441 lines
15 KiB
Python
441 lines
15 KiB
Python
from typing import Any
|
|
import copy
|
|
import math
|
|
|
|
import numpy
|
|
from numpy import pi
|
|
from numpy.typing import NDArray, ArrayLike
|
|
|
|
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
|
|
from ..error import PatternError
|
|
from ..repetition import Repetition
|
|
from ..utils import is_scalar, annotations_t
|
|
|
|
|
|
class Arc(Shape):
|
|
"""
|
|
An elliptical arc, formed by cutting off an elliptical ring with two rays which exit from its
|
|
center. It has a position, two radii, a start and stop angle, a rotation, and a width.
|
|
|
|
The radii define an ellipse; the ring is formed with radii +/- width/2.
|
|
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
|
|
The start and stop angle are measured counterclockwise from the first (x) radius.
|
|
"""
|
|
__slots__ = (
|
|
'_radii', '_angles', '_width', '_rotation',
|
|
# Inherited
|
|
'_offset', '_repetition', '_annotations',
|
|
)
|
|
|
|
_radii: NDArray[numpy.float64]
|
|
""" Two radii for defining an ellipse """
|
|
|
|
_rotation: float
|
|
""" Rotation (ccw, radians) from the x axis to the first radius """
|
|
|
|
_angles: NDArray[numpy.float64]
|
|
""" Start and stop angles (ccw, radians) for choosing an arc from the ellipse, measured from the first radius """
|
|
|
|
_width: float
|
|
""" Width of the arc """
|
|
|
|
# radius properties
|
|
@property
|
|
def radii(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
|
"""
|
|
Return the radii `[rx, ry]`
|
|
"""
|
|
return self._radii
|
|
|
|
@radii.setter
|
|
def radii(self, val: ArrayLike) -> None:
|
|
val = numpy.array(val, dtype=float).flatten()
|
|
if not val.size == 2:
|
|
raise PatternError('Radii must have length 2')
|
|
if not val.min() >= 0:
|
|
raise PatternError('Radii must be non-negative')
|
|
self._radii = val
|
|
|
|
@property
|
|
def radius_x(self) -> float:
|
|
return self._radii[0]
|
|
|
|
@radius_x.setter
|
|
def radius_x(self, val: float) -> None:
|
|
if not val >= 0:
|
|
raise PatternError('Radius must be non-negative')
|
|
self._radii[0] = val
|
|
|
|
@property
|
|
def radius_y(self) -> float:
|
|
return self._radii[1]
|
|
|
|
@radius_y.setter
|
|
def radius_y(self, val: float) -> None:
|
|
if not val >= 0:
|
|
raise PatternError('Radius must be non-negative')
|
|
self._radii[1] = val
|
|
|
|
# arc start/stop angle properties
|
|
@property
|
|
def angles(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
|
"""
|
|
Return the start and stop angles `[a_start, a_stop]`.
|
|
Angles are measured from x-axis after rotation
|
|
|
|
Returns:
|
|
`[a_start, a_stop]`
|
|
"""
|
|
return self._angles
|
|
|
|
@angles.setter
|
|
def angles(self, val: ArrayLike) -> None:
|
|
val = numpy.array(val, dtype=float).flatten()
|
|
if not val.size == 2:
|
|
raise PatternError('Angles must have length 2')
|
|
self._angles = val
|
|
|
|
@property
|
|
def start_angle(self) -> float:
|
|
return self.angles[0]
|
|
|
|
@start_angle.setter
|
|
def start_angle(self, val: float) -> None:
|
|
self.angles = (val, self.angles[1])
|
|
|
|
@property
|
|
def stop_angle(self) -> float:
|
|
return self.angles[1]
|
|
|
|
@stop_angle.setter
|
|
def stop_angle(self, val: float) -> None:
|
|
self.angles = (self.angles[0], val)
|
|
|
|
# Rotation property
|
|
@property
|
|
def rotation(self) -> float:
|
|
"""
|
|
Rotation of radius_x from x_axis, counterclockwise, in radians. Stored mod 2*pi
|
|
|
|
Returns:
|
|
rotation counterclockwise in radians
|
|
"""
|
|
return self._rotation
|
|
|
|
@rotation.setter
|
|
def rotation(self, val: float) -> None:
|
|
if not is_scalar(val):
|
|
raise PatternError('Rotation must be a scalar')
|
|
self._rotation = val % (2 * pi)
|
|
|
|
# Width
|
|
@property
|
|
def width(self) -> float:
|
|
"""
|
|
Width of the arc (difference between inner and outer radii)
|
|
|
|
Returns:
|
|
width
|
|
"""
|
|
return self._width
|
|
|
|
@width.setter
|
|
def width(self, val: float) -> None:
|
|
if not is_scalar(val):
|
|
raise PatternError('Width must be a scalar')
|
|
if not val > 0:
|
|
raise PatternError('Width must be positive')
|
|
self._width = val
|
|
|
|
def __init__(
|
|
self,
|
|
radii: ArrayLike,
|
|
angles: ArrayLike,
|
|
width: float,
|
|
*,
|
|
offset: ArrayLike = (0.0, 0.0),
|
|
rotation: float = 0,
|
|
repetition: Repetition | None = None,
|
|
annotations: annotations_t | None = None,
|
|
raw: bool = False,
|
|
) -> None:
|
|
if raw:
|
|
assert isinstance(radii, numpy.ndarray)
|
|
assert isinstance(angles, numpy.ndarray)
|
|
assert isinstance(offset, numpy.ndarray)
|
|
self._radii = radii
|
|
self._angles = angles
|
|
self._width = width
|
|
self._offset = offset
|
|
self._rotation = rotation
|
|
self._repetition = repetition
|
|
self._annotations = annotations if annotations is not None else {}
|
|
else:
|
|
self.radii = radii
|
|
self.angles = angles
|
|
self.width = width
|
|
self.offset = offset
|
|
self.rotation = rotation
|
|
self.repetition = repetition
|
|
self.annotations = annotations if annotations is not None else {}
|
|
|
|
def __deepcopy__(self, memo: dict | None = None) -> 'Arc':
|
|
memo = {} if memo is None else memo
|
|
new = copy.copy(self)
|
|
new._offset = self._offset.copy()
|
|
new._radii = self._radii.copy()
|
|
new._angles = self._angles.copy()
|
|
new._annotations = copy.deepcopy(self._annotations)
|
|
return new
|
|
|
|
def to_polygons(
|
|
self,
|
|
num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES,
|
|
max_arclen: float | None = None,
|
|
) -> list[Polygon]:
|
|
if (num_vertices is None) and (max_arclen is None):
|
|
raise PatternError('Max number of points and arclength left unspecified'
|
|
+ ' (default was also overridden)')
|
|
|
|
r0, r1 = self.radii
|
|
|
|
# Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation)
|
|
a_ranges = self._angles_to_parameters()
|
|
|
|
# Approximate perimeter via numerical integration
|
|
|
|
#perimeter1 = numpy.trapz(numpy.sqrt(r0sin * r0sin + r1cos * r1cos), dx=dt)
|
|
#from scipy.special import ellipeinc
|
|
#m = 1 - (r1 / r0) ** 2
|
|
#t1 = ellipeinc(a1 - pi / 2, m)
|
|
#t0 = ellipeinc(a0 - pi / 2, m)
|
|
#perimeter2 = r0 * (t1 - t0)
|
|
|
|
def get_arclens(n_pts: int, a0: float, a1: float) -> NDArray[numpy.float64]:
|
|
""" Get `n_pts` arclengths """
|
|
t, dt = numpy.linspace(a0, a1, n_pts, retstep=True) # NOTE: could probably use an adaptive number of points
|
|
r0sin = r0 * numpy.sin(t)
|
|
r1cos = r1 * numpy.cos(t)
|
|
arc_dl = numpy.sqrt(r0sin * r0sin + r1cos * r1cos)
|
|
#arc_lengths = numpy.diff(t) * (v[1:] + v[:-1]) / 2
|
|
arc_lengths = (v[1:] + v[:-1]) * dt / 2
|
|
return arc_lengths, t
|
|
|
|
if num_vertices is not None:
|
|
n_pts = max(self.radii) / min(self.radii) * num_vertices * 100
|
|
perimeter_inner = get_arclens(n_pts, *a_ranges[0])[0].sum()
|
|
perimeter_outer = get_arclens(n_pts, *a_ranges[1])[0].sum()
|
|
implied_arclen = (perimeter_outer + perimeter_inner + self.width * 2) / num_vertices
|
|
max_arclen = min(implied_arclen, max_arclen if max_arclen is not None else numpy.inf)
|
|
|
|
def get_thetas(inner: bool) -> NDArray[numpy.float64]:
|
|
""" Figure out the parameter values at which we should place vertices to meet the arclength constraint"""
|
|
dr = -self.width / 2.0 * (-1 if inner else 1)
|
|
|
|
n_pts = 2 * pi * max(self.radii) / max_arclen
|
|
arc_lengths, thetas = get_arclens(n_pts, *a_ranges[0 if inner else 1])
|
|
|
|
keep = []
|
|
removable = (numpy.cumsum(arc_lengths) <= max_arclen)
|
|
start = 0
|
|
while True:
|
|
next_to_keep = start + numpy.where(removable)[0][-1] # TODO: any chance we haven't sampled finely enough?
|
|
keep.append(next_to_keep)
|
|
removable = (numpy.cumsum(arc_lengths[next_to_keep + 1:]) <= max_arclen)
|
|
start = next_to_keep + 1
|
|
return thetas[keep]
|
|
|
|
wh = self.width / 2.0
|
|
if wh == r0 or wh == r1:
|
|
thetas_inner = numpy.zeros(1) # Don't generate multiple vertices if we're at the origin
|
|
else:
|
|
thetas_inner = get_thetas(inner=True)
|
|
thetas_outer = get_thetas(inner=False)
|
|
|
|
sin_th_i, cos_th_i = (numpy.sin(thetas_inner), numpy.cos(thetas_inner))
|
|
sin_th_o, cos_th_o = (numpy.sin(thetas_outer), numpy.cos(thetas_outer))
|
|
|
|
xs1 = (r0 + wh) * cos_th_o
|
|
ys1 = (r1 + wh) * sin_th_o
|
|
xs2 = (r0 - wh) * cos_th_i
|
|
ys2 = (r1 - wh) * sin_th_i
|
|
|
|
xs = numpy.hstack((xs1, xs2))
|
|
ys = numpy.hstack((ys1, ys2))
|
|
xys = numpy.vstack((xs, ys)).T
|
|
|
|
poly = Polygon(xys, offset=self.offset, rotation=self.rotation)
|
|
return [poly]
|
|
|
|
def get_bounds_single(self) -> NDArray[numpy.float64]:
|
|
'''
|
|
Equation for rotated ellipse is
|
|
`x = x0 + a * cos(t) * cos(rot) - b * sin(t) * sin(phi)`
|
|
`y = y0 + a * cos(t) * sin(rot) + b * sin(t) * cos(rot)`
|
|
where `t` is our parameter.
|
|
|
|
Differentiating and solving for 0 slope wrt. `t`, we find
|
|
`tan(t) = -+ b/a cot(phi)`
|
|
where -+ is for x, y cases, so that's where the extrema are.
|
|
|
|
If the extrema are innaccessible due to arc constraints, check the arc endpoints instead.
|
|
'''
|
|
a_ranges = self._angles_to_parameters()
|
|
|
|
mins = []
|
|
maxs = []
|
|
for a, sgn in zip(a_ranges, (-1, +1)):
|
|
wh = sgn * self.width / 2
|
|
rx = self.radius_x + wh
|
|
ry = self.radius_y + wh
|
|
|
|
if rx == 0 or ry == 0:
|
|
# Single point, at origin
|
|
mins.append([0, 0])
|
|
maxs.append([0, 0])
|
|
continue
|
|
|
|
a0, a1 = a
|
|
a0_offset = a0 - (a0 % (2 * pi))
|
|
|
|
sin_r = numpy.sin(self.rotation)
|
|
cos_r = numpy.cos(self.rotation)
|
|
sin_a = numpy.sin(a)
|
|
cos_a = numpy.cos(a)
|
|
|
|
# Cutoff angles
|
|
xpt = (-self.rotation) % (2 * pi) + a0_offset
|
|
ypt = (pi / 2 - self.rotation) % (2 * pi) + a0_offset
|
|
xnt = (xpt - pi) % (2 * pi) + a0_offset
|
|
ynt = (ypt - pi) % (2 * pi) + a0_offset
|
|
|
|
# Points along coordinate axes
|
|
rx2_inv = 1 / (rx * rx)
|
|
ry2_inv = 1 / (ry * ry)
|
|
xr = numpy.abs(cos_r * cos_r * rx2_inv + sin_r * sin_r * ry2_inv) ** -0.5
|
|
yr = numpy.abs(-sin_r * -sin_r * rx2_inv + cos_r * cos_r * ry2_inv) ** -0.5
|
|
|
|
# Arc endpoints
|
|
xn, xp = sorted(rx * cos_r * cos_a - ry * sin_r * sin_a)
|
|
yn, yp = sorted(rx * sin_r * cos_a + ry * cos_r * sin_a)
|
|
|
|
# If our arc subtends a coordinate axis, use the extremum along that axis
|
|
if a0 < xpt < a1 or a0 < xpt + 2 * pi < a1:
|
|
xp = xr
|
|
|
|
if a0 < xnt < a1 or a0 < xnt + 2 * pi < a1:
|
|
xn = -xr
|
|
|
|
if a0 < ypt < a1 or a0 < ypt + 2 * pi < a1:
|
|
yp = yr
|
|
|
|
if a0 < ynt < a1 or a0 < ynt + 2 * pi < a1:
|
|
yn = -yr
|
|
|
|
mins.append([xn, yn])
|
|
maxs.append([xp, yp])
|
|
return numpy.vstack((numpy.min(mins, axis=0) + self.offset,
|
|
numpy.max(maxs, axis=0) + self.offset))
|
|
|
|
def rotate(self, theta: float) -> 'Arc':
|
|
self.rotation += theta
|
|
return self
|
|
|
|
def mirror(self, axis: int = 0) -> 'Arc':
|
|
self.offset[axis - 1] *= -1
|
|
self.rotation *= -1
|
|
self.rotation += axis * pi
|
|
self.angles *= -1
|
|
return self
|
|
|
|
def scale_by(self, c: float) -> 'Arc':
|
|
self.radii *= c
|
|
self.width *= c
|
|
return self
|
|
|
|
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
|
if self.radius_x < self.radius_y:
|
|
radii = self.radii / self.radius_x
|
|
scale = self.radius_x
|
|
rotation = self.rotation
|
|
angles = self.angles
|
|
else: # rotate by 90 degrees and swap radii
|
|
radii = self.radii[::-1] / self.radius_y
|
|
scale = self.radius_y
|
|
rotation = self.rotation + pi / 2
|
|
angles = self.angles - pi / 2
|
|
|
|
delta_angle = angles[1] - angles[0]
|
|
start_angle = angles[0] % (2 * pi)
|
|
if start_angle >= pi:
|
|
start_angle -= pi
|
|
rotation += pi
|
|
|
|
angles = (start_angle, start_angle + delta_angle)
|
|
rotation %= 2 * pi
|
|
width = self.width
|
|
|
|
return ((type(self), radii, angles, width / norm_value),
|
|
(self.offset, scale / norm_value, rotation, False),
|
|
lambda: Arc(
|
|
radii=radii * norm_value,
|
|
angles=angles,
|
|
width=width * norm_value,
|
|
))
|
|
|
|
def get_cap_edges(self) -> NDArray[numpy.float64]:
|
|
'''
|
|
Returns:
|
|
```
|
|
[[[x0, y0], [x1, y1]], array of 4 points, specifying the two cuts which
|
|
[[x2, y2], [x3, y3]]], would create this arc from its corresponding ellipse.
|
|
```
|
|
'''
|
|
a_ranges = self._angles_to_parameters()
|
|
|
|
mins = []
|
|
maxs = []
|
|
for a, sgn in zip(a_ranges, (-1, +1)):
|
|
wh = sgn * self.width / 2
|
|
rx = self.radius_x + wh
|
|
ry = self.radius_y + wh
|
|
|
|
sin_r = numpy.sin(self.rotation)
|
|
cos_r = numpy.cos(self.rotation)
|
|
sin_a = numpy.sin(a)
|
|
cos_a = numpy.cos(a)
|
|
|
|
# arc endpoints
|
|
xn, xp = sorted(rx * cos_r * cos_a - ry * sin_r * sin_a)
|
|
yn, yp = sorted(rx * sin_r * cos_a + ry * cos_r * sin_a)
|
|
|
|
mins.append([xn, yn])
|
|
maxs.append([xp, yp])
|
|
return numpy.array([mins, maxs]) + self.offset
|
|
|
|
def _angles_to_parameters(self) -> NDArray[numpy.float64]:
|
|
'''
|
|
Returns:
|
|
"Eccentric anomaly" parameter ranges for the inner and outer edges, in the form
|
|
`[[a_min_inner, a_max_inner], [a_min_outer, a_max_outer]]`
|
|
'''
|
|
a = []
|
|
for sgn in (-1, +1):
|
|
wh = sgn * self.width / 2
|
|
rx = self.radius_x + wh
|
|
ry = self.radius_y + wh
|
|
|
|
# create paremeter 'a' for parametrized ellipse
|
|
a0, a1 = (numpy.arctan2(rx * numpy.sin(a), ry * numpy.cos(a)) for a in self.angles)
|
|
sign = numpy.sign(self.angles[1] - self.angles[0])
|
|
if sign != numpy.sign(a1 - a0):
|
|
a1 += sign * 2 * pi
|
|
|
|
a.append((a0, a1))
|
|
return numpy.array(a)
|
|
|
|
def __repr__(self) -> str:
|
|
angles = f' a°{numpy.rad2deg(self.angles)}'
|
|
rotation = f' r°{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
|
|
return f'<Arc o{self.offset} r{self.radii}{angles} w{self.width:g}{rotation}>'
|