You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
masque/masque/builder/tools.py

347 lines
11 KiB
Python

"""
Tools are objects which dynamically generate simple single-use devices (e.g. wires or waveguides)
"""
from typing import Sequence, Literal, Callable, Any
from abc import ABCMeta, abstractmethod # TODO any way to make Tool ok with implementing only one method?
from dataclasses import dataclass
import numpy
from numpy import pi
from ..utils import SupportsBool, rotation_matrix_2d, layer_t
from ..ports import Port
from ..pattern import Pattern
from ..abstract import Abstract
from ..library import ILibrary, Library
from ..error import BuildError
from .builder import Builder
@dataclass(frozen=True, slots=True)
class RenderStep:
opcode: Literal['L', 'S', 'U', 'P']
tool: 'Tool' | None
start_port: Port
data: Any
def __post_init__(self) -> None:
if self.opcode != 'P' and self.tool is None:
raise BuildError('Got tool=None but the opcode is not "P"')
class Tool:
def path(
self,
ccw: SupportsBool | None,
length: float,
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
port_names: tuple[str, str] = ('A', 'B'),
**kwargs,
) -> Pattern:
raise NotImplementedError(f'path() not implemented for {type(self)}')
def planL(
self,
ccw: SupportsBool | None,
length: float,
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
**kwargs,
) -> Any:
raise NotImplementedError(f'planL() not implemented for {type(self)}')
def planS(
self,
ccw: SupportsBool | None,
length: float,
jog: float,
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
**kwargs,
) -> Any:
raise NotImplementedError(f'planS() not implemented for {type(self)}')
def render(
self,
batch: Sequence[RenderStep],
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
port_names: Sequence[str] = ('A', 'B'),
**kwargs,
) -> ILibrary:
assert not batch or batch[0].tool == self
raise NotImplementedError(f'render() not implemented for {type(self)}')
abstract_tuple_t = tuple[Abstract, str, str]
class BasicTool(Tool, metaclass=ABCMeta):
straight: tuple[Callable[[float], Pattern], str, str]
bend: abstract_tuple_t # Assumed to be clockwise
transitions: dict[str, abstract_tuple_t]
default_out_ptype: str
def path(
self,
ccw: SupportsBool | None,
length: float,
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
port_names: tuple[str, str] = ('A', 'B'),
**kwargs,
) -> Pattern:
straight_length, _ccw, in_transition, out_transition = self.planL(
ccw,
length,
in_ptype=in_ptype,
out_ptype=out_ptype,
)
gen_straight, sport_in, sport_out = self.straight
tree = Library()
bb = Builder(library=tree, name='_path').add_port_pair(names=port_names)
if in_transition:
ipat, iport_theirs, _iport_ours = in_transition
bb.plug(ipat, {port_names[1]: iport_theirs})
if not numpy.isclose(straight_length, 0):
straight = tree << {'_straight': gen_straight(straight_length)}
bb.plug(straight, {port_names[1]: sport_in})
if ccw is not None:
bend, bport_in, bport_out = self.bend
bb.plug(bend, {port_names[1]: bport_in}, mirrored=(False, bool(ccw)))
if out_transition:
opat, oport_theirs, oport_ours = out_transition
bb.plug(opat, {port_names[1]: oport_ours})
return bb.pattern
def planL(
self,
ccw: SupportsBool | None,
length: float,
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
**kwargs,
) -> tuple[float, SupportsBool | None, abstract_tuple_t | None, abstract_tuple_t | None]:
# TODO check all the math for L-shaped bends
if ccw is not None:
bend, bport_in, bport_out = self.bend
angle_in = bend.ports[bport_in].rotation
angle_out = bend.ports[bport_out].rotation
assert angle_in is not None
assert angle_out is not None
bend_dxy = rotation_matrix_2d(-angle_in) @ (
bend.ports[bport_out].offset
- bend.ports[bport_in].offset
)
bend_angle = angle_out - angle_in
if bool(ccw):
bend_dxy[1] *= -1
bend_angle *= -1
else:
bend_dxy = numpy.zeros(2)
bend_angle = 0
in_transition = self.transitions.get('unk' if in_ptype is None else in_ptype, None)
if in_transition is not None:
ipat, iport_theirs, iport_ours = in_transition
irot = ipat.ports[iport_theirs].rotation
assert irot is not None
itrans_dxy = rotation_matrix_2d(-irot) @ (
ipat.ports[iport_ours].offset
- ipat.ports[iport_theirs].offset
)
else:
itrans_dxy = numpy.zeros(2)
out_transition = self.transitions.get('unk' if out_ptype is None else out_ptype, None)
if out_transition is not None:
opat, oport_theirs, oport_ours = out_transition
orot = opat.ports[oport_ours].rotation
assert orot is not None
otrans_dxy = rotation_matrix_2d(-orot + bend_angle) @ (
opat.ports[oport_theirs].offset
- opat.ports[oport_ours].offset
)
else:
otrans_dxy = numpy.zeros(2)
if out_transition is not None:
out_ptype_actual = opat.ports[oport_theirs].ptype
elif ccw is not None:
out_ptype_actual = bend.ports[bport_out].ptype
else:
out_ptype_actual = self.default_out_ptype
straight_length = length - bend_dxy[0] - itrans_dxy[0] - otrans_dxy[0]
bend_run = bend_dxy[1] + itrans_dxy[1] + otrans_dxy
if straight_length < 0:
raise BuildError(
f'Asked to draw path with total length {length:,g}, shorter than required bends and transitions:\n'
f'bend: {bend_dxy[0]:,g} in_trans: {itrans_dxy[0]:,g} out_trans: {otrans_dxy[0]:,g}'
)
return float(straight_length), ccw, in_transition, out_transition
def render(
self,
batch: Sequence[RenderStep],
*,
port_names: Sequence[str] = ('A', 'B'),
append: bool = True,
**kwargs,
) -> ILibrary:
tree = Library()
bb = Builder(library=tree, name='_path').add_port_pair(names=(port_names[0], port_names[1]))
gen_straight, sport_in, _sport_out = self.straight
for step in batch:
straight_length, ccw, in_transition, out_transition = step.data
assert step.tool == self
if step.opcode == 'L':
if in_transition:
ipat, iport_theirs, _iport_ours = in_transition
bb.plug(ipat, {port_names[1]: iport_theirs})
if not numpy.isclose(straight_length, 0):
straight_pat = gen_straight(straight_length)
if append:
bb.plug(straight_pat, {port_names[1]: sport_in}, append=True)
else:
straight = tree << {'_straight': straight_pat}
bb.plug(straight, {port_names[1]: sport_in}, append=True)
if ccw is not None:
bend, bport_in, bport_out = self.bend
bb.plug(bend, {port_names[1]: bport_in}, mirrored=(False, bool(ccw)))
if out_transition:
opat, oport_theirs, oport_ours = out_transition
bb.plug(opat, {port_names[1]: oport_ours})
return tree
class PathTool(Tool, metaclass=ABCMeta):
straight: tuple[Callable[[float], Pattern], str, str]
bend: abstract_tuple_t # Assumed to be clockwise
transitions: dict[str, abstract_tuple_t]
ptype: str
width: float
layer: layer_t
def __init__(self, layer: layer_t, width: float, ptype: str = 'unk') -> None:
Tool.__init__(self)
self.layer = layer
self.width = width
self.ptype: str
def path(
self,
ccw: SupportsBool | None,
length: float,
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
port_names: tuple[str, str] = ('A', 'B'),
**kwargs,
) -> Pattern:
dxy = self.planL(
ccw,
length,
in_ptype=in_ptype,
out_ptype=out_ptype,
)
pat = Pattern()
pat.path(layer=self.layer, width=self.width, vertices=[(0, 0), (length, 0)])
if ccw is None:
out_rot = pi
elif bool(ccw):
out_rot = -pi / 2
else:
out_rot = pi / 2
pat.ports = {
port_names[0]: Port((0, 0), rotation=0, ptype=self.ptype),
port_names[1]: Port(dxy, rotation=out_rot, ptype=self.ptype),
}
return pat
def planL(
self,
ccw: SupportsBool | None,
length: float,
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
**kwargs,
) -> tuple[float, float]:
# TODO check all the math for L-shaped bends
if out_ptype and out_ptype != self.ptype:
raise BuildError(f'Requested {out_ptype=} does not match path ptype {self.ptype}')
if ccw is not None:
bend_dxy = numpy.array([1, -1]) * self.width / 2
bend_angle = pi / 2
if bool(ccw):
bend_dxy[1] *= -1
bend_angle *= -1
else:
bend_dxy = numpy.zeros(2)
bend_angle = 0
straight_length = length - bend_dxy[0]
bend_run = bend_dxy[1]
if straight_length < 0:
raise BuildError(
f'Asked to draw path with total length {length:,g}, shorter than required bend: {bend_dxy[0]:,g}'
)
return length, bend_run
def render(
self,
batch: Sequence[RenderStep],
*,
port_names: Sequence[str] = ('A', 'B'),
**kwargs,
) -> ILibrary:
path_vertices = [batch[0].start_port.offset]
for step in batch:
assert step.tool == self
port_rot = step.start_port.rotation
assert port_rot is not None
if step.opcode == 'L':
length, bend_run = step.data
dxy = rotation_matrix_2d(port_rot + pi) @ (length, bend_run)
path_vertices.append(step.start_port.offset + dxy)
else:
raise BuildError(f'Unrecognized opcode "{step.opcode}"')
tree, pat = Library.mktree('_path')
pat.path(layer=self.layer, width=self.width, vertices=path_vertices)
return tree