecified'
' (default was also overridden)')
r0, r1 = self.radii
# Approximate perimeter
# Ramanujan, S., "Modular Equations and Approximations to ,"
# Quart. J. Pure. Appl. Math., vol. 45 (1913-1914), pp. 350-372
h = ((r1 - r0) / (r1 + r0)) ** 2
perimeter = pi * (r1 + r0) * (1 + 3 * h / (10 + math.sqrt(4 - 3 * h)))
n = []
if poly_num_points is not None:
n += [poly_num_points]
if poly_max_arclen is not None:
n += [perimeter / poly_max_arclen]
num_points = int(round(max(n)))
thetas = numpy.linspace(2 * pi, 0, num_points, endpoint=False)
sin_th, cos_th = (numpy.sin(thetas), numpy.cos(thetas))
xs = r0 * cos_th
ys = r1 * sin_th
xys = numpy.vstack((xs, ys)).T
poly = Polygon(xys, dose=self.dose, layer=self.layer, offset=self.offset, rotation=self.rotation)
return [poly]
def get_bounds(self) -> numpy.ndarray:
rot_radii = numpy.dot(rotation_matrix_2d(self.rotation), self.radii)
return numpy.vstack((self.offset - rot_radii[0],
self.offset + rot_radii[1]))
def rotate(self, theta: float) -> 'Ellipse':
self.rotation += theta
return self
def mirror(self, axis: int) -> 'Ellipse':
self.offset[axis - 1] *= -1
self.rotation *= -1
return self
def scale_by(self, c: float) -> 'Ellipse':
self.radii *= c
return self
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
if self.radius_x < self.radius_y:
radii = self.radii / self.radius_x
scale = self.radius_x
angle = self.rotation
else:
radii = self.radii[::-1] / self.radius_y
scale = self.radius_y
angle = (self.rotation + pi / 2) % pi
return ((type(self), radii, self.layer),
(self.offset, scale / norm_value, angle, False, self.dose),
lambda: Ellipse(radii=radii * norm_value, layer=self.layer))
def lock(self) -> 'Ellipse':
self.radii.flags.writeable = False
Shape.lock(self)
return self
def unlock(self) -> 'Ellipse':
Shape.unlock(self)
self.radii.flags.writeable = True
return self
def __repr__(self) -> str:
rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else ''
dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else ''
return f'<Ellipse l{self.layer} o{self.offset} r{self.radii}{rotation}{dose}{locked}>'