418 lines
13 KiB
Python
418 lines
13 KiB
Python
"""
|
|
Repetitions provide support for efficiently representing multiple identical
|
|
instances of an object .
|
|
"""
|
|
|
|
from typing import Union, Dict, Optional, Sequence, Any
|
|
import copy
|
|
from abc import ABCMeta, abstractmethod
|
|
|
|
import numpy
|
|
from numpy.typing import ArrayLike, NDArray
|
|
|
|
from .error import PatternError
|
|
from .utils import rotation_matrix_2d, AutoSlots
|
|
from .traits import LockableImpl, Copyable, Scalable, Rotatable, Mirrorable
|
|
|
|
|
|
class Repetition(Copyable, Rotatable, Mirrorable, Scalable, metaclass=ABCMeta):
|
|
"""
|
|
Interface common to all objects which specify repetitions
|
|
"""
|
|
__slots__ = ()
|
|
|
|
@property
|
|
@abstractmethod
|
|
def displacements(self) -> NDArray[numpy.float64]:
|
|
"""
|
|
An Nx2 ndarray specifying all offsets generated by this repetition
|
|
"""
|
|
pass
|
|
|
|
|
|
class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
|
|
"""
|
|
`Grid` describes a 2D grid formed by two basis vectors and two 'counts' (sizes).
|
|
|
|
The second basis vector and count (`b_vector` and `b_count`) may be omitted,
|
|
which makes the grid describe a 1D array.
|
|
|
|
Note that the offsets in either the 2D or 1D grids do not have to be axis-aligned.
|
|
"""
|
|
__slots__ = ('_a_vector',
|
|
'_b_vector',
|
|
'_a_count',
|
|
'_b_count')
|
|
|
|
_a_vector: NDArray[numpy.float64]
|
|
""" Vector `[x, y]` specifying the first lattice vector of the grid.
|
|
Specifies center-to-center spacing between adjacent elements.
|
|
"""
|
|
|
|
_a_count: int
|
|
""" Number of instances along the direction specified by the `a_vector` """
|
|
|
|
_b_vector: Optional[NDArray[numpy.float64]]
|
|
""" Vector `[x, y]` specifying a second lattice vector for the grid.
|
|
Specifies center-to-center spacing between adjacent elements.
|
|
Can be `None` for a 1D array.
|
|
"""
|
|
|
|
_b_count: int
|
|
""" Number of instances along the direction specified by the `b_vector` """
|
|
|
|
def __init__(
|
|
self,
|
|
a_vector: ArrayLike,
|
|
a_count: int,
|
|
b_vector: Optional[ArrayLike] = None,
|
|
b_count: Optional[int] = 1,
|
|
locked: bool = False,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
a_vector: First lattice vector, of the form `[x, y]`.
|
|
Specifies center-to-center spacing between adjacent instances.
|
|
a_count: Number of elements in the a_vector direction.
|
|
b_vector: Second lattice vector, of the form `[x, y]`.
|
|
Specifies center-to-center spacing between adjacent instances.
|
|
Can be omitted when specifying a 1D array.
|
|
b_count: Number of elements in the `b_vector` direction.
|
|
Should be omitted if `b_vector` was omitted.
|
|
locked: Whether the `Grid` is locked after initialization.
|
|
|
|
Raises:
|
|
PatternError if `b_*` inputs conflict with each other
|
|
or `a_count < 1`.
|
|
"""
|
|
if b_count is None:
|
|
b_count = 1
|
|
|
|
if b_vector is None:
|
|
if b_count > 1:
|
|
raise PatternError('Repetition has b_count > 1 but no b_vector')
|
|
else:
|
|
b_vector = numpy.array([0.0, 0.0])
|
|
|
|
if a_count < 1:
|
|
raise PatternError(f'Repetition has too-small a_count: {a_count}')
|
|
if b_count < 1:
|
|
raise PatternError(f'Repetition has too-small b_count: {b_count}')
|
|
|
|
object.__setattr__(self, 'locked', False)
|
|
self.a_vector = a_vector # type: ignore # setter handles type conversion
|
|
self.b_vector = b_vector # type: ignore # setter handles type conversion
|
|
self.a_count = a_count
|
|
self.b_count = b_count
|
|
self.locked = locked
|
|
|
|
def __copy__(self) -> 'Grid':
|
|
new = Grid(a_vector=self.a_vector.copy(),
|
|
b_vector=copy.copy(self.b_vector),
|
|
a_count=self.a_count,
|
|
b_count=self.b_count,
|
|
locked=self.locked)
|
|
return new
|
|
|
|
def __deepcopy__(self, memo: Dict = None) -> 'Grid':
|
|
memo = {} if memo is None else memo
|
|
new = copy.copy(self).unlock()
|
|
new.locked = self.locked
|
|
return new
|
|
|
|
# a_vector property
|
|
@property
|
|
def a_vector(self) -> NDArray[numpy.float64]:
|
|
return self._a_vector
|
|
|
|
@a_vector.setter
|
|
def a_vector(self, val: ArrayLike) -> None:
|
|
if not isinstance(val, numpy.ndarray):
|
|
val = numpy.array(val, dtype=float)
|
|
|
|
if val.size != 2:
|
|
raise PatternError('a_vector must be convertible to size-2 ndarray')
|
|
self._a_vector = val.flatten().astype(float)
|
|
|
|
# b_vector property
|
|
@property
|
|
def b_vector(self) -> Optional[NDArray[numpy.float64]]:
|
|
return self._b_vector
|
|
|
|
@b_vector.setter
|
|
def b_vector(self, val: ArrayLike) -> None:
|
|
if not isinstance(val, numpy.ndarray):
|
|
val = numpy.array(val, dtype=float, copy=True)
|
|
|
|
if val.size != 2:
|
|
raise PatternError('b_vector must be convertible to size-2 ndarray')
|
|
self._b_vector = val.flatten()
|
|
|
|
# a_count property
|
|
@property
|
|
def a_count(self) -> int:
|
|
return self._a_count
|
|
|
|
@a_count.setter
|
|
def a_count(self, val: int) -> None:
|
|
if val != int(val):
|
|
raise PatternError('a_count must be convertable to an int!')
|
|
self._a_count = int(val)
|
|
|
|
# b_count property
|
|
@property
|
|
def b_count(self) -> int:
|
|
return self._b_count
|
|
|
|
@b_count.setter
|
|
def b_count(self, val: int) -> None:
|
|
if val != int(val):
|
|
raise PatternError('b_count must be convertable to an int!')
|
|
self._b_count = int(val)
|
|
|
|
@property
|
|
def displacements(self) -> NDArray[numpy.float64]:
|
|
if self.b_vector is None:
|
|
return numpy.arange(self.a_count)[:, None] * self.a_vector[None, :]
|
|
|
|
aa, bb = numpy.meshgrid(numpy.arange(self.a_count), numpy.arange(self.b_count), indexing='ij')
|
|
return (aa.flatten()[:, None] * self.a_vector[None, :]
|
|
+ bb.flatten()[:, None] * self.b_vector[None, :]) # noqa
|
|
|
|
def rotate(self, rotation: float) -> 'Grid':
|
|
"""
|
|
Rotate lattice vectors (around (0, 0))
|
|
|
|
Args:
|
|
rotation: Angle to rotate by (counterclockwise, radians)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.a_vector = numpy.dot(rotation_matrix_2d(rotation), self.a_vector)
|
|
if self.b_vector is not None:
|
|
self.b_vector = numpy.dot(rotation_matrix_2d(rotation), self.b_vector)
|
|
return self
|
|
|
|
def mirror(self, axis: int) -> 'Grid':
|
|
"""
|
|
Mirror the Grid across an axis.
|
|
|
|
Args:
|
|
axis: Axis to mirror across.
|
|
(0: mirror across x-axis, 1: mirror across y-axis)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.a_vector[1 - axis] *= -1
|
|
if self.b_vector is not None:
|
|
self.b_vector[1 - axis] *= -1
|
|
return self
|
|
|
|
def get_bounds(self) -> Optional[NDArray[numpy.float64]]:
|
|
"""
|
|
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
|
extent of the `Grid` in each dimension.
|
|
|
|
Returns:
|
|
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
|
"""
|
|
a_extent = self.a_vector * self.a_count
|
|
b_extent = self.b_vector * self.b_count if (self.b_vector is not None) else 0 # type: Union[NDArray[numpy.float64], float]
|
|
|
|
corners = ((0, 0), a_extent, b_extent, a_extent + b_extent)
|
|
xy_min = numpy.min(corners, axis=0)
|
|
xy_max = numpy.max(corners, axis=0)
|
|
return numpy.array((xy_min, xy_max))
|
|
|
|
def scale_by(self, c: float) -> 'Grid':
|
|
"""
|
|
Scale the Grid by a factor
|
|
|
|
Args:
|
|
c: scaling factor
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.a_vector *= c
|
|
if self.b_vector is not None:
|
|
self.b_vector *= c
|
|
return self
|
|
|
|
def lock(self) -> 'Grid':
|
|
"""
|
|
Lock the `Grid`, disallowing changes.
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.a_vector.flags.writeable = False
|
|
if self.b_vector is not None:
|
|
self.b_vector.flags.writeable = False
|
|
LockableImpl.lock(self)
|
|
return self
|
|
|
|
def unlock(self) -> 'Grid':
|
|
"""
|
|
Unlock the `Grid`
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.a_vector.flags.writeable = True
|
|
if self.b_vector is not None:
|
|
self.b_vector.flags.writeable = True
|
|
LockableImpl.unlock(self)
|
|
return self
|
|
|
|
def __repr__(self) -> str:
|
|
locked = ' L' if self.locked else ''
|
|
bv = f', {self.b_vector}' if self.b_vector is not None else ''
|
|
return (f'<Grid {self.a_count}x{self.b_count} ({self.a_vector}{bv}){locked}>')
|
|
|
|
def __eq__(self, other: Any) -> bool:
|
|
if not isinstance(other, type(self)):
|
|
return False
|
|
if self.a_count != other.a_count or self.b_count != other.b_count:
|
|
return False
|
|
if any(self.a_vector[ii] != other.a_vector[ii] for ii in range(2)):
|
|
return False
|
|
if self.b_vector is None and other.b_vector is None:
|
|
return True
|
|
if self.b_vector is None or other.b_vector is None:
|
|
return False
|
|
if any(self.b_vector[ii] != other.b_vector[ii] for ii in range(2)):
|
|
return False
|
|
if self.locked != other.locked:
|
|
return False
|
|
return True
|
|
|
|
|
|
class Arbitrary(LockableImpl, Repetition, metaclass=AutoSlots):
|
|
"""
|
|
`Arbitrary` is a simple list of (absolute) displacements for instances.
|
|
|
|
Attributes:
|
|
displacements (numpy.ndarray): absolute displacements of all elements
|
|
`[[x0, y0], [x1, y1], ...]`
|
|
"""
|
|
|
|
__slots__ = ('_displacements',)
|
|
|
|
_displacements: NDArray[numpy.float64]
|
|
""" List of vectors `[[x0, y0], [x1, y1], ...]` specifying the offsets
|
|
of the instances.
|
|
"""
|
|
|
|
@property
|
|
def displacements(self) -> Any: # TODO: mypy#3004 NDArray[numpy.float64]:
|
|
return self._displacements
|
|
|
|
@displacements.setter
|
|
def displacements(self, val: ArrayLike) -> None:
|
|
vala: NDArray[numpy.float64] = numpy.array(val, dtype=float)
|
|
vala = numpy.sort(vala.view([('', vala.dtype)] * vala.shape[1]), 0).view(vala.dtype) # sort rows
|
|
self._displacements = vala
|
|
|
|
def __init__(
|
|
self,
|
|
displacements: ArrayLike,
|
|
locked: bool = False,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
displacements: List of vectors (Nx2 ndarray) specifying displacements.
|
|
locked: Whether the object is locked after initialization.
|
|
"""
|
|
object.__setattr__(self, 'locked', False)
|
|
self.displacements = displacements
|
|
self.locked = locked
|
|
|
|
def lock(self) -> 'Arbitrary':
|
|
"""
|
|
Lock the object, disallowing changes.
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self._displacements.flags.writeable = False
|
|
LockableImpl.lock(self)
|
|
return self
|
|
|
|
def unlock(self) -> 'Arbitrary':
|
|
"""
|
|
Unlock the object
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self._displacements.flags.writeable = True
|
|
LockableImpl.unlock(self)
|
|
return self
|
|
|
|
def __repr__(self) -> str:
|
|
locked = ' L' if self.locked else ''
|
|
return (f'<Arbitrary {len(self.displacements)}pts {locked}>')
|
|
|
|
def __eq__(self, other: Any) -> bool:
|
|
if not isinstance(other, type(self)):
|
|
return False
|
|
if self.locked != other.locked:
|
|
return False
|
|
return numpy.array_equal(self.displacements, other.displacements)
|
|
|
|
def rotate(self, rotation: float) -> 'Arbitrary':
|
|
"""
|
|
Rotate dispacements (around (0, 0))
|
|
|
|
Args:
|
|
rotation: Angle to rotate by (counterclockwise, radians)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.displacements = numpy.dot(rotation_matrix_2d(rotation), self.displacements.T).T
|
|
return self
|
|
|
|
def mirror(self, axis: int) -> 'Arbitrary':
|
|
"""
|
|
Mirror the displacements across an axis.
|
|
|
|
Args:
|
|
axis: Axis to mirror across.
|
|
(0: mirror across x-axis, 1: mirror across y-axis)
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.displacements[1 - axis] *= -1
|
|
return self
|
|
|
|
def get_bounds(self) -> Optional[NDArray[numpy.float64]]:
|
|
"""
|
|
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
|
extent of the `displacements` in each dimension.
|
|
|
|
Returns:
|
|
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
|
"""
|
|
xy_min = numpy.min(self.displacements, axis=0)
|
|
xy_max = numpy.max(self.displacements, axis=0)
|
|
return numpy.array((xy_min, xy_max))
|
|
|
|
def scale_by(self, c: float) -> 'Arbitrary':
|
|
"""
|
|
Scale the displacements by a factor
|
|
|
|
Args:
|
|
c: scaling factor
|
|
|
|
Returns:
|
|
self
|
|
"""
|
|
self.displacements *= c
|
|
return self
|
|
|