978 lines
36 KiB
Python
978 lines
36 KiB
Python
"""
|
|
Base object representing a lithography mask.
|
|
"""
|
|
|
|
from typing import List, Callable, Tuple, Dict, Union, Set, Sequence, Optional, Type, overload
|
|
from typing import MutableMapping, Iterable
|
|
import copy
|
|
import itertools
|
|
import pickle
|
|
from collections import defaultdict
|
|
|
|
import numpy
|
|
from numpy import inf
|
|
# .visualize imports matplotlib and matplotlib.collections
|
|
|
|
from .subpattern import SubPattern
|
|
from .shapes import Shape, Polygon
|
|
from .label import Label
|
|
from .utils import rotation_matrix_2d, vector2, normalize_mirror
|
|
from .error import PatternError, PatternLockedError
|
|
|
|
|
|
visitor_function_t = Callable[['Pattern', Tuple['Pattern'], Dict, numpy.ndarray], 'Pattern']
|
|
|
|
|
|
class Pattern:
|
|
"""
|
|
2D layout consisting of some set of shapes, labels, and references to other Pattern objects
|
|
(via SubPattern). Shapes are assumed to inherit from masque.shapes.Shape or provide equivalent functions.
|
|
"""
|
|
__slots__ = ('shapes', 'labels', 'subpatterns', 'name', 'locked')
|
|
|
|
shapes: List[Shape]
|
|
""" List of all shapes in this Pattern.
|
|
Elements in this list are assumed to inherit from Shape or provide equivalent functions.
|
|
"""
|
|
|
|
labels: List[Label]
|
|
""" List of all labels in this Pattern. """
|
|
|
|
subpatterns: List[SubPattern]
|
|
""" List of all references to other patterns (`SubPattern`s) in this `Pattern`.
|
|
Multiple objects in this list may reference the same Pattern object
|
|
(i.e. multiple instances of the same object).
|
|
"""
|
|
|
|
name: str
|
|
""" A name for this pattern """
|
|
|
|
locked: bool
|
|
""" When the pattern is locked, no changes may be made. """
|
|
|
|
def __init__(self,
|
|
name: str = '',
|
|
shapes: Sequence[Shape] = (),
|
|
labels: Sequence[Label] = (),
|
|
subpatterns: Sequence[SubPattern] = (),
|
|
locked: bool = False,
|
|
):
|
|
"""
|
|
Basic init; arguments get assigned to member variables.
|
|
Non-list inputs for shapes and subpatterns get converted to lists.
|
|
|
|
Args:
|
|
shapes: Initial shapes in the Pattern
|
|
labels: Initial labels in the Pattern
|
|
subpatterns: Initial subpatterns in the Pattern
|
|
name: An identifier for the Pattern
|
|
locked: Whether to lock the pattern after construction
|
|
"""
|
|
object.__setattr__(self, 'locked', False)
|
|
if isinstance(shapes, list):
|
|
self.shapes = shapes
|
|
else:
|
|
self.shapes = list(shapes)
|
|
|
|
if isinstance(labels, list):
|
|
self.labels = labels
|
|
else:
|
|
self.labels = list(labels)
|
|
|
|
if isinstance(subpatterns, list):
|
|
self.subpatterns = subpatterns
|
|
else:
|
|
self.subpatterns = list(subpatterns)
|
|
|
|
self.name = name
|
|
self.locked = locked
|
|
|
|
def __setattr__(self, name, value):
|
|
if self.locked and name != 'locked':
|
|
raise PatternLockedError()
|
|
object.__setattr__(self, name, value)
|
|
|
|
def __copy__(self, memo: Dict = None) -> 'Pattern':
|
|
return Pattern(name=self.name,
|
|
shapes=copy.deepcopy(self.shapes),
|
|
labels=copy.deepcopy(self.labels),
|
|
subpatterns=[copy.copy(sp) for sp in self.subpatterns],
|
|
locked=self.locked)
|
|
|
|
def __deepcopy__(self, memo: Dict = None) -> 'Pattern':
|
|
memo = {} if memo is None else memo
|
|
new = Pattern(name=self.name,
|
|
shapes=copy.deepcopy(self.shapes, memo),
|
|
labels=copy.deepcopy(self.labels, memo),
|
|
subpatterns=copy.deepcopy(self.subpatterns, memo),
|
|
locked=self.locked)
|
|
return new
|
|
|
|
def rename(self, name: str) -> 'Pattern':
|
|
self.name = name
|
|
return self
|
|
|
|
def append(self, other_pattern: 'Pattern') -> 'Pattern':
|
|
"""
|
|
Appends all shapes, labels and subpatterns from other_pattern to self's shapes,
|
|
labels, and supbatterns.
|
|
|
|
Args:
|
|
other_pattern: The Pattern to append
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.subpatterns += other_pattern.subpatterns
|
|
self.shapes += other_pattern.shapes
|
|
self.labels += other_pattern.labels
|
|
return self
|
|
|
|
def subset(self,
|
|
shapes_func: Callable[[Shape], bool] = None,
|
|
labels_func: Callable[[Label], bool] = None,
|
|
subpatterns_func: Callable[[SubPattern], bool] = None,
|
|
recursive: bool = False,
|
|
) -> 'Pattern':
|
|
"""
|
|
Returns a Pattern containing only the entities (e.g. shapes) for which the
|
|
given entity_func returns True.
|
|
Self is _not_ altered, but shapes, labels, and subpatterns are _not_ copied.
|
|
|
|
Args:
|
|
shapes_func: Given a shape, returns a boolean denoting whether the shape is a member
|
|
of the subset. Default always returns False.
|
|
labels_func: Given a label, returns a boolean denoting whether the label is a member
|
|
of the subset. Default always returns False.
|
|
subpatterns_func: Given a subpattern, returns a boolean denoting if it is a member
|
|
of the subset. Default always returns False.
|
|
recursive: If True, also calls .subset() recursively on patterns referenced by this
|
|
pattern.
|
|
|
|
Returns:
|
|
A Pattern containing all the shapes and subpatterns for which the parameter
|
|
functions return True
|
|
"""
|
|
def do_subset(src: Optional['Pattern']) -> Optional['Pattern']:
|
|
if src is None:
|
|
return None
|
|
pat = Pattern(name=src.name)
|
|
if shapes_func is not None:
|
|
pat.shapes = [s for s in src.shapes if shapes_func(s)]
|
|
if labels_func is not None:
|
|
pat.labels = [s for s in src.labels if labels_func(s)]
|
|
if subpatterns_func is not None:
|
|
pat.subpatterns = [s for s in src.subpatterns if subpatterns_func(s)]
|
|
return pat
|
|
|
|
if recursive:
|
|
pat = self.apply(do_subset)
|
|
else:
|
|
pat = do_subset(self)
|
|
|
|
assert(pat is not None)
|
|
return pat
|
|
|
|
def apply(self,
|
|
func: Callable[[Optional['Pattern']], Optional['Pattern']],
|
|
memo: Optional[Dict[int, Optional['Pattern']]] = None,
|
|
) -> Optional['Pattern']:
|
|
"""
|
|
Recursively apply func() to this pattern and any pattern it references.
|
|
func() is expected to take and return a Pattern.
|
|
func() is first applied to the pattern as a whole, then any referenced patterns.
|
|
It is only applied to any given pattern once, regardless of how many times it is
|
|
referenced.
|
|
|
|
Args:
|
|
func: Function which accepts a Pattern, and returns a pattern.
|
|
memo: Dictionary used to avoid re-running on multiply-referenced patterns.
|
|
Stores `{id(pattern): func(pattern)}` for patterns which have already been processed.
|
|
Default `None` (no already-processed patterns).
|
|
|
|
Returns:
|
|
The result of applying func() to this pattern and all subpatterns.
|
|
|
|
Raises:
|
|
PatternError if called on a pattern containing a circular reference.
|
|
"""
|
|
if memo is None:
|
|
memo = {}
|
|
|
|
pat_id = id(self)
|
|
if pat_id not in memo:
|
|
memo[pat_id] = None
|
|
pat = func(self)
|
|
if pat is not None:
|
|
for subpat in pat.subpatterns:
|
|
if subpat.pattern is None:
|
|
subpat.pattern = func(None)
|
|
else:
|
|
subpat.pattern = subpat.pattern.apply(func, memo)
|
|
memo[pat_id] = pat
|
|
elif memo[pat_id] is None:
|
|
raise PatternError('.apply() called on pattern with circular reference')
|
|
else:
|
|
pat = memo[pat_id]
|
|
return pat
|
|
|
|
def dfs(self,
|
|
visit_before: visitor_function_t = None,
|
|
visit_after: visitor_function_t = None,
|
|
transform: Union[numpy.ndarray, bool, None] = False,
|
|
memo: Optional[Dict] = None,
|
|
hierarchy: Tuple['Pattern', ...] = (),
|
|
) -> 'Pattern':
|
|
"""
|
|
Experimental convenience function.
|
|
Performs a depth-first traversal of this pattern and its subpatterns.
|
|
At each pattern in the tree, the following sequence is called:
|
|
```
|
|
current_pattern = visit_before(current_pattern, **vist_args)
|
|
for sp in current_pattern.subpatterns]
|
|
sp.pattern = sp.pattern.df(visit_before, visit_after, updated_transform,
|
|
memo, (current_pattern,) + hierarchy)
|
|
current_pattern = visit_after(current_pattern, **visit_args)
|
|
```
|
|
where `visit_args` are
|
|
`hierarchy`: (top_pattern, L1_pattern, L2_pattern, ..., parent_pattern)
|
|
tuple of all parent-and-higher patterns
|
|
`transform`: numpy.ndarray containing cumulative
|
|
[x_offset, y_offset, rotation (rad), mirror_x (0 or 1)]
|
|
for the instance being visited
|
|
`memo`: Arbitrary dict (not altered except by visit_*())
|
|
|
|
Args:
|
|
visit_before: Function to call before traversing subpatterns.
|
|
Should accept a `Pattern` and `**visit_args`, and return the (possibly modified)
|
|
pattern. Default `None` (not called).
|
|
visit_after: Function to call after traversing subpatterns.
|
|
Should accept a Pattern and **visit_args, and return the (possibly modified)
|
|
pattern. Default `None` (not called).
|
|
transform: Initial value for `visit_args['transform']`.
|
|
Can be `False`, in which case the transform is not calculated.
|
|
`True` or `None` is interpreted as `[0, 0, 0, 0]`.
|
|
memo: Arbitrary dict for use by `visit_*()` functions. Default `None` (empty dict).
|
|
hierarchy: Tuple of patterns specifying the hierarchy above the current pattern.
|
|
Appended to the start of the generated `visit_args['hierarchy']`.
|
|
Default is an empty tuple.
|
|
|
|
Returns:
|
|
The result, including `visit_before(self, ...)` and `visit_after(self, ...)`.
|
|
Note that `self` may also be altered!
|
|
"""
|
|
if memo is None:
|
|
memo = {}
|
|
|
|
if transform is None or transform is True:
|
|
transform = numpy.zeros(4)
|
|
|
|
if self in hierarchy:
|
|
raise PatternError('.dfs() called on pattern with circular reference')
|
|
|
|
pat = self
|
|
if visit_before is not None:
|
|
pat = visit_before(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
|
|
|
|
for subpattern in self.subpatterns:
|
|
if transform is not False:
|
|
sign = numpy.ones(2)
|
|
if transform[3]:
|
|
sign[1] = -1
|
|
xy = numpy.dot(rotation_matrix_2d(transform[2]), subpattern.offset * sign)
|
|
mirror_x, angle = normalize_mirror(subpattern.mirrored)
|
|
angle += subpattern.rotation
|
|
sp_transform = transform + (xy[0], xy[1], angle, mirror_x)
|
|
sp_transform[3] %= 2
|
|
else:
|
|
sp_transform = False
|
|
|
|
if subpattern.pattern is not None:
|
|
subpattern.pattern = subpattern.pattern.dfs(visit_before=visit_before,
|
|
visit_after=visit_after,
|
|
transform=sp_transform,
|
|
memo=memo,
|
|
hierarchy=hierarchy + (self,))
|
|
|
|
if visit_after is not None:
|
|
pat = visit_after(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
|
|
return pat
|
|
|
|
def polygonize(self,
|
|
poly_num_points: Optional[int] = None,
|
|
poly_max_arclen: Optional[float] = None,
|
|
) -> 'Pattern':
|
|
"""
|
|
Calls `.to_polygons(...)` on all the shapes in this Pattern and any referenced patterns,
|
|
replacing them with the returned polygons.
|
|
Arguments are passed directly to `shape.to_polygons(...)`.
|
|
|
|
Args:
|
|
poly_num_points: Number of points to use for each polygon. Can be overridden by
|
|
`poly_max_arclen` if that results in more points. Optional, defaults to shapes'
|
|
internal defaults.
|
|
poly_max_arclen: Maximum arclength which can be approximated by a single line
|
|
segment. Optional, defaults to shapes' internal defaults.
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
old_shapes = self.shapes
|
|
self.shapes = list(itertools.chain.from_iterable(
|
|
(shape.to_polygons(poly_num_points, poly_max_arclen)
|
|
for shape in old_shapes)))
|
|
for subpat in self.subpatterns:
|
|
if subpat.pattern is not None:
|
|
subpat.pattern.polygonize(poly_num_points, poly_max_arclen)
|
|
return self
|
|
|
|
def manhattanize(self,
|
|
grid_x: numpy.ndarray,
|
|
grid_y: numpy.ndarray,
|
|
) -> 'Pattern':
|
|
"""
|
|
Calls `.polygonize()` and `.flatten()` on the pattern, then calls `.manhattanize()` on all the
|
|
resulting shapes, replacing them with the returned Manhattan polygons.
|
|
|
|
Args:
|
|
grid_x: List of allowed x-coordinates for the Manhattanized polygon edges.
|
|
grid_y: List of allowed y-coordinates for the Manhattanized polygon edges.
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
|
|
self.polygonize().flatten()
|
|
old_shapes = self.shapes
|
|
self.shapes = list(itertools.chain.from_iterable(
|
|
(shape.manhattanize(grid_x, grid_y) for shape in old_shapes)))
|
|
return self
|
|
|
|
def subpatternize(self,
|
|
recursive: bool = True,
|
|
norm_value: int = int(1e6),
|
|
exclude_types: Tuple[Type] = (Polygon,)
|
|
) -> 'Pattern':
|
|
"""
|
|
Iterates through this `Pattern` and all referenced `Pattern`s. Within each `Pattern`, it iterates
|
|
over all shapes, calling `.normalized_form(norm_value)` on them to retrieve a scale-,
|
|
offset-, dose-, and rotation-independent form. Each shape whose normalized form appears
|
|
more than once is removed and re-added using subpattern objects referencing a newly-created
|
|
`Pattern` containing only the normalized form of the shape.
|
|
|
|
Note:
|
|
The default norm_value was chosen to give a reasonable precision when converting
|
|
to GDSII, which uses integer values for pixel coordinates.
|
|
|
|
Args:
|
|
recursive: Whether to call recursively on self's subpatterns. Default `True`.
|
|
norm_value: Passed to `shape.normalized_form(norm_value)`. Default `1e6` (see function
|
|
note about GDSII)
|
|
exclude_types: Shape types passed in this argument are always left untouched, for
|
|
speed or convenience. Default: `(shapes.Polygon,)`
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
|
|
if exclude_types is None:
|
|
exclude_types = ()
|
|
|
|
if recursive:
|
|
for subpat in self.subpatterns:
|
|
if subpat.pattern is None:
|
|
continue
|
|
subpat.pattern.subpatternize(recursive=True,
|
|
norm_value=norm_value,
|
|
exclude_types=exclude_types)
|
|
|
|
# Create a dict which uses the label tuple from `.normalized_form()` as a key, and which
|
|
# stores `(function_to_create_normalized_shape, [(index_in_shapes, values), ...])`, where
|
|
# values are the `(offset, scale, rotation, dose)` values as calculated by `.normalized_form()`
|
|
shape_table: MutableMapping[Tuple, List] = defaultdict(lambda: [None, list()])
|
|
for i, shape in enumerate(self.shapes):
|
|
if not any((isinstance(shape, t) for t in exclude_types)):
|
|
label, values, func = shape.normalized_form(norm_value)
|
|
shape_table[label][0] = func
|
|
shape_table[label][1].append((i, values))
|
|
|
|
# Iterate over the normalized shapes in the table. If any normalized shape occurs more than
|
|
# once, create a `Pattern` holding a normalized shape object, and add `self.subpatterns`
|
|
# entries for each occurrence in self. Also, note down that we should delete the
|
|
# `self.shapes` entries for which we made SubPatterns.
|
|
shapes_to_remove = []
|
|
for label in shape_table:
|
|
if len(shape_table[label][1]) > 1:
|
|
shape = shape_table[label][0]()
|
|
pat = Pattern(shapes=[shape])
|
|
|
|
for i, values in shape_table[label][1]:
|
|
(offset, scale, rotation, mirror_x, dose) = values
|
|
subpat = SubPattern(pattern=pat, offset=offset, scale=scale,
|
|
rotation=rotation, dose=dose, mirrored=(mirror_x, False))
|
|
self.subpatterns.append(subpat)
|
|
shapes_to_remove.append(i)
|
|
|
|
# Remove any shapes for which we have created subpatterns.
|
|
for i in sorted(shapes_to_remove, reverse=True):
|
|
del self.shapes[i]
|
|
|
|
return self
|
|
|
|
def as_polygons(self) -> List[numpy.ndarray]:
|
|
"""
|
|
Represents the pattern as a list of polygons.
|
|
|
|
Deep-copies the pattern, then calls `.polygonize()` and `.flatten()` on the copy in order to
|
|
generate the list of polygons.
|
|
|
|
Returns:
|
|
A list of `(Ni, 2)` `numpy.ndarray`s specifying vertices of the polygons. Each ndarray
|
|
is of the form `[[x0, y0], [x1, y1],...]`.
|
|
"""
|
|
pat = self.deepcopy().deepunlock().polygonize().flatten()
|
|
return [shape.vertices + shape.offset for shape in pat.shapes] # type: ignore # mypy can't figure out that shapes are all Polygons now
|
|
|
|
@overload
|
|
def referenced_patterns_by_id(self) -> Dict[int, 'Pattern']:
|
|
pass
|
|
|
|
@overload
|
|
def referenced_patterns_by_id(self, include_none: bool) -> Dict[int, Optional['Pattern']]:
|
|
pass
|
|
|
|
def referenced_patterns_by_id(self,
|
|
include_none: bool = False,
|
|
recursive: bool = True,
|
|
) -> Union[Dict[int, Optional['Pattern']],
|
|
Dict[int, 'Pattern']]:
|
|
|
|
"""
|
|
Create a dictionary with `{id(pat): pat}` for all Pattern objects referenced by this
|
|
Pattern (by default, operates recursively on all referenced Patterns as well).
|
|
|
|
Args:
|
|
include_none: If `True`, references to `None` will be included. Default `False`.
|
|
recursive: If `True`, operates recursively on all referenced patterns. Default `True`.
|
|
|
|
Returns:
|
|
Dictionary with `{id(pat): pat}` for all referenced Pattern objects
|
|
"""
|
|
ids: Dict[int, Optional['Pattern']] = {}
|
|
for subpat in self.subpatterns:
|
|
pat = subpat.pattern
|
|
if id(pat) in ids:
|
|
continue
|
|
if include_none or pat is not None:
|
|
ids[id(pat)] = pat
|
|
if recursive and pat is not None:
|
|
ids.update(pat.referenced_patterns_by_id())
|
|
return ids
|
|
|
|
def referenced_patterns_by_name(self, **kwargs) -> List[Tuple[Optional[str], Optional['Pattern']]]:
|
|
"""
|
|
Create a list of `(pat.name, pat)` tuples for all Pattern objects referenced by this
|
|
Pattern (operates recursively on all referenced Patterns as well).
|
|
|
|
Note that names are not necessarily unique, so a list of tuples is returned
|
|
rather than a dict.
|
|
|
|
Args:
|
|
**kwargs: passed to `referenced_patterns_by_id()`.
|
|
|
|
Returns:
|
|
List of `(pat.name, pat)` tuples for all referenced Pattern objects
|
|
"""
|
|
pats_by_id = self.referenced_patterns_by_id(**kwargs)
|
|
pat_list = [(p.name if p is not None else None, p) for p in pats_by_id.values()]
|
|
return pat_list
|
|
|
|
def subpatterns_by_id(self,
|
|
include_none: bool = False,
|
|
recursive: bool = True,
|
|
) -> Dict[int, List[SubPattern]]:
|
|
"""
|
|
Create a dictionary which maps `{id(referenced_pattern): [subpattern0, ...]}`
|
|
for all SubPattern objects referenced by this Pattern (by default, operates
|
|
recursively on all referenced Patterns as well).
|
|
|
|
Args:
|
|
include_none: If `True`, references to `None` will be included. Default `False`.
|
|
recursive: If `True`, operates recursively on all referenced patterns. Default `True`.
|
|
|
|
Returns:
|
|
Dictionary mapping each pattern id to a list of subpattern objects referencing the pattern.
|
|
"""
|
|
ids: Dict[int, List[SubPattern]] = defaultdict(list)
|
|
for subpat in self.subpatterns:
|
|
pat = subpat.pattern
|
|
if include_none or pat is not None:
|
|
ids[id(pat)].append(subpat)
|
|
if recursive and pat is not None:
|
|
ids.update(pat.subpatterns_by_id(include_none=include_none))
|
|
return dict(ids)
|
|
|
|
|
|
def get_bounds(self) -> Union[numpy.ndarray, None]:
|
|
"""
|
|
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
|
extent of the Pattern's contents in each dimension.
|
|
Returns `None` if the Pattern is empty.
|
|
|
|
Returns:
|
|
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
|
"""
|
|
entries = self.shapes + self.subpatterns + self.labels
|
|
if not entries:
|
|
return None
|
|
|
|
min_bounds = numpy.array((+inf, +inf))
|
|
max_bounds = numpy.array((-inf, -inf))
|
|
for entry in entries:
|
|
bounds = entry.get_bounds()
|
|
if bounds is None:
|
|
continue
|
|
min_bounds = numpy.minimum(min_bounds, bounds[0, :])
|
|
max_bounds = numpy.maximum(max_bounds, bounds[1, :])
|
|
if (max_bounds < min_bounds).any():
|
|
return None
|
|
else:
|
|
return numpy.vstack((min_bounds, max_bounds))
|
|
|
|
def flatten(self) -> 'Pattern':
|
|
"""
|
|
Removes all subpatterns and adds equivalent shapes.
|
|
|
|
Shape identifiers are changed to represent their original position in the
|
|
pattern hierarchy:
|
|
`(L1_name (str), L1_index (int), L2_name, L2_index, ..., *original_shape_identifier)`
|
|
where
|
|
`L1_name` is the first-level subpattern's name (e.g. `self.subpatterns[0].pattern.name`),
|
|
`L2_name` is the next-level subpattern's name (e.g.
|
|
`self.subpatterns[0].pattern.subpatterns[0].pattern.name`) and
|
|
`L1_index` is an integer used to differentiate between multiple instance ofi the same
|
|
(or same-named) subpatterns.
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
subpatterns = copy.deepcopy(self.subpatterns)
|
|
self.subpatterns = []
|
|
shape_counts: Dict[Tuple, int] = {}
|
|
for subpat in subpatterns:
|
|
if subpat.pattern is None:
|
|
continue
|
|
subpat.pattern.flatten()
|
|
p = subpat.as_pattern()
|
|
|
|
# Update identifiers so each shape has a unique one
|
|
for shape in p.shapes:
|
|
combined_identifier = (subpat.pattern.name,) + shape.identifier
|
|
shape_count = shape_counts.get(combined_identifier, 0)
|
|
shape.identifier = (subpat.pattern.name, shape_count) + shape.identifier
|
|
shape_counts[combined_identifier] = shape_count + 1
|
|
|
|
self.append(p)
|
|
return self
|
|
|
|
def wrap_repeated_shapes(self,
|
|
name_func: Callable[['Pattern', Union[Shape, Label]], str] = lambda p, s: '_repetition',
|
|
recursive: bool = True,
|
|
) -> 'Pattern':
|
|
"""
|
|
Wraps all shapes and labels with a non-`None` `repetition` attribute
|
|
into a `SubPattern`/`Pattern` combination, and applies the `repetition`
|
|
to each `SubPattern` instead of its contained shape.
|
|
|
|
Args:
|
|
name_func: Function f(this_pattern, shape) which generates a name for the
|
|
wrapping pattern. Default always returns '_repetition'.
|
|
recursive: If `True`, this function is also applied to all referenced patterns
|
|
recursively. Default `True`.
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
def do_wrap(pat: Optional[Pattern]) -> Optional[Pattern]:
|
|
if pat is None:
|
|
return pat
|
|
|
|
new_subpatterns = []
|
|
for shape in pat.shapes:
|
|
if shape.repetition is None:
|
|
continue
|
|
new_subpatterns.append(SubPattern(Pattern(name_func(pat, shape), shapes=[shape])))
|
|
shape.repetition = None
|
|
|
|
for label in self.labels:
|
|
if label.repetition is None:
|
|
continue
|
|
new_subpatterns.append(SubPattern(Pattern(name_func(pat, shape), labels=[label])))
|
|
label.repetition = None
|
|
|
|
pat.subpatterns += new_subpatterns
|
|
return pat
|
|
|
|
if recursive:
|
|
self.apply(do_wrap)
|
|
else:
|
|
do_wrap(self)
|
|
|
|
return self
|
|
|
|
|
|
def translate_elements(self, offset: vector2) -> 'Pattern':
|
|
"""
|
|
Translates all shapes, label, and subpatterns by the given offset.
|
|
|
|
Args:
|
|
offset: (x, y) to translate by
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns + self.labels:
|
|
entry.translate(offset)
|
|
return self
|
|
|
|
def scale_elements(self, c: float) -> 'Pattern':
|
|
""""
|
|
Scales all shapes and subpatterns by the given value.
|
|
|
|
Args:
|
|
c: factor to scale by
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.scale_by(c)
|
|
return self
|
|
|
|
def scale_by(self, c: float) -> 'Pattern':
|
|
"""
|
|
Scale this Pattern by the given value
|
|
(all shapes and subpatterns and their offsets are scaled)
|
|
|
|
Args:
|
|
c: factor to scale by
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.offset *= c
|
|
entry.scale_by(c)
|
|
for label in self.labels:
|
|
label.offset *= c
|
|
return self
|
|
|
|
def rotate_around(self, pivot: vector2, rotation: float) -> 'Pattern':
|
|
"""
|
|
Rotate the Pattern around the a location.
|
|
|
|
Args:
|
|
pivot: (x, y) location to rotate around
|
|
rotation: Angle to rotate by (counter-clockwise, radians)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
pivot = numpy.array(pivot)
|
|
self.translate_elements(-pivot)
|
|
self.rotate_elements(rotation)
|
|
self.rotate_element_centers(rotation)
|
|
self.translate_elements(+pivot)
|
|
return self
|
|
|
|
def rotate_element_centers(self, rotation: float) -> 'Pattern':
|
|
"""
|
|
Rotate the offsets of all shapes, labels, and subpatterns around (0, 0)
|
|
|
|
Args:
|
|
rotation: Angle to rotate by (counter-clockwise, radians)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns + self.labels:
|
|
entry.offset = numpy.dot(rotation_matrix_2d(rotation), entry.offset)
|
|
return self
|
|
|
|
def rotate_elements(self, rotation: float) -> 'Pattern':
|
|
"""
|
|
Rotate each shape and subpattern around its center (offset)
|
|
|
|
Args:
|
|
rotation: Angle to rotate by (counter-clockwise, radians)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.rotate(rotation)
|
|
return self
|
|
|
|
def mirror_element_centers(self, axis: int) -> 'Pattern':
|
|
"""
|
|
Mirror the offsets of all shapes, labels, and subpatterns across an axis
|
|
|
|
Args:
|
|
axis: Axis to mirror across
|
|
(0: mirror across x axis, 1: mirror across y axis)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns + self.labels:
|
|
entry.offset[axis - 1] *= -1
|
|
return self
|
|
|
|
def mirror_elements(self, axis: int) -> 'Pattern':
|
|
"""
|
|
Mirror each shape and subpattern across an axis, relative to its
|
|
offset
|
|
|
|
Args:
|
|
axis: Axis to mirror across
|
|
(0: mirror across x axis, 1: mirror across y axis)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.mirror(axis)
|
|
return self
|
|
|
|
def mirror(self, axis: int) -> 'Pattern':
|
|
"""
|
|
Mirror the Pattern across an axis
|
|
|
|
Args:
|
|
axis: Axis to mirror across
|
|
(0: mirror across x axis, 1: mirror across y axis)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.mirror_elements(axis)
|
|
self.mirror_element_centers(axis)
|
|
return self
|
|
|
|
def scale_element_doses(self, c: float) -> 'Pattern':
|
|
"""
|
|
Multiply all shape and subpattern doses by a factor
|
|
|
|
Args:
|
|
c: Factor to multiply doses by
|
|
|
|
Return:
|
|
self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.dose *= c
|
|
return self
|
|
|
|
def copy(self) -> 'Pattern':
|
|
"""
|
|
Return a copy of the Pattern, deep-copying shapes and copying subpattern
|
|
entries, but not deep-copying any referenced patterns.
|
|
|
|
See also: `Pattern.deepcopy()`
|
|
|
|
Returns:
|
|
A copy of the current Pattern.
|
|
"""
|
|
return copy.copy(self)
|
|
|
|
def deepcopy(self) -> 'Pattern':
|
|
"""
|
|
Convenience method for `copy.deepcopy(pattern)`
|
|
|
|
Returns:
|
|
A deep copy of the current Pattern.
|
|
"""
|
|
return copy.deepcopy(self)
|
|
|
|
def is_empty(self) -> bool:
|
|
"""
|
|
Returns:
|
|
True if the pattern is contains no shapes, labels, or subpatterns.
|
|
"""
|
|
return (len(self.subpatterns) == 0 and
|
|
len(self.shapes) == 0 and
|
|
len(self.labels) == 0)
|
|
|
|
def lock(self) -> 'Pattern':
|
|
"""
|
|
Lock the pattern, raising an exception if it is modified.
|
|
Also see `deeplock()`.
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
if not self.locked:
|
|
self.shapes = tuple(self.shapes)
|
|
self.labels = tuple(self.labels)
|
|
self.subpatterns = tuple(self.subpatterns)
|
|
object.__setattr__(self, 'locked', True)
|
|
return self
|
|
|
|
def unlock(self) -> 'Pattern':
|
|
"""
|
|
Unlock the pattern
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
if self.locked:
|
|
object.__setattr__(self, 'locked', False)
|
|
self.shapes = list(self.shapes)
|
|
self.labels = list(self.labels)
|
|
self.subpatterns = list(self.subpatterns)
|
|
return self
|
|
|
|
def deeplock(self) -> 'Pattern':
|
|
"""
|
|
Recursively lock the pattern, all referenced shapes, subpatterns, and labels.
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.lock()
|
|
for ss in self.shapes + self.labels:
|
|
ss.lock()
|
|
for sp in self.subpatterns:
|
|
sp.deeplock()
|
|
return self
|
|
|
|
def deepunlock(self) -> 'Pattern':
|
|
"""
|
|
Recursively unlock the pattern, all referenced shapes, subpatterns, and labels.
|
|
|
|
This is dangerous unless you have just performed a deepcopy, since anything
|
|
you change will be changed everywhere it is referenced!
|
|
|
|
Return:
|
|
self
|
|
"""
|
|
self.unlock()
|
|
for ss in self.shapes + self.labels:
|
|
ss.unlock()
|
|
for sp in self.subpatterns:
|
|
sp.deepunlock()
|
|
return self
|
|
|
|
@staticmethod
|
|
def load(filename: str) -> 'Pattern':
|
|
"""
|
|
Load a Pattern from a file using pickle
|
|
|
|
Args:
|
|
filename: Filename to load from
|
|
|
|
Returns:
|
|
Loaded Pattern
|
|
"""
|
|
with open(filename, 'rb') as f:
|
|
pattern = pickle.load(f)
|
|
|
|
return pattern
|
|
|
|
def save(self, filename: str) -> 'Pattern':
|
|
"""
|
|
Save the Pattern to a file using pickle
|
|
|
|
Args:
|
|
filename: Filename to save to
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
with open(filename, 'wb') as f:
|
|
pickle.dump(self, f, protocol=pickle.HIGHEST_PROTOCOL)
|
|
return self
|
|
|
|
def visualize(self,
|
|
offset: vector2 = (0., 0.),
|
|
line_color: str = 'k',
|
|
fill_color: str = 'none',
|
|
overdraw: bool = False):
|
|
"""
|
|
Draw a picture of the Pattern and wait for the user to inspect it
|
|
|
|
Imports `matplotlib`.
|
|
|
|
Note that this can be slow; it is often faster to export to GDSII and use
|
|
klayout or a different GDS viewer!
|
|
|
|
Args:
|
|
offset: Coordinates to offset by before drawing
|
|
line_color: Outlines are drawn with this color (passed to `matplotlib.collections.PolyCollection`)
|
|
fill_color: Interiors are drawn with this color (passed to `matplotlib.collections.PolyCollection`)
|
|
overdraw: Whether to create a new figure or draw on a pre-existing one
|
|
"""
|
|
# TODO: add text labels to visualize()
|
|
from matplotlib import pyplot
|
|
import matplotlib.collections
|
|
|
|
offset = numpy.array(offset, dtype=float)
|
|
|
|
if not overdraw:
|
|
figure = pyplot.figure()
|
|
pyplot.axis('equal')
|
|
else:
|
|
figure = pyplot.gcf()
|
|
|
|
axes = figure.gca()
|
|
|
|
polygons = []
|
|
for shape in self.shapes:
|
|
polygons += [offset + s.offset + s.vertices for s in shape.to_polygons()]
|
|
|
|
mpl_poly_collection = matplotlib.collections.PolyCollection(polygons,
|
|
facecolors=fill_color,
|
|
edgecolors=line_color)
|
|
axes.add_collection(mpl_poly_collection)
|
|
pyplot.axis('equal')
|
|
|
|
for subpat in self.subpatterns:
|
|
subpat.as_pattern().visualize(offset=offset, overdraw=True,
|
|
line_color=line_color, fill_color=fill_color)
|
|
|
|
if not overdraw:
|
|
pyplot.show()
|
|
|
|
@staticmethod
|
|
def find_toplevel(patterns: Iterable['Pattern']) -> List['Pattern']:
|
|
"""
|
|
Given a list of Pattern objects, return those that are not referenced by
|
|
any other pattern.
|
|
|
|
Args:
|
|
patterns: A list of patterns to filter.
|
|
|
|
Returns:
|
|
A filtered list in which no pattern is referenced by any other pattern.
|
|
"""
|
|
def get_children(pat: Pattern, memo: Set) -> Set:
|
|
children = set(sp.pattern for sp in pat.subpatterns if sp.pattern is not None)
|
|
new_children = children - memo
|
|
memo |= new_children
|
|
|
|
for child_pat in new_children:
|
|
memo |= get_children(child_pat, memo)
|
|
return memo
|
|
|
|
patterns = set(patterns)
|
|
not_toplevel: Set['Pattern'] = set()
|
|
for pattern in patterns:
|
|
not_toplevel |= get_children(pattern, not_toplevel)
|
|
|
|
toplevel = list(patterns - not_toplevel)
|
|
return toplevel
|
|
|
|
def __repr__(self) -> str:
|
|
locked = ' L' if self.locked else ''
|
|
return (f'<Pattern "{self.name}": sh{len(self.shapes)} sp{len(self.subpatterns)} la{len(self.labels)}{locked}>')
|