553 lines
20 KiB
Python
553 lines
20 KiB
Python
"""
|
|
Tools are objects which dynamically generate simple single-use devices (e.g. wires or waveguides)
|
|
|
|
# TODO document all tools
|
|
"""
|
|
from typing import Sequence, Literal, Callable, Any
|
|
from abc import ABCMeta # , abstractmethod # TODO any way to make Tool ok with implementing only one method?
|
|
from dataclasses import dataclass
|
|
|
|
import numpy
|
|
from numpy.typing import NDArray
|
|
from numpy import pi
|
|
|
|
from ..utils import SupportsBool, rotation_matrix_2d, layer_t
|
|
from ..ports import Port
|
|
from ..pattern import Pattern
|
|
from ..abstract import Abstract
|
|
from ..library import ILibrary, Library, SINGLE_USE_PREFIX
|
|
from ..error import BuildError
|
|
|
|
|
|
@dataclass(frozen=True, slots=True)
|
|
class RenderStep:
|
|
"""
|
|
Representation of a single saved operation, used by `RenderPather` and passed
|
|
to `Tool.render()` when `RenderPather.render()` is called.
|
|
"""
|
|
opcode: Literal['L', 'S', 'U', 'P']
|
|
""" What operation is being performed.
|
|
L: planL (straight, optionally with a single bend)
|
|
S: planS (s-bend)
|
|
U: planU (u-bend)
|
|
P: plug
|
|
"""
|
|
|
|
tool: 'Tool | None'
|
|
""" The current tool. May be `None` if `opcode='P'` """
|
|
|
|
start_port: Port
|
|
end_port: Port
|
|
|
|
data: Any
|
|
""" Arbitrary tool-specific data"""
|
|
|
|
def __post_init__(self) -> None:
|
|
if self.opcode != 'P' and self.tool is None:
|
|
raise BuildError('Got tool=None but the opcode is not "P"')
|
|
|
|
|
|
class Tool:
|
|
"""
|
|
Interface for path (e.g. wire or waveguide) generation.
|
|
|
|
Note that subclasses may implement only a subset of the methods and leave others
|
|
unimplemented (e.g. in cases where they don't make sense or the required components
|
|
are impractical or unavailable).
|
|
"""
|
|
def path(
|
|
self,
|
|
ccw: SupportsBool | None,
|
|
length: float,
|
|
*,
|
|
in_ptype: str | None = None,
|
|
out_ptype: str | None = None,
|
|
port_names: tuple[str, str] = ('A', 'B'),
|
|
**kwargs,
|
|
) -> Library:
|
|
"""
|
|
Create a wire or waveguide that travels exactly `length` distance along the axis
|
|
of its input port.
|
|
|
|
Used by `Pather`.
|
|
|
|
The output port must be exactly `length` away along the input port's axis, but
|
|
may be placed an additional (unspecified) distance away along the perpendicular
|
|
direction. The output port should be rotated (or not) based on the value of
|
|
`ccw`.
|
|
|
|
The input and output ports should be compatible with `in_ptype` and
|
|
`out_ptype`, respectively. They should also be named `port_names[0]` and
|
|
`port_names[1]`, respectively.
|
|
|
|
Args:
|
|
ccw: If `None`, the output should be along the same axis as the input.
|
|
Otherwise, cast to bool and turn counterclockwise if True
|
|
and clockwise otherwise.
|
|
length: The total distance from input to output, along the input's axis only.
|
|
(There may be a tool-dependent offset along the other axis.)
|
|
in_ptype: The `ptype` of the port into which this wire's input will be `plug`ged.
|
|
out_ptype: The `ptype` of the port into which this wire's output will be `plug`ged.
|
|
port_names: The output pattern will have its input port named `port_names[0]` and
|
|
its output named `port_names[1]`.
|
|
kwargs: Custom tool-specific parameters.
|
|
|
|
Returns:
|
|
A pattern tree containing the requested L-shaped (or straight) wire or waveguide
|
|
|
|
Raises:
|
|
BuildError if an impossible or unsupported geometry is requested.
|
|
"""
|
|
raise NotImplementedError(f'path() not implemented for {type(self)}')
|
|
|
|
def planL(
|
|
self,
|
|
ccw: SupportsBool | None,
|
|
length: float,
|
|
*,
|
|
in_ptype: str | None = None,
|
|
out_ptype: str | None = None,
|
|
**kwargs,
|
|
) -> tuple[Port, Any]:
|
|
"""
|
|
Plan a wire or waveguide that travels exactly `length` distance along the axis
|
|
of its input port.
|
|
|
|
Used by `RenderPather`.
|
|
|
|
The output port must be exactly `length` away along the input port's axis, but
|
|
may be placed an additional (unspecified) distance away along the perpendicular
|
|
direction. The output port should be rotated (or not) based on the value of
|
|
`ccw`.
|
|
|
|
The input and output ports should be compatible with `in_ptype` and
|
|
`out_ptype`, respectively.
|
|
|
|
Args:
|
|
ccw: If `None`, the output should be along the same axis as the input.
|
|
Otherwise, cast to bool and turn counterclockwise if True
|
|
and clockwise otherwise.
|
|
length: The total distance from input to output, along the input's axis only.
|
|
(There may be a tool-dependent offset along the other axis.)
|
|
in_ptype: The `ptype` of the port into which this wire's input will be `plug`ged.
|
|
out_ptype: The `ptype` of the port into which this wire's output will be `plug`ged.
|
|
kwargs: Custom tool-specific parameters.
|
|
|
|
Returns:
|
|
The calculated output `Port` for the wire.
|
|
Any tool-specifc data, to be stored in `RenderStep.data`, for use during rendering.
|
|
|
|
Raises:
|
|
BuildError if an impossible or unsupported geometry is requested.
|
|
"""
|
|
raise NotImplementedError(f'planL() not implemented for {type(self)}')
|
|
|
|
def planS(
|
|
self,
|
|
length: float,
|
|
jog: float,
|
|
*,
|
|
in_ptype: str | None = None,
|
|
out_ptype: str | None = None,
|
|
**kwargs,
|
|
) -> tuple[Port, Any]:
|
|
"""
|
|
Plan a wire or waveguide that travels exactly `length` distance along the axis
|
|
of its input port and `jog` distance along the perpendicular axis (i.e. an S-bend).
|
|
|
|
Used by `RenderPather`.
|
|
|
|
The output port must have an orientation rotated by pi from the input port.
|
|
|
|
The input and output ports should be compatible with `in_ptype` and
|
|
`out_ptype`, respectively.
|
|
|
|
Args:
|
|
length: The total distance from input to output, along the input's axis only.
|
|
jog: The total offset from the input to output, along the perpendicular axis.
|
|
A positive number implies a rightwards shift (i.e. clockwise bend followed
|
|
by a counterclockwise bend)
|
|
in_ptype: The `ptype` of the port into which this wire's input will be `plug`ged.
|
|
out_ptype: The `ptype` of the port into which this wire's output will be `plug`ged.
|
|
kwargs: Custom tool-specific parameters.
|
|
|
|
Returns:
|
|
The calculated output `Port` for the wire.
|
|
Any tool-specifc data, to be stored in `RenderStep.data`, for use during rendering.
|
|
|
|
Raises:
|
|
BuildError if an impossible or unsupported geometry is requested.
|
|
"""
|
|
raise NotImplementedError(f'planS() not implemented for {type(self)}')
|
|
|
|
def planU(
|
|
self,
|
|
jog: float,
|
|
*,
|
|
in_ptype: str | None = None,
|
|
out_ptype: str | None = None,
|
|
**kwargs,
|
|
) -> tuple[Port, Any]:
|
|
"""
|
|
# NOTE: TODO: U-bend is WIP; this interface may change in the future.
|
|
|
|
Plan a wire or waveguide that travels exactly `jog` distance along the axis
|
|
perpendicular to its input port (i.e. a U-bend).
|
|
|
|
Used by `RenderPather`.
|
|
|
|
The output port must have an orientation identical to the input port.
|
|
|
|
The input and output ports should be compatible with `in_ptype` and
|
|
`out_ptype`, respectively.
|
|
|
|
Args:
|
|
jog: The total offset from the input to output, along the perpendicular axis.
|
|
A positive number implies a rightwards shift (i.e. clockwise bend followed
|
|
by a counterclockwise bend)
|
|
in_ptype: The `ptype` of the port into which this wire's input will be `plug`ged.
|
|
out_ptype: The `ptype` of the port into which this wire's output will be `plug`ged.
|
|
kwargs: Custom tool-specific parameters.
|
|
|
|
Returns:
|
|
The calculated output `Port` for the wire.
|
|
Any tool-specifc data, to be stored in `RenderStep.data`, for use during rendering.
|
|
|
|
Raises:
|
|
BuildError if an impossible or unsupported geometry is requested.
|
|
"""
|
|
raise NotImplementedError(f'planU() not implemented for {type(self)}')
|
|
|
|
def render(
|
|
self,
|
|
batch: Sequence[RenderStep],
|
|
*,
|
|
port_names: Sequence[str] = ('A', 'B'),
|
|
**kwargs,
|
|
) -> ILibrary:
|
|
"""
|
|
Render the provided `batch` of `RenderStep`s into geometry, returning a tree
|
|
(a Library with a single topcell).
|
|
|
|
Args:
|
|
batch: A sequence of `RenderStep` objects containing the ports and data
|
|
provided by this tool's `planL`/`planS`/`planU` functions.
|
|
port_names: The topcell's input and output ports should be named
|
|
`port_names[0]` and `port_names[1]` respectively.
|
|
kwargs: Custom tool-specific parameters.
|
|
"""
|
|
assert not batch or batch[0].tool == self
|
|
raise NotImplementedError(f'render() not implemented for {type(self)}')
|
|
|
|
|
|
abstract_tuple_t = tuple[Abstract, str, str]
|
|
|
|
|
|
@dataclass
|
|
class BasicTool(Tool, metaclass=ABCMeta):
|
|
"""
|
|
A simple tool which relies on a single pre-rendered `bend` pattern, a function
|
|
for generating straight paths, and a table of pre-rendered `transitions` for converting
|
|
from non-native ptypes.
|
|
"""
|
|
straight: tuple[Callable[[float], Pattern], str, str]
|
|
""" `create_straight(length: float), in_port_name, out_port_name` """
|
|
|
|
bend: abstract_tuple_t # Assumed to be clockwise
|
|
""" `clockwise_bend_abstract, in_port_name, out_port_name` """
|
|
|
|
transitions: dict[str, abstract_tuple_t]
|
|
""" `{ptype: (transition_abstract`, ptype_port_name, other_port_name), ...}` """
|
|
|
|
default_out_ptype: str
|
|
""" Default value for out_ptype """
|
|
|
|
@dataclass(frozen=True, slots=True)
|
|
class LData:
|
|
""" Data for planL """
|
|
straight_length: float
|
|
ccw: SupportsBool | None
|
|
in_transition: abstract_tuple_t | None
|
|
out_transition: abstract_tuple_t | None
|
|
|
|
def path(
|
|
self,
|
|
ccw: SupportsBool | None,
|
|
length: float,
|
|
*,
|
|
in_ptype: str | None = None,
|
|
out_ptype: str | None = None,
|
|
port_names: tuple[str, str] = ('A', 'B'),
|
|
**kwargs,
|
|
) -> Library:
|
|
_out_port, data = self.planL(
|
|
ccw,
|
|
length,
|
|
in_ptype=in_ptype,
|
|
out_ptype=out_ptype,
|
|
)
|
|
|
|
gen_straight, sport_in, sport_out = self.straight
|
|
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
|
|
pat.add_port_pair(names=port_names)
|
|
if data.in_transition:
|
|
ipat, iport_theirs, _iport_ours = data.in_transition
|
|
pat.plug(ipat, {port_names[1]: iport_theirs})
|
|
if not numpy.isclose(data.straight_length, 0):
|
|
straight = tree <= {SINGLE_USE_PREFIX + 'straight': gen_straight(data.straight_length, **kwargs)}
|
|
pat.plug(straight, {port_names[1]: sport_in})
|
|
if data.ccw is not None:
|
|
bend, bport_in, bport_out = self.bend
|
|
pat.plug(bend, {port_names[1]: bport_in}, mirrored=bool(ccw))
|
|
if data.out_transition:
|
|
opat, oport_theirs, oport_ours = data.out_transition
|
|
pat.plug(opat, {port_names[1]: oport_ours})
|
|
|
|
return tree
|
|
|
|
def planL(
|
|
self,
|
|
ccw: SupportsBool | None,
|
|
length: float,
|
|
*,
|
|
in_ptype: str | None = None,
|
|
out_ptype: str | None = None,
|
|
**kwargs,
|
|
) -> tuple[Port, LData]:
|
|
# TODO check all the math for L-shaped bends
|
|
if ccw is not None:
|
|
bend, bport_in, bport_out = self.bend
|
|
|
|
angle_in = bend.ports[bport_in].rotation
|
|
angle_out = bend.ports[bport_out].rotation
|
|
assert angle_in is not None
|
|
assert angle_out is not None
|
|
|
|
bend_dxy = rotation_matrix_2d(-angle_in) @ (
|
|
bend.ports[bport_out].offset
|
|
- bend.ports[bport_in].offset
|
|
)
|
|
|
|
bend_angle = angle_out - angle_in
|
|
|
|
if bool(ccw):
|
|
bend_dxy[1] *= -1
|
|
bend_angle *= -1
|
|
else:
|
|
bend_dxy = numpy.zeros(2)
|
|
bend_angle = 0
|
|
|
|
in_transition = self.transitions.get('unk' if in_ptype is None else in_ptype, None)
|
|
if in_transition is not None:
|
|
ipat, iport_theirs, iport_ours = in_transition
|
|
irot = ipat.ports[iport_theirs].rotation
|
|
assert irot is not None
|
|
itrans_dxy = rotation_matrix_2d(-irot) @ (
|
|
ipat.ports[iport_ours].offset
|
|
- ipat.ports[iport_theirs].offset
|
|
)
|
|
else:
|
|
itrans_dxy = numpy.zeros(2)
|
|
|
|
out_transition = self.transitions.get('unk' if out_ptype is None else out_ptype, None)
|
|
if out_transition is not None:
|
|
opat, oport_theirs, oport_ours = out_transition
|
|
orot = opat.ports[oport_ours].rotation
|
|
assert orot is not None
|
|
|
|
otrans_dxy = rotation_matrix_2d(-orot + bend_angle) @ (
|
|
opat.ports[oport_theirs].offset
|
|
- opat.ports[oport_ours].offset
|
|
)
|
|
else:
|
|
otrans_dxy = numpy.zeros(2)
|
|
|
|
if out_transition is not None:
|
|
out_ptype_actual = opat.ports[oport_theirs].ptype
|
|
elif ccw is not None:
|
|
out_ptype_actual = bend.ports[bport_out].ptype
|
|
else:
|
|
out_ptype_actual = self.default_out_ptype
|
|
|
|
straight_length = length - bend_dxy[0] - itrans_dxy[0] - otrans_dxy[0]
|
|
bend_run = bend_dxy[1] + itrans_dxy[1] + otrans_dxy[1]
|
|
|
|
if straight_length < 0:
|
|
raise BuildError(
|
|
f'Asked to draw path with total length {length:,g}, shorter than required bends and transitions:\n'
|
|
f'bend: {bend_dxy[0]:,g} in_trans: {itrans_dxy[0]:,g} out_trans: {otrans_dxy[0]:,g}'
|
|
)
|
|
|
|
data = self.LData(straight_length, ccw, in_transition, out_transition)
|
|
out_port = Port((length, bend_run), rotation=bend_angle, ptype=out_ptype_actual)
|
|
return out_port, data
|
|
|
|
def render(
|
|
self,
|
|
batch: Sequence[RenderStep],
|
|
*,
|
|
port_names: Sequence[str] = ('A', 'B'),
|
|
append: bool = True,
|
|
**kwargs,
|
|
) -> ILibrary:
|
|
|
|
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
|
|
pat.add_port_pair(names=(port_names[0], port_names[1]))
|
|
|
|
gen_straight, sport_in, _sport_out = self.straight
|
|
for step in batch:
|
|
straight_length, ccw, in_transition, out_transition = step.data
|
|
assert step.tool == self
|
|
|
|
if step.opcode == 'L':
|
|
if in_transition:
|
|
ipat, iport_theirs, _iport_ours = in_transition
|
|
pat.plug(ipat, {port_names[1]: iport_theirs})
|
|
if not numpy.isclose(straight_length, 0):
|
|
straight_pat = gen_straight(straight_length)
|
|
if append:
|
|
pat.plug(straight_pat, {port_names[1]: sport_in}, append=True)
|
|
else:
|
|
straight = tree <= {SINGLE_USE_PREFIX + 'straight': straight_pat}
|
|
pat.plug(straight, {port_names[1]: sport_in}, append=True)
|
|
if ccw is not None:
|
|
bend, bport_in, bport_out = self.bend
|
|
pat.plug(bend, {port_names[1]: bport_in}, mirrored=bool(ccw))
|
|
if out_transition:
|
|
opat, oport_theirs, oport_ours = out_transition
|
|
pat.plug(opat, {port_names[1]: oport_ours})
|
|
return tree
|
|
|
|
|
|
@dataclass
|
|
class PathTool(Tool, metaclass=ABCMeta):
|
|
"""
|
|
A tool which draws `Path` geometry elements.
|
|
|
|
If `planL` / `render` are used, the `Path` elements can cover >2 vertices;
|
|
with `path` only individual rectangles will be drawn.
|
|
"""
|
|
layer: layer_t
|
|
""" Layer to draw on """
|
|
|
|
width: float
|
|
""" `Path` width """
|
|
|
|
ptype: str = 'unk'
|
|
""" ptype for any ports in patterns generated by this tool """
|
|
|
|
#@dataclass(frozen=True, slots=True)
|
|
#class LData:
|
|
# dxy: NDArray[numpy.float64]
|
|
|
|
#def __init__(self, layer: layer_t, width: float, ptype: str = 'unk') -> None:
|
|
# Tool.__init__(self)
|
|
# self.layer = layer
|
|
# self.width = width
|
|
# self.ptype: str
|
|
|
|
def path(
|
|
self,
|
|
ccw: SupportsBool | None,
|
|
length: float,
|
|
*,
|
|
in_ptype: str | None = None,
|
|
out_ptype: str | None = None,
|
|
port_names: tuple[str, str] = ('A', 'B'),
|
|
**kwargs,
|
|
) -> Library:
|
|
out_port, dxy = self.planL(
|
|
ccw,
|
|
length,
|
|
in_ptype=in_ptype,
|
|
out_ptype=out_ptype,
|
|
)
|
|
|
|
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
|
|
pat.path(layer=self.layer, width=self.width, vertices=[(0, 0), (length, 0)])
|
|
|
|
if ccw is None:
|
|
out_rot = pi
|
|
elif bool(ccw):
|
|
out_rot = -pi / 2
|
|
else:
|
|
out_rot = pi / 2
|
|
|
|
pat.ports = {
|
|
port_names[0]: Port((0, 0), rotation=0, ptype=self.ptype),
|
|
port_names[1]: Port(dxy, rotation=out_rot, ptype=self.ptype),
|
|
}
|
|
|
|
return tree
|
|
|
|
def planL(
|
|
self,
|
|
ccw: SupportsBool | None,
|
|
length: float,
|
|
*,
|
|
in_ptype: str | None = None,
|
|
out_ptype: str | None = None,
|
|
**kwargs,
|
|
) -> tuple[Port, NDArray[numpy.float64]]:
|
|
# TODO check all the math for L-shaped bends
|
|
|
|
if out_ptype and out_ptype != self.ptype:
|
|
raise BuildError(f'Requested {out_ptype=} does not match path ptype {self.ptype}')
|
|
|
|
if ccw is not None:
|
|
bend_dxy = numpy.array([1, -1]) * self.width / 2
|
|
bend_angle = pi / 2
|
|
|
|
if bool(ccw):
|
|
bend_dxy[1] *= -1
|
|
bend_angle *= -1
|
|
else:
|
|
bend_dxy = numpy.zeros(2)
|
|
bend_angle = pi
|
|
|
|
straight_length = length - bend_dxy[0]
|
|
bend_run = bend_dxy[1]
|
|
|
|
if straight_length < 0:
|
|
raise BuildError(
|
|
f'Asked to draw path with total length {length:,g}, shorter than required bend: {bend_dxy[0]:,g}'
|
|
)
|
|
data = numpy.array((length, bend_run))
|
|
out_port = Port(data, rotation=bend_angle, ptype=self.ptype)
|
|
return out_port, data
|
|
|
|
def render(
|
|
self,
|
|
batch: Sequence[RenderStep],
|
|
*,
|
|
port_names: Sequence[str] = ('A', 'B'),
|
|
**kwargs,
|
|
) -> ILibrary:
|
|
|
|
path_vertices = [batch[0].start_port.offset]
|
|
for step in batch:
|
|
assert step.tool == self
|
|
|
|
port_rot = step.start_port.rotation
|
|
assert port_rot is not None
|
|
|
|
if step.opcode == 'L':
|
|
length, bend_run = step.data
|
|
dxy = rotation_matrix_2d(port_rot + pi) @ (length, 0)
|
|
#path_vertices.append(step.start_port.offset)
|
|
path_vertices.append(step.start_port.offset + dxy)
|
|
else:
|
|
raise BuildError(f'Unrecognized opcode "{step.opcode}"')
|
|
|
|
if (path_vertices[-1] != batch[-1].end_port.offset).any():
|
|
# If the path ends in a bend, we need to add the final vertex
|
|
path_vertices.append(batch[-1].end_port.offset)
|
|
|
|
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
|
|
pat.path(layer=self.layer, width=self.width, vertices=path_vertices)
|
|
pat.ports = {
|
|
port_names[0]: batch[0].start_port.copy().rotate(pi),
|
|
port_names[1]: batch[-1].end_port.copy().rotate(pi),
|
|
}
|
|
return tree
|