Jan Petykiewicz
503a77925e
Incompatible with previous versions, but necessary given the move to __slots__. Also use pickle.HIGHEST_PROTOCOL
574 lines
22 KiB
Python
574 lines
22 KiB
Python
"""
|
|
Base object for containing a lithography mask.
|
|
"""
|
|
|
|
from typing import List, Callable, Tuple, Dict, Union
|
|
import copy
|
|
import itertools
|
|
import pickle
|
|
from collections import defaultdict
|
|
|
|
import numpy
|
|
# .visualize imports matplotlib and matplotlib.collections
|
|
|
|
from .subpattern import SubPattern
|
|
from .repetition import GridRepetition
|
|
from .shapes import Shape, Polygon
|
|
from .label import Label
|
|
from .utils import rotation_matrix_2d, vector2
|
|
from .error import PatternError
|
|
|
|
__author__ = 'Jan Petykiewicz'
|
|
|
|
|
|
class Pattern:
|
|
"""
|
|
2D layout consisting of some set of shapes and references to other Pattern objects
|
|
(via SubPattern). Shapes are assumed to inherit from .shapes.Shape or provide equivalent
|
|
functions.
|
|
|
|
:var shapes: List of all shapes in this Pattern. Elements in this list are assumed to inherit
|
|
from Shape or provide equivalent functions.
|
|
:var subpatterns: List of all SubPattern objects in this Pattern. Multiple SubPattern objects
|
|
may reference the same Pattern object.
|
|
:var name: An identifier for this object. Not necessarily unique.
|
|
"""
|
|
__slots__ = ('shapes', 'labels', 'subpatterns', 'name')
|
|
shapes: List[Shape]
|
|
labels: List[Label]
|
|
subpatterns: List[SubPattern or GridRepetition]
|
|
name: str
|
|
|
|
def __init__(self,
|
|
name: str = '',
|
|
shapes: List[Shape] = (),
|
|
labels: List[Label] = (),
|
|
subpatterns: List[SubPattern] = (),
|
|
):
|
|
"""
|
|
Basic init; arguments get assigned to member variables.
|
|
Non-list inputs for shapes and subpatterns get converted to lists.
|
|
|
|
:param shapes: Initial shapes in the Pattern
|
|
:param labels: Initial labels in the Pattern
|
|
:param subpatterns: Initial subpatterns in the Pattern
|
|
:param name: An identifier for the Pattern
|
|
"""
|
|
if isinstance(shapes, list):
|
|
self.shapes = shapes
|
|
else:
|
|
self.shapes = list(shapes)
|
|
|
|
if isinstance(labels, list):
|
|
self.labels = labels
|
|
else:
|
|
self.labels = list(labels)
|
|
|
|
if isinstance(subpatterns, list):
|
|
self.subpatterns = subpatterns
|
|
else:
|
|
self.subpatterns = list(subpatterns)
|
|
|
|
self.name = name
|
|
|
|
def __deepcopy__(self, memo: Dict = None) -> 'Pattern':
|
|
memo = {} if memo is None else memo
|
|
new = copy.copy(self)
|
|
new.name = self.name
|
|
new.shapes = copy.deepcopy(self.shapes, memo)
|
|
new.labels = copy.deepcopy(self.labels, memo)
|
|
new.subpatterns = copy.deepcopy(self.subpatterns, memo)
|
|
return new
|
|
|
|
def append(self, other_pattern: 'Pattern') -> 'Pattern':
|
|
"""
|
|
Appends all shapes, labels and subpatterns from other_pattern to self's shapes,
|
|
labels, and supbatterns.
|
|
|
|
:param other_pattern: The Pattern to append
|
|
:return: self
|
|
"""
|
|
self.subpatterns += other_pattern.subpatterns
|
|
self.shapes += other_pattern.shapes
|
|
self.labels += other_pattern.labels
|
|
return self
|
|
|
|
def subset(self,
|
|
shapes_func: Callable[[Shape], bool] = None,
|
|
labels_func: Callable[[Label], bool] = None,
|
|
subpatterns_func: Callable[[SubPattern], bool] = None,
|
|
recursive: bool = False,
|
|
) -> 'Pattern':
|
|
"""
|
|
Returns a Pattern containing only the entities (e.g. shapes) for which the
|
|
given entity_func returns True.
|
|
Self is _not_ altered, but shapes, labels, and subpatterns are _not_ copied.
|
|
|
|
:param shapes_func: Given a shape, returns a boolean denoting whether the shape is a member
|
|
of the subset. Default always returns False.
|
|
:param labels_func: Given a label, returns a boolean denoting whether the label is a member
|
|
of the subset. Default always returns False.
|
|
:param subpatterns_func: Given a subpattern, returns a boolean denoting if it is a member
|
|
of the subset. Default always returns False.
|
|
:param recursive: If True, also calls .subset() recursively on patterns referenced by this
|
|
pattern.
|
|
:return: A Pattern containing all the shapes and subpatterns for which the parameter
|
|
functions return True
|
|
"""
|
|
def do_subset(src):
|
|
pat = Pattern(name=src.name)
|
|
if shapes_func is not None:
|
|
pat.shapes = [s for s in src.shapes if shapes_func(s)]
|
|
if labels_func is not None:
|
|
pat.labels = [s for s in src.labels if labels_func(s)]
|
|
if subpatterns_func is not None:
|
|
pat.subpatterns = [s for s in src.subpatterns if subpatterns_func(s)]
|
|
return pat
|
|
|
|
if recursive:
|
|
pat = self.apply(do_subset)
|
|
else:
|
|
pat = do_subset(self)
|
|
return pat
|
|
|
|
def apply(self,
|
|
func: Callable[['Pattern'], 'Pattern'],
|
|
memo: Dict[int, 'Pattern'] = None,
|
|
) -> 'Pattern':
|
|
"""
|
|
Recursively apply func() to this pattern and any pattern it references.
|
|
func() is expected to take and return a Pattern.
|
|
func() is first applied to the pattern as a whole, then any referenced patterns.
|
|
It is only applied to any given pattern once, regardless of how many times it is
|
|
referenced.
|
|
|
|
:param func: Function which accepts a Pattern, and returns a pattern.
|
|
:param memo: Dictionary used to avoid re-running on multiply-referenced patterns.
|
|
Stores {id(pattern): func(pattern)} for patterns which have already been processed.
|
|
Default None (no already-processed patterns).
|
|
:return: The result of applying func() to this pattern and all subpatterns.
|
|
:raises: PatternError if called on a pattern containing a circular reference.
|
|
"""
|
|
if memo is None:
|
|
memo = {}
|
|
|
|
pat_id = id(self)
|
|
if pat_id not in memo:
|
|
memo[pat_id] = None
|
|
pat = func(self)
|
|
for subpat in pat.subpatterns:
|
|
subpat.pattern = subpat.pattern.apply(func, memo)
|
|
memo[pat_id] = pat
|
|
elif memo[pat_id] is None:
|
|
raise PatternError('.apply() called on pattern with circular reference')
|
|
else:
|
|
pat = memo[pat_id]
|
|
return pat
|
|
|
|
def polygonize(self,
|
|
poly_num_points: int = None,
|
|
poly_max_arclen: float = None,
|
|
) -> 'Pattern':
|
|
"""
|
|
Calls .to_polygons(...) on all the shapes in this Pattern and any referenced patterns,
|
|
replacing them with the returned polygons.
|
|
Arguments are passed directly to shape.to_polygons(...).
|
|
|
|
:param poly_num_points: Number of points to use for each polygon. Can be overridden by
|
|
poly_max_arclen if that results in more points. Optional, defaults to shapes'
|
|
internal defaults.
|
|
:param poly_max_arclen: Maximum arclength which can be approximated by a single line
|
|
segment. Optional, defaults to shapes' internal defaults.
|
|
:return: self
|
|
"""
|
|
old_shapes = self.shapes
|
|
self.shapes = list(itertools.chain.from_iterable(
|
|
(shape.to_polygons(poly_num_points, poly_max_arclen)
|
|
for shape in old_shapes)))
|
|
for subpat in self.subpatterns:
|
|
subpat.pattern.polygonize(poly_num_points, poly_max_arclen)
|
|
return self
|
|
|
|
def manhattanize(self,
|
|
grid_x: numpy.ndarray,
|
|
grid_y: numpy.ndarray,
|
|
) -> 'Pattern':
|
|
"""
|
|
Calls .polygonize() and .flatten on the pattern, then calls .manhattanize() on all the
|
|
resulting shapes, replacing them with the returned Manhattan polygons.
|
|
|
|
:param grid_x: List of allowed x-coordinates for the Manhattanized polygon edges.
|
|
:param grid_y: List of allowed y-coordinates for the Manhattanized polygon edges.
|
|
:return: self
|
|
"""
|
|
|
|
self.polygonize().flatten()
|
|
old_shapes = self.shapes
|
|
self.shapes = list(itertools.chain.from_iterable(
|
|
(shape.manhattanize(grid_x, grid_y) for shape in old_shapes)))
|
|
return self
|
|
|
|
def subpatternize(self,
|
|
recursive: bool = True,
|
|
norm_value: int = int(1e6),
|
|
exclude_types: Tuple[Shape] = (Polygon,)
|
|
) -> 'Pattern':
|
|
"""
|
|
Iterates through this Pattern and all referenced Patterns. Within each Pattern, it iterates
|
|
over all shapes, calling .normalized_form(norm_value) on them to retrieve a scale-,
|
|
offset-, dose-, and rotation-independent form. Each shape whose normalized form appears
|
|
more than once is removed and re-added using subpattern objects referencing a newly-created
|
|
Pattern containing only the normalized form of the shape.
|
|
|
|
Note that the default norm_value was chosen to give a reasonable precision when converting
|
|
to GDSII, which uses integer values for pixel coordinates.
|
|
|
|
:param recursive: Whether to call recursively on self's subpatterns. Default True.
|
|
:param norm_value: Passed to shape.normalized_form(norm_value). Default 1e6 (see function
|
|
note about GDSII)
|
|
:param exclude_types: Shape types passed in this argument are always left untouched, for
|
|
speed or convenience. Default: (Shapes.Polygon,)
|
|
:return: self
|
|
"""
|
|
|
|
if exclude_types is None:
|
|
exclude_types = ()
|
|
|
|
if recursive:
|
|
for subpat in self.subpatterns:
|
|
subpat.pattern.subpatternize(recursive=True,
|
|
norm_value=norm_value,
|
|
exclude_types=exclude_types)
|
|
|
|
# Create a dict which uses the label tuple from .normalized_form() as a key, and which
|
|
# stores (function_to_create_normalized_shape, [(index_in_shapes, values), ...]), where
|
|
# values are the (offset, scale, rotation, dose) values as calculated by .normalized_form()
|
|
shape_table = defaultdict(lambda: [None, list()])
|
|
for i, shape in enumerate(self.shapes):
|
|
if not any((isinstance(shape, t) for t in exclude_types)):
|
|
label, values, func = shape.normalized_form(norm_value)
|
|
shape_table[label][0] = func
|
|
shape_table[label][1].append((i, values))
|
|
|
|
# Iterate over the normalized shapes in the table. If any normalized shape occurs more than
|
|
# once, create a Pattern holding a normalized shape object, and add self.subpatterns
|
|
# entries for each occurrence in self. Also, note down that we should delete the
|
|
# self.shapes entries for which we made SubPatterns.
|
|
shapes_to_remove = []
|
|
for label in shape_table:
|
|
if len(shape_table[label][1]) > 1:
|
|
shape = shape_table[label][0]()
|
|
pat = Pattern(shapes=[shape])
|
|
|
|
for i, values in shape_table[label][1]:
|
|
(offset, scale, rotation, mirror_x, dose) = values
|
|
subpat = SubPattern(pattern=pat, offset=offset, scale=scale,
|
|
rotation=rotation, dose=dose, mirrored=(mirror_x, False))
|
|
self.subpatterns.append(subpat)
|
|
shapes_to_remove.append(i)
|
|
|
|
# Remove any shapes for which we have created subpatterns.
|
|
for i in sorted(shapes_to_remove, reverse=True):
|
|
del self.shapes[i]
|
|
|
|
return self
|
|
|
|
def as_polygons(self) -> List[numpy.ndarray]:
|
|
"""
|
|
Represents the pattern as a list of polygons.
|
|
|
|
Deep-copies the pattern, then calls .polygonize() and .flatten() on the copy in order to
|
|
generate the list of polygons.
|
|
|
|
:return: A list of (Ni, 2) numpy.ndarrays specifying vertices of the polygons. Each ndarray
|
|
is of the form [[x0, y0], [x1, y1],...].
|
|
"""
|
|
pat = copy.deepcopy(self).polygonize().flatten()
|
|
return [shape.vertices + shape.offset for shape in pat.shapes]
|
|
|
|
def referenced_patterns_by_id(self) -> Dict[int, 'Pattern']:
|
|
"""
|
|
Create a dictionary of {id(pat): pat} for all Pattern objects referenced by this
|
|
Pattern (operates recursively on all referenced Patterns as well)
|
|
|
|
:return: Dictionary of {id(pat): pat} for all referenced Pattern objects
|
|
"""
|
|
ids = {}
|
|
for subpat in self.subpatterns:
|
|
if id(subpat.pattern) not in ids:
|
|
ids[id(subpat.pattern)] = subpat.pattern
|
|
ids.update(subpat.pattern.referenced_patterns_by_id())
|
|
return ids
|
|
|
|
def get_bounds(self) -> Union[numpy.ndarray, None]:
|
|
"""
|
|
Return a numpy.ndarray containing [[x_min, y_min], [x_max, y_max]], corresponding to the
|
|
extent of the Pattern's contents in each dimension.
|
|
Returns None if the Pattern is empty.
|
|
|
|
:return: [[x_min, y_min], [x_max, y_max]] or None
|
|
"""
|
|
entries = self.shapes + self.subpatterns + self.labels
|
|
if not entries:
|
|
return None
|
|
|
|
init_bounds = entries[0].get_bounds()
|
|
min_bounds = init_bounds[0, :]
|
|
max_bounds = init_bounds[1, :]
|
|
for entry in entries[1:]:
|
|
bounds = entry.get_bounds()
|
|
min_bounds = numpy.minimum(min_bounds, bounds[0, :])
|
|
max_bounds = numpy.maximum(max_bounds, bounds[1, :])
|
|
return numpy.vstack((min_bounds, max_bounds))
|
|
|
|
def flatten(self) -> 'Pattern':
|
|
"""
|
|
Removes all subpatterns and adds equivalent shapes.
|
|
|
|
Shape identifiers are changed to represent their original position in the
|
|
pattern hierarchy:
|
|
(L1_name (str), L1_index (int), L2_name, L2_index, ..., *original_shape_identifier)
|
|
where L1_name is the first-level subpattern's name (e.g. self.subpatterns[0].pattern.name),
|
|
L2_name is the next-level subpattern's name (e.g.
|
|
self.subpatterns[0].pattern.subpatterns[0].pattern.name) and L1_index is an integer
|
|
used to differentiate between multiple instance of the same (or same-named) subpatterns.
|
|
|
|
:return: self
|
|
"""
|
|
subpatterns = copy.deepcopy(self.subpatterns)
|
|
self.subpatterns = []
|
|
shape_counts = {}
|
|
for subpat in subpatterns:
|
|
subpat.pattern.flatten()
|
|
p = subpat.as_pattern()
|
|
|
|
# Update identifiers so each shape has a unique one
|
|
for shape in p.shapes:
|
|
combined_identifier = (subpat.pattern.name,) + shape.identifier
|
|
shape_count = shape_counts.get(combined_identifier, 0)
|
|
shape.identifier = (subpat.pattern.name, shape_count) + shape.identifier
|
|
shape_counts[combined_identifier] = shape_count + 1
|
|
|
|
self.append(p)
|
|
return self
|
|
|
|
def translate_elements(self, offset: vector2) -> 'Pattern':
|
|
"""
|
|
Translates all shapes, label, and subpatterns by the given offset.
|
|
|
|
:param offset: Offset to translate by
|
|
:return: self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns + self.labels:
|
|
entry.translate(offset)
|
|
return self
|
|
|
|
def scale_elements(self, scale: float) -> 'Pattern':
|
|
""""
|
|
Scales all shapes and subpatterns by the given value.
|
|
|
|
:param scale: value to scale by
|
|
:return: self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.scale(scale)
|
|
return self
|
|
|
|
def scale_by(self, c: float) -> 'Pattern':
|
|
"""
|
|
Scale this Pattern by the given value
|
|
(all shapes and subpatterns and their offsets are scaled)
|
|
|
|
:param c: value to scale by
|
|
:return: self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.offset *= c
|
|
entry.scale_by(c)
|
|
for entry in self.labels:
|
|
entry.offset *= c
|
|
return self
|
|
|
|
def rotate_around(self, pivot: vector2, rotation: float) -> 'Pattern':
|
|
"""
|
|
Rotate the Pattern around the a location.
|
|
|
|
:param pivot: Location to rotate around
|
|
:param rotation: Angle to rotate by (counter-clockwise, radians)
|
|
:return: self
|
|
"""
|
|
pivot = numpy.array(pivot)
|
|
self.translate_elements(-pivot)
|
|
self.rotate_elements(rotation)
|
|
self.rotate_element_centers(rotation)
|
|
self.translate_elements(+pivot)
|
|
return self
|
|
|
|
def rotate_element_centers(self, rotation: float) -> 'Pattern':
|
|
"""
|
|
Rotate the offsets of all shapes, labels, and subpatterns around (0, 0)
|
|
|
|
:param rotation: Angle to rotate by (counter-clockwise, radians)
|
|
:return: self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns + self.labels:
|
|
entry.offset = numpy.dot(rotation_matrix_2d(rotation), entry.offset)
|
|
return self
|
|
|
|
def rotate_elements(self, rotation: float) -> 'Pattern':
|
|
"""
|
|
Rotate each shape and subpattern around its center (offset)
|
|
|
|
:param rotation: Angle to rotate by (counter-clockwise, radians)
|
|
:return: self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.rotate(rotation)
|
|
return self
|
|
|
|
def mirror_element_centers(self, axis: int) -> 'Pattern':
|
|
"""
|
|
Mirror the offsets of all shapes, labels, and subpatterns across an axis
|
|
|
|
:param axis: Axis to mirror across
|
|
:return: self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns + self.labels:
|
|
entry.offset[axis - 1] *= -1
|
|
return self
|
|
|
|
def mirror_elements(self, axis: int) -> 'Pattern':
|
|
"""
|
|
Mirror each shape and subpattern across an axis, relative to its
|
|
center (offset)
|
|
|
|
:param axis: Axis to mirror across
|
|
:return: self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.mirror(axis)
|
|
return self
|
|
|
|
def mirror(self, axis: int) -> 'Pattern':
|
|
"""
|
|
Mirror the Pattern across an axis
|
|
|
|
:param axis: Axis to mirror across
|
|
:return: self
|
|
"""
|
|
self.mirror_elements(axis)
|
|
self.mirror_element_centers(axis)
|
|
return self
|
|
|
|
def scale_element_doses(self, factor: float) -> 'Pattern':
|
|
"""
|
|
Multiply all shape and subpattern doses by a factor
|
|
|
|
:param factor: Factor to multiply doses by
|
|
:return: self
|
|
"""
|
|
for entry in self.shapes + self.subpatterns:
|
|
entry.dose *= factor
|
|
return self
|
|
|
|
def copy(self) -> 'Pattern':
|
|
"""
|
|
Return a copy of the Pattern, deep-copying shapes and copying subpattern entries, but not
|
|
deep-copying any referenced patterns.
|
|
|
|
See also: Pattern.deepcopy()
|
|
|
|
:return: A copy of the current Pattern.
|
|
"""
|
|
cp = copy.copy(self)
|
|
cp.shapes = copy.deepcopy(cp.shapes)
|
|
cp.labels = copy.deepcopy(cp.labels)
|
|
cp.subpatterns = [copy.copy(subpat) for subpat in cp.subpatterns]
|
|
return cp
|
|
|
|
def deepcopy(self) -> 'Pattern':
|
|
"""
|
|
Convenience method for copy.deepcopy(pattern)
|
|
|
|
:return: A deep copy of the current Pattern.
|
|
"""
|
|
return copy.deepcopy(self)
|
|
|
|
def is_empty(self) -> bool:
|
|
"""
|
|
Returns true if the Pattern contains no shapes, labels, or subpatterns.
|
|
|
|
:return: True if the pattern is empty.
|
|
"""
|
|
return (len(self.subpatterns) == 0 and len(self.shapes) == 0 and len(self.labels) == 0)
|
|
|
|
@staticmethod
|
|
def load(filename: str) -> 'Pattern':
|
|
"""
|
|
Load a Pattern from a file
|
|
|
|
:param filename: Filename to load from
|
|
:return: Loaded Pattern
|
|
"""
|
|
with open(filename, 'rb') as f:
|
|
pattern = pickle.load(f)
|
|
|
|
return pattern
|
|
|
|
def save(self, filename: str) -> 'Pattern':
|
|
"""
|
|
Save the Pattern to a file
|
|
|
|
:param filename: Filename to save to
|
|
:return: self
|
|
"""
|
|
with open(filename, 'wb') as f:
|
|
pickle.dump(self, f, protocol=pickle.HIGHEST_PROTOCOL)
|
|
return self
|
|
|
|
def visualize(self,
|
|
offset: vector2 = (0., 0.),
|
|
line_color: str = 'k',
|
|
fill_color: str = 'none',
|
|
overdraw: bool = False):
|
|
"""
|
|
Draw a picture of the Pattern and wait for the user to inspect it
|
|
|
|
Imports matplotlib.
|
|
|
|
:param offset: Coordinates to offset by before drawing
|
|
:param line_color: Outlines are drawn with this color (passed to matplotlib PolyCollection)
|
|
:param fill_color: Interiors are drawn with this color (passed to matplotlib PolyCollection)
|
|
:param overdraw: Whether to create a new figure or draw on a pre-existing one
|
|
"""
|
|
# TODO: add text labels to visualize()
|
|
from matplotlib import pyplot
|
|
import matplotlib.collections
|
|
|
|
offset = numpy.array(offset, dtype=float)
|
|
|
|
if not overdraw:
|
|
figure = pyplot.figure()
|
|
pyplot.axis('equal')
|
|
else:
|
|
figure = pyplot.gcf()
|
|
|
|
axes = figure.gca()
|
|
|
|
polygons = []
|
|
for shape in self.shapes:
|
|
polygons += [offset + s.offset + s.vertices for s in shape.to_polygons()]
|
|
|
|
mpl_poly_collection = matplotlib.collections.PolyCollection(polygons,
|
|
facecolors=fill_color,
|
|
edgecolors=line_color)
|
|
axes.add_collection(mpl_poly_collection)
|
|
pyplot.axis('equal')
|
|
|
|
for subpat in self.subpatterns:
|
|
subpat.as_pattern().visualize(offset=offset, overdraw=True,
|
|
line_color=line_color, fill_color=fill_color)
|
|
|
|
if not overdraw:
|
|
pyplot.show()
|