162 lines
5.0 KiB
Python
162 lines
5.0 KiB
Python
from typing import List
|
|
import math
|
|
import numpy
|
|
from numpy import pi
|
|
|
|
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
|
from .. import PatternError
|
|
from ..utils import is_scalar, rotation_matrix_2d, vector2
|
|
|
|
|
|
__author__ = 'Jan Petykiewicz'
|
|
|
|
|
|
class Ellipse(Shape):
|
|
"""
|
|
An ellipse, which has a position, two radii, and a rotation.
|
|
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
|
|
"""
|
|
|
|
_radii = None # type: numpy.ndarray
|
|
_rotation = 0.0 # type: float
|
|
|
|
# Defaults for to_polygons
|
|
poly_num_points = DEFAULT_POLY_NUM_POINTS # type: int
|
|
poly_max_arclen = None # type: float
|
|
|
|
# radius properties
|
|
@property
|
|
def radii(self) -> numpy.ndarray:
|
|
"""
|
|
Return the radii [rx, ry]
|
|
|
|
:return: [rx, ry]
|
|
"""
|
|
return self._radii
|
|
|
|
@radii.setter
|
|
def radii(self, val: vector2):
|
|
val = numpy.array(val).flatten()
|
|
if not val.size == 2:
|
|
raise PatternError('Radii must have length 2')
|
|
if not val.min() >= 0:
|
|
raise PatternError('Radii must be non-negative')
|
|
self._radii = val
|
|
|
|
@property
|
|
def radius_x(self) -> float:
|
|
return self.radii[0]
|
|
|
|
@radius_x.setter
|
|
def radius_x(self, val: float):
|
|
if not val >= 0:
|
|
raise PatternError('Radius must be non-negative')
|
|
self.radii[0] = val
|
|
|
|
@property
|
|
def radius_y(self) -> float:
|
|
return self.radii[1]
|
|
|
|
@radius_y.setter
|
|
def radius_y(self, val: float):
|
|
if not val >= 0:
|
|
raise PatternError('Radius must be non-negative')
|
|
self.radii[1] = val
|
|
|
|
# Rotation property
|
|
@property
|
|
def rotation(self) -> float:
|
|
"""
|
|
Rotation of rx from the x axis. Uses the interval [0, pi) in radians (counterclockwise
|
|
is positive)
|
|
|
|
:return: counterclockwise rotation in radians
|
|
"""
|
|
return self._rotation
|
|
|
|
@rotation.setter
|
|
def rotation(self, val: float):
|
|
if not is_scalar(val):
|
|
raise PatternError('Rotation must be a scalar')
|
|
self._rotation = val % pi
|
|
|
|
def __init__(self,
|
|
radii: vector2,
|
|
rotation: float=0,
|
|
poly_num_points: int=DEFAULT_POLY_NUM_POINTS,
|
|
poly_max_arclen: float=None,
|
|
offset: vector2=(0.0, 0.0),
|
|
layer: int=0,
|
|
dose: float=1.0):
|
|
self.offset = offset
|
|
self.layer = layer
|
|
self.dose = dose
|
|
self.radii = radii
|
|
self.rotation = rotation
|
|
self.poly_num_points = poly_num_points
|
|
self.poly_max_arclen = poly_max_arclen
|
|
|
|
def to_polygons(self,
|
|
poly_num_points: int=None,
|
|
poly_max_arclen: float=None
|
|
) -> List[Polygon]:
|
|
if poly_num_points is None:
|
|
poly_num_points = self.poly_num_points
|
|
if poly_max_arclen is None:
|
|
poly_max_arclen = self.poly_max_arclen
|
|
|
|
if (poly_num_points is None) and (poly_max_arclen is None):
|
|
raise PatternError('Number of points and arclength left unspecified'
|
|
' (default was also overridden)')
|
|
|
|
r0, r1 = self.radii
|
|
|
|
# Approximate perimeter
|
|
# Ramanujan, S., "Modular Equations and Approximations to ,"
|
|
# Quart. J. Pure. Appl. Math., vol. 45 (1913-1914), pp. 350-372
|
|
h = ((r1 - r0) / (r1 + r0)) ** 2
|
|
perimeter = pi * (r1 + r0) * (1 + 3 * h / (10 + math.sqrt(4 - 3 * h)))
|
|
|
|
n = []
|
|
if poly_num_points is not None:
|
|
n += [poly_num_points]
|
|
if poly_max_arclen is not None:
|
|
n += [perimeter / poly_max_arclen]
|
|
thetas = numpy.linspace(2 * pi, 0, max(n), endpoint=False)
|
|
|
|
sin_th, cos_th = (numpy.sin(thetas), numpy.cos(thetas))
|
|
xs = r0 * cos_th
|
|
ys = r1 * sin_th
|
|
xys = numpy.vstack((xs, ys)).T
|
|
|
|
poly = Polygon(xys, dose=self.dose, layer=self.layer, offset=self.offset)
|
|
poly.rotate(self.rotation)
|
|
return [poly]
|
|
|
|
def get_bounds(self) -> numpy.ndarray:
|
|
rot_radii = numpy.dot(rotation_matrix_2d(self.rotation), self.radii)
|
|
return numpy.vstack((self.offset - rot_radii[0],
|
|
self.offset + rot_radii[1]))
|
|
|
|
def rotate(self, theta: float) -> 'Ellipse':
|
|
self.rotation += theta
|
|
return self
|
|
|
|
def scale_by(self, c: float) -> 'Ellipse':
|
|
self.radii *= c
|
|
return self
|
|
|
|
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
|
if self.radius_x < self.radius_y:
|
|
radii = self.radii / self.radius_x
|
|
scale = self.radius_x
|
|
angle = self.rotation
|
|
else:
|
|
radii = self.radii[::-1] / self.radius_y
|
|
scale = self.radius_y
|
|
angle = (self.rotation + pi / 2) % pi
|
|
return (type(self), radii, self.layer), \
|
|
(self.offset, scale/norm_value, angle, self.dose), \
|
|
lambda: Ellipse(radii=radii*norm_value, layer=self.layer)
|
|
|