96 lines
3.0 KiB
Python
96 lines
3.0 KiB
Python
import numpy
|
|
from numpy.typing import ArrayLike, NDArray
|
|
from numpy import pi
|
|
|
|
|
|
def bezier(
|
|
nodes: ArrayLike,
|
|
tt: ArrayLike,
|
|
weights: ArrayLike | None = None,
|
|
) -> NDArray[numpy.float64]:
|
|
"""
|
|
Sample a Bezier curve with the provided control points at the parametrized positions `tt`.
|
|
|
|
Using the calculation method from arXiv:1803.06843, Chudy and Woźny.
|
|
|
|
Args:
|
|
nodes: `[[x0, y0], ...]` control points for the Bezier curve
|
|
tt: Parametrized positions at which to sample the curve (1D array with values in the interval [0, 1])
|
|
weights: Control point weights; if provided, length should be the same as number of control points.
|
|
Default 1 for all control points.
|
|
|
|
Returns:
|
|
`[[x0, y0], [x1, y1], ...]` corresponding to `[tt0, tt1, ...]`
|
|
"""
|
|
nn = nodes.shape[0]
|
|
if weights is None:
|
|
weights = numpy.ones(nn)
|
|
|
|
t_half0 = tt <= 0.5
|
|
umul = tt / (1 - tt)
|
|
udiv = 1 / umul
|
|
umul[~t_half0] = 1
|
|
udiv[t_half0] = 1
|
|
|
|
hh = numpy.ones((tt.size,))
|
|
qq = nodes[None, 0] * hh[:, None]
|
|
for kk in range(1, nn):
|
|
hh *= umul * (nn + 1 - kk) * weights[kk]
|
|
hh /= kk * udiv * weights[kk - 1] + hh
|
|
qq *= 1.0 - hh[:, None]
|
|
qq += hh[:, None] * nodes[None, kk]
|
|
return qq
|
|
|
|
|
|
|
|
def euler_bend(switchover_angle: float) -> NDArray[numpy.float64]:
|
|
"""
|
|
Generate a 90 degree Euler bend (AKA Clothoid bend or Cornu spiral).
|
|
|
|
Args:
|
|
switchover_angle: After this angle, the bend will transition into a circular arc
|
|
(and transition back to an Euler spiral on the far side). If this is set to
|
|
`>= pi / 4`, no circular arc will be added.
|
|
|
|
Returns:
|
|
`[[x0, y0], ...]` for the curve
|
|
"""
|
|
# Switchover angle
|
|
# AKA: Clothoid bend, Cornu spiral
|
|
theta_max = numpy.sqrt(2 * switchover_angle)
|
|
|
|
def gen_curve(theta_max: float):
|
|
xx = []
|
|
yy = []
|
|
for theta in numpy.linspace(0, theta_max, 100):
|
|
qq = numpy.linspace(0, theta, 1000)
|
|
xx.append(numpy.trapz( numpy.cos(qq * qq / 2), qq))
|
|
yy.append(numpy.trapz(-numpy.sin(qq * qq / 2), qq))
|
|
xy_part = numpy.stack((xx, yy), axis=1)
|
|
return xy_part
|
|
|
|
xy_part = gen_curve(theta_max)
|
|
xy_parts = [xy_part]
|
|
|
|
if switchover_angle < pi / 4:
|
|
# Build a circular segment to join the two euler portions
|
|
rmin = 1.0 / theta_max
|
|
half_angle = pi / 4 - switchover_angle
|
|
qq = numpy.linspace(half_angle * 2, 0, 10) + switchover_angle
|
|
xc = rmin * numpy.cos(qq)
|
|
yc = rmin * numpy.sin(qq) + xy_part[-1, 1]
|
|
xc += xy_part[-1, 0] - xc[0]
|
|
yc += xy_part[-1, 1] - yc[0]
|
|
xy_parts.append(numpy.stack((xc, yc), axis=1))
|
|
|
|
endpoint_xy = xy_parts[-1][-1, :]
|
|
second_curve = xy_part[::-1, ::-1] + endpoint_xy - xy_part[-1, ::-1]
|
|
|
|
xy_parts.append(second_curve)
|
|
xy = numpy.concatenate(xy_parts)
|
|
|
|
# Remove any 2x-duplicate points
|
|
xy = xy[(numpy.roll(xy, 1, axis=0) != xy).any(axis=1)]
|
|
|
|
return xy
|