masque/examples/phc.py
Jan Petykiewicz 83b9af0cc3 Remove support for dose
Since there isn't GDS/OASIS level support for dose, this can be mostly
handled by using arbitrary layers/dtypes directly. Dose scaling isn't
handled as nicely that way, but it corresponds more directly to what
gets written to file.
2023-01-18 18:14:33 -08:00

175 lines
6.6 KiB
Python

from typing import Tuple, Sequence
import numpy # type: ignore
from numpy import pi
from masque import layer_t, Pattern, SubPattern, Label
from masque.shapes import Polygon, Circle
from masque.builder import Device, Port
from masque.library import Library, DeviceLibrary
from masque.file.klamath import writefile
import pcgen
HOLE_SCALE: float = 1000
''' Radius for the 'hole' cell. Should be significantly bigger than
1 (minimum database unit) in order to have enough precision to
reasonably represent a polygonized circle (for GDS)
'''
def hole(layer: layer_t,
radius: float = HOLE_SCALE * 0.35,
) -> Pattern:
"""
Generate a pattern containing a single circular hole.
Args:
layer: Layer to draw the circle on.
radius: Circle radius.
Returns:
Pattern, named `'hole'`
"""
pat = Pattern('hole', shapes=[
Circle(radius=radius, offset=(0, 0), layer=layer)
])
return pat
def perturbed_l3(lattice_constant: float,
hole: Pattern,
trench_layer: layer_t = (1, 0),
shifts_a: Sequence[float] = (0.15, 0, 0.075),
shifts_r: Sequence[float] = (1.0, 1.0, 1.0),
xy_size: Tuple[int, int] = (10, 10),
perturbed_radius: float = 1.1,
trench_width: float = 1200,
) -> Device:
"""
Generate a `Device` representing a perturbed L3 cavity.
Args:
lattice_constant: Distance between nearest neighbor holes
hole: `Pattern` object containing a single hole
trench_layer: Layer for the trenches, default `(1, 0)`.
shifts_a: passed to `pcgen.l3_shift`; specifies lattice constant
(1 - multiplicative factor) for shifting holes adjacent to
the defect (same row). Default `(0.15, 0, 0.075)` for first,
second, third holes.
shifts_r: passed to `pcgen.l3_shift`; specifies radius for perturbing
holes adjacent to the defect (same row). Default 1.0 for all holes.
Provided sequence should have same length as `shifts_a`.
xy_size: `(x, y)` number of mirror periods in each direction; total size is
`2 * n + 1` holes in each direction. Default (10, 10).
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
(multiplicative factor). Default 1.1.
trench width: Width of the undercut trenches. Default 1200.
Returns:
`Device` object representing the L3 design.
"""
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=xy_size,
perturbed_radius=perturbed_radius,
shifts_a=shifts_a,
shifts_r=shifts_r)
pat = Pattern(f'L3p-a{lattice_constant:g}rp{perturbed_radius:g}')
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
lattice_constant * y), scale=r * lattice_constant / HOLE_SCALE)
for x, y, r in xyr]
min_xy, max_xy = pat.get_bounds()
trench_dx = max_xy[0] - min_xy[0]
pat.shapes += [
Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width, layer=trench_layer),
Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width, layer=trench_layer),
]
ports = {
'input': Port((-lattice_constant * xy_size[0], 0), rotation=0, ptype=1),
'output': Port((lattice_constant * xy_size[0], 0), rotation=pi, ptype=1),
}
return Device(pat, ports)
def waveguide(lattice_constant: float,
hole: Pattern,
length: int,
mirror_periods: int,
) -> Device:
xy = pcgen.waveguide(length=length + 2, num_mirror=mirror_periods)
pat = Pattern(f'_wg-a{lattice_constant:g}l{length}')
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
lattice_constant * y), scale=lattice_constant / HOLE_SCALE)
for x, y in xy]
ports = {
'left': Port((-lattice_constant * length / 2, 0), rotation=0, ptype=1),
'right': Port((lattice_constant * length / 2, 0), rotation=pi, ptype=1),
}
return Device(pat, ports)
def bend(lattice_constant: float,
hole: Pattern,
mirror_periods: int,
) -> Device:
xy = pcgen.wgbend(num_mirror=mirror_periods)
pat_half = Pattern(f'_wgbend_half-a{lattice_constant:g}l{mirror_periods}')
pat_half.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
lattice_constant * y), scale=lattice_constant / HOLE_SCALE)
for x, y in xy]
pat = Pattern(f'_wgbend-a{lattice_constant:g}l{mirror_periods}')
pat.addsp(pat_half, offset=(0, 0), rotation=0, mirrored=(False, False))
pat.addsp(pat_half, offset=(0, 0), rotation=-2 * pi / 3, mirrored=(True, False))
ports = {
'left': Port((-lattice_constant * mirror_periods, 0), rotation=0, ptype=1),
'right': Port((lattice_constant * mirror_periods / 2,
lattice_constant * mirror_periods * numpy.sqrt(3) / 2), rotation=pi * 4 / 3, ptype=1),
}
return Device(pat, ports)
def label_ports(device: Device, layer: layer_t = (3, 0)) -> Device:
for name, port in device.ports.items():
angle_deg = numpy.rad2deg(port.rotation)
device.pattern.labels += [
Label(string=f'{name} (angle {angle_deg:g})', layer=layer, offset=port.offset)
]
return device
def main():
hole_layer = (1, 2)
a = 512
hole_pat = hole(layer=hole_layer)
wg0 = label_ports(waveguide(lattice_constant=a, hole=hole_pat, length=10, mirror_periods=5))
wg1 = label_ports(waveguide(lattice_constant=a, hole=hole_pat, length=5, mirror_periods=5))
bend0 = label_ports(bend(lattice_constant=a, hole=hole_pat, mirror_periods=5))
l3cav = label_ports(perturbed_l3(lattice_constant=a, hole=hole_pat, xy_size=(4, 10)))
dev = Device(name='my_bend', ports={})
dev.place(wg0, offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
dev.plug(wg0, {'signal': 'left'})
dev.plug(bend0, {'signal': 'left'})
dev.plug(wg1, {'signal': 'left'})
dev.plug(bend0, {'signal': 'right'})
dev.plug(wg0, {'signal': 'left'})
dev.plug(l3cav, {'signal': 'input'})
dev.plug(wg0, {'signal': 'left'})
writefile(dev.pattern, 'phc.gds', 1e-9, 1e-3)
dev.pattern.visualize()
if __name__ == '__main__':
main()