masque/examples/tutorial/renderpather.py

97 lines
3.8 KiB
Python

"""
Manual wire routing tutorial: RenderPather an PathTool
"""
from collections.abc import Callable
from masque import RenderPather, Library, Pattern, Port, layer_t, map_layers
from masque.builder.tools import PathTool
from masque.file.gdsii import writefile
from basic_shapes import GDS_OPTS
from pather import M1_WIDTH, V1_WIDTH, M2_WIDTH, map_layer, make_pad, make_via
def main() -> None:
#
# To illustrate the advantages of using `RenderPather`, we use `PathTool` instead
# of `BasicTool`. `PathTool` lacks some sophistication (e.g. no automatic transitions)
# but when used with `RenderPather`, it can consolidate multiple routing steps into
# a single `Path` shape.
#
# We'll try to nearly replicate the layout from the `Pather` tutorial; see `pather.py`
# for more detailed descriptions of the individual pathing steps.
#
# First, we make a library and generate some of the same patterns as in the pather tutorial
library = Library()
library['pad'] = make_pad()
library['v1_via'] = make_via(
layer_top='M2',
layer_via='V1',
layer_bot='M1',
width_top=M2_WIDTH,
width_via=V1_WIDTH,
width_bot=M1_WIDTH,
ptype_bot='m1wire',
ptype_top='m2wire',
)
# `PathTool` is more limited than `BasicTool`. It only generates one type of shape
# (`Path`), so it only needs to know what layer to draw on, what width to draw with,
# and what port type to present.
M1_ptool = PathTool(layer='M1', width=M1_WIDTH, ptype='m1wire')
M2_ptool = PathTool(layer='M2', width=M2_WIDTH, ptype='m2wire')
rpather = RenderPather(tools=M2_ptool, library=library)
# As in the pather tutorial, we make soem pads and labels...
rpather.place('pad', offset=(18_000, 30_000), port_map={'wire_port': 'VCC'})
rpather.place('pad', offset=(18_000, 60_000), port_map={'wire_port': 'GND'})
rpather.pattern.label(layer='M2', string='VCC', offset=(18e3, 30e3))
rpather.pattern.label(layer='M2', string='GND', offset=(18e3, 60e3))
# ...and start routing the signals.
rpather.path('VCC', ccw=False, length=6_000)
rpather.path_to('VCC', ccw=None, x=0)
rpather.path('GND', 0, 5_000)
rpather.path_to('GND', None, x=rpather['VCC'].offset[0])
# `PathTool` doesn't know how to transition betwen metal layers, so we have to
# `plug` the via into the GND wire ourselves.
rpather.plug('v1_via', {'GND': 'top'})
rpather.retool(M1_ptool, keys=['GND'])
rpather.mpath(['GND', 'VCC'], ccw=True, xmax=-10_000, spacing=5_000)
# Same thing on the VCC wire when it goes down to M1.
rpather.plug('v1_via', {'VCC': 'top'})
rpather.retool(M1_ptool)
rpather.mpath(['GND', 'VCC'], ccw=True, emax=50_000, spacing=1_200)
rpather.mpath(['GND', 'VCC'], ccw=False, emin=1_000, spacing=1_200)
rpather.mpath(['GND', 'VCC'], ccw=False, emin=2_000, spacing=4_500)
# And again when VCC goes back up to M2.
rpather.plug('v1_via', {'VCC': 'bottom'})
rpather.retool(M2_ptool)
rpather.mpath(['GND', 'VCC'], None, xmin=-28_000)
# Finally, since PathTool has no conception of transitions, we can't
# just ask it to transition to an 'm1wire' port at the end of the final VCC segment.
# Instead, we have to calculate the via size ourselves, and adjust the final position
# to account for it.
via_size = abs(
library['v1_via'].ports['top'].offset[0]
- library['v1_via'].ports['bottom'].offset[0]
)
rpather.path_to('VCC', None, -50_000 + via_size)
rpather.plug('v1_via', {'VCC': 'top'})
rpather.render()
library['RenderPather_and_PathTool'] = rpather.pattern
# Convert from text-based layers to numeric layers for GDS, and output the file
library.map_layers(map_layer)
writefile(library, 'render_pather.gds', **GDS_OPTS)
if __name__ == '__main__':
main()