Compare commits

..

No commits in common. "master" and "v3.0" have entirely different histories.
master ... v3.0

54 changed files with 445 additions and 1950 deletions

View File

@ -8,7 +8,6 @@ to output to multiple formats.
- [Source repository](https://mpxd.net/code/jan/masque)
- [PyPI](https://pypi.org/project/masque)
- [Github mirror](https://github.com/anewusername/masque)
## Installation
@ -102,7 +101,7 @@ References are accomplished by listing the target's name, not its `Pattern` obje
## Glossary
- `Library`: A collection of named cells. OASIS or GDS "library" or file.
- `Tree`: Any `{name: pattern}` mapping which has only one topcell.
- "tree": Any Library which has only one topcell.
- `Pattern`: A collection of geometry, text labels, and reference to other patterns.
OASIS or GDS "Cell", DXF "Block".
- `Ref`: A reference to another pattern. GDS "AREF/SREF", OASIS "Placement".
@ -143,11 +142,6 @@ my_pattern.ref(new_name, ...) # instantiate the cell
# In practice, you may do lots of
my_pattern.ref(lib << make_tree(...), ...)
# With a `Builder` and `place()`/`plug()` the `lib <<` portion can be implicit:
my_builder = Builder(library=lib, ...)
...
my_builder.place(make_tree(...))
```
We can also use this shorthand to quickly add and reference a single flat (as yet un-named) pattern:
@ -172,7 +166,6 @@ my_pattern.place(abstract, ...)
# or
my_pattern.place(library << make_tree(...), ...)
```
### Quickly add geometry, labels, or refs:

View File

@ -99,7 +99,6 @@ def main():
print('\nAdded aref_test')
folder = Path('./layouts/')
folder.mkdir(exist_ok=True)
print(f'...writing files to {folder}...')
gds1 = folder / 'rep.gds.gz'

View File

@ -1,4 +1,4 @@
from collections.abc import Sequence
from typing import Sequence
import numpy
from numpy import pi

View File

@ -1,4 +1,4 @@
from collections.abc import Sequence, Mapping
from typing import Sequence, Mapping
import numpy
from numpy import pi

View File

@ -1,5 +1,4 @@
from typing import Any
from collections.abc import Sequence, Callable
from typing import Sequence, Callable, Any
from pprint import pformat
import numpy

View File

@ -1,7 +1,7 @@
"""
Manual wire routing tutorial: Pather and BasicTool
"""
from collections.abc import Callable
from typing import Callable
from numpy import pi
from masque import Pather, RenderPather, Library, Pattern, Port, layer_t, map_layers
from masque.builder.tools import BasicTool, PathTool
@ -265,12 +265,6 @@ def main() -> None:
# when using pather.retool().
pather.path_to('VCC', None, -50_000, out_ptype='m1wire')
# Now extend GND out to x=-50_000, using M2 for a portion of the path.
# We can use `pather.toolctx()` to temporarily retool, instead of calling `retool()` twice.
with pather.toolctx(M2_tool, keys=['GND']):
pather.path_to('GND', None, -40_000)
pather.path_to('GND', None, -50_000)
# Save the pather's pattern into our library
library['Pather_and_BasicTool'] = pather.pattern

View File

@ -2,7 +2,7 @@
Routines for creating normalized 2D lattices and common photonic crystal
cavity designs.
"""
from collection.abc import Sequence
from typing import Sequence
import numpy
from numpy.typing import ArrayLike, NDArray
@ -233,8 +233,8 @@ def ln_shift_defect(
# Shift holes
# Expand shifts as necessary
tmp_a = numpy.asarray(shifts_a)
tmp_r = numpy.asarray(shifts_r)
tmp_a = numpy.array(shifts_a)
tmp_r = numpy.array(shifts_r)
n_shifted = max(tmp_a.size, tmp_r.size)
shifts_a = numpy.ones(n_shifted)

View File

@ -1,7 +1,7 @@
"""
Manual wire routing tutorial: RenderPather an PathTool
"""
from collections.abc import Callable
from typing import Callable
from masque import RenderPather, Library, Pattern, Port, layer_t, map_layers
from masque.builder.tools import PathTool
from masque.file.gdsii import writefile

View File

@ -28,67 +28,25 @@
can accept a `Mapping[str, Pattern]` and wrap it in a `LibraryView` internally.
"""
from .utils import (
layer_t as layer_t,
annotations_t as annotations_t,
SupportsBool as SupportsBool,
)
from .error import (
MasqueError as MasqueError,
PatternError as PatternError,
LibraryError as LibraryError,
BuildError as BuildError,
)
from .shapes import (
Shape as Shape,
Polygon as Polygon,
Path as Path,
Circle as Circle,
Arc as Arc,
Ellipse as Ellipse,
)
from .label import Label as Label
from .ref import Ref as Ref
from .pattern import (
Pattern as Pattern,
map_layers as map_layers,
map_targets as map_targets,
chain_elements as chain_elements,
)
from .utils import layer_t, annotations_t, SupportsBool
from .error import MasqueError, PatternError, LibraryError, BuildError
from .shapes import Shape, Polygon, Path, Circle, Arc, Ellipse
from .label import Label
from .ref import Ref
from .pattern import Pattern, map_layers, map_targets, chain_elements
from .library import (
ILibraryView as ILibraryView,
ILibrary as ILibrary,
LibraryView as LibraryView,
Library as Library,
LazyLibrary as LazyLibrary,
AbstractView as AbstractView,
TreeView as TreeView,
Tree as Tree,
)
from .ports import (
Port as Port,
PortList as PortList,
)
from .abstract import Abstract as Abstract
from .builder import (
Builder as Builder,
Tool as Tool,
Pather as Pather,
RenderPather as RenderPather,
RenderStep as RenderStep,
BasicTool as BasicTool,
PathTool as PathTool,
)
from .utils import (
ports2data as ports2data,
oneshot as oneshot,
R90 as R90,
R180 as R180,
ILibraryView, ILibrary,
LibraryView, Library, LazyLibrary,
AbstractView,
)
from .ports import Port, PortList
from .abstract import Abstract
from .builder import Builder, Tool, Pather, RenderPather, RenderStep, BasicTool, PathTool
from .utils import ports2data, oneshot
__author__ = 'Jan Petykiewicz'
__version__ = '3.4'
__version__ = '3.0'
version = __version__ # legacy

View File

@ -97,7 +97,7 @@ class Abstract(PortList):
Returns:
self
"""
pivot = numpy.asarray(pivot, dtype=float)
pivot = numpy.array(pivot)
self.translate_ports(-pivot)
self.rotate_ports(rotation)
self.rotate_port_offsets(rotation)

View File

@ -1,10 +1,5 @@
from .builder import Builder as Builder
from .pather import Pather as Pather
from .renderpather import RenderPather as RenderPather
from .utils import ell as ell
from .tools import (
Tool as Tool,
RenderStep as RenderStep,
BasicTool as BasicTool,
PathTool as PathTool,
)
from .builder import Builder
from .pather import Pather
from .renderpather import RenderPather
from .utils import ell
from .tools import Tool, RenderStep, BasicTool, PathTool

View File

@ -1,16 +1,14 @@
"""
Simplified Pattern assembly (`Builder`)
"""
from typing import Self
from collections.abc import Iterable, Sequence, Mapping
from typing import Self, Sequence, Mapping
import copy
import logging
from functools import wraps
from numpy.typing import ArrayLike
from ..pattern import Pattern
from ..library import ILibrary, TreeView
from ..library import ILibrary
from ..error import BuildError
from ..ports import PortList, Port
from ..abstract import Abstract
@ -138,7 +136,7 @@ class Builder(PortList):
@classmethod
def interface(
cls: type['Builder'],
cls,
source: PortList | Mapping[str, Port] | str,
*,
library: ILibrary | None = None,
@ -190,35 +188,9 @@ class Builder(PortList):
new = Builder(library=library, pattern=pat, name=name)
return new
@wraps(Pattern.label)
def label(self, *args, **kwargs) -> Self:
self.pattern.label(*args, **kwargs)
return self
@wraps(Pattern.ref)
def ref(self, *args, **kwargs) -> Self:
self.pattern.ref(*args, **kwargs)
return self
@wraps(Pattern.polygon)
def polygon(self, *args, **kwargs) -> Self:
self.pattern.polygon(*args, **kwargs)
return self
@wraps(Pattern.rect)
def rect(self, *args, **kwargs) -> Self:
self.pattern.rect(*args, **kwargs)
return self
# Note: We're a superclass of `Pather`, where path() means something different...
#@wraps(Pattern.path)
#def path(self, *args, **kwargs) -> Self:
# self.pattern.path(*args, **kwargs)
# return self
def plug(
self,
other: Abstract | str | Pattern | TreeView,
other: Abstract | str | Pattern,
map_in: dict[str, str],
map_out: dict[str, str | None] | None = None,
*,
@ -226,20 +198,14 @@ class Builder(PortList):
inherit_name: bool = True,
set_rotation: bool | None = None,
append: bool = False,
ok_connections: Iterable[tuple[str, str]] = (),
) -> Self:
"""
Wrapper around `Pattern.plug` which allows a string for `other`.
The `Builder`'s library is used to dereference the string (or `Abstract`, if
one is passed with `append=True`). If a `TreeView` is passed, it is first
added into `self.library`.
one is passed with `append=True`).
Args:
other: An `Abstract`, string, `Pattern`, or `TreeView` describing the
device to be instatiated. If it is a `TreeView`, it is first
added into `self.library`, after which the topcell is plugged;
an equivalent statement is `self.plug(self.library << other, ...)`.
other: An `Abstract`, string, or `Pattern` describing the device to be instatiated.
map_in: dict of `{'self_port': 'other_port'}` mappings, specifying
port connections between the two devices.
map_out: dict of `{'old_name': 'new_name'}` mappings, specifying
@ -261,11 +227,6 @@ class Builder(PortList):
append: If `True`, `other` is appended instead of being referenced.
Note that this does not flatten `other`, so its refs will still
be refs (now inside `self`).
ok_connections: Set of "allowed" ptype combinations. Identical
ptypes are always allowed to connect, as is `'unk'` with
any other ptypte. Non-allowed ptype connections will emit a
warning. Order is ignored, i.e. `(a, b)` is equivalent to
`(b, a)`.
Returns:
self
@ -282,10 +243,6 @@ class Builder(PortList):
logger.error('Skipping plug() since device is dead')
return self
if not isinstance(other, str | Abstract | Pattern):
# We got a Tree; add it into self.library and grab an Abstract for it
other = self.library << other
if isinstance(other, str):
other = self.library.abstract(other)
if append and isinstance(other, Abstract):
@ -299,13 +256,12 @@ class Builder(PortList):
inherit_name=inherit_name,
set_rotation=set_rotation,
append=append,
ok_connections=ok_connections,
)
return self
def place(
self,
other: Abstract | str | Pattern | TreeView,
other: Abstract | str | Pattern,
*,
offset: ArrayLike = (0, 0),
rotation: float = 0,
@ -316,17 +272,12 @@ class Builder(PortList):
append: bool = False,
) -> Self:
"""
Wrapper around `Pattern.place` which allows a string or `TreeView` for `other`.
Wrapper around `Pattern.place` which allows a string for `other`.
The `Builder`'s library is used to dereference the string (or `Abstract`, if
one is passed with `append=True`). If a `TreeView` is passed, it is first
added into `self.library`.
one is passed with `append=True`).
Args:
other: An `Abstract`, string, `Pattern`, or `TreeView` describing the
device to be instatiated. If it is a `TreeView`, it is first
added into `self.library`, after which the topcell is plugged;
an equivalent statement is `self.plug(self.library << other, ...)`.
other: An `Abstract`, string, or `Pattern` describing the device to be instatiated.
offset: Offset at which to place the instance. Default (0, 0).
rotation: Rotation applied to the instance before placement. Default 0.
pivot: Rotation is applied around this pivot point (default (0, 0)).
@ -355,10 +306,6 @@ class Builder(PortList):
logger.error('Skipping place() since device is dead')
return self
if not isinstance(other, str | Abstract | Pattern):
# We got a Tree; add it into self.library and grab an Abstract for it
other = self.library << other
if isinstance(other, str):
other = self.library.abstract(other)
if append and isinstance(other, Abstract):

View File

@ -1,11 +1,9 @@
"""
Manual wire/waveguide routing (`Pather`)
"""
from typing import Self
from collections.abc import Sequence, MutableMapping, Mapping, Iterator
from typing import Self, Sequence, MutableMapping, Mapping
import copy
import logging
from contextlib import contextmanager
from pprint import pformat
import numpy
@ -17,7 +15,7 @@ from ..library import ILibrary, SINGLE_USE_PREFIX
from ..error import PortError, BuildError
from ..ports import PortList, Port
from ..abstract import Abstract
from ..utils import SupportsBool, rotation_matrix_2d
from ..utils import SupportsBool
from .tools import Tool
from .utils import ell
from .builder import Builder
@ -176,7 +174,7 @@ class Pather(Builder):
@classmethod
def from_builder(
cls: type['Pather'],
cls,
builder: Builder,
*,
tools: Tool | MutableMapping[str | None, Tool] | None = None,
@ -196,7 +194,7 @@ class Pather(Builder):
@classmethod
def interface(
cls: type['Pather'],
cls,
source: PortList | Mapping[str, Port] | str,
*,
library: ILibrary | None = None,
@ -282,37 +280,6 @@ class Pather(Builder):
self.tools[key] = tool
return self
@contextmanager
def toolctx(
self,
tool: Tool,
keys: str | Sequence[str | None] | None = None,
) -> Iterator[Self]:
"""
Context manager for temporarily `retool`-ing and reverting the `retool`
upon exiting the context.
Args:
tool: The new `Tool` to use for the given ports.
keys: Which ports the tool should apply to. `None` indicates the default tool,
used when there is no matching entry in `self.tools` for the port in question.
Returns:
self
"""
if keys is None or isinstance(keys, str):
keys = [keys]
saved_tools = {kk: self.tools.get(kk, None) for kk in keys} # If not in self.tools, save `None`
try:
yield self.retool(tool=tool, keys=keys)
finally:
for kk, tt in saved_tools.items():
if tt is None:
# delete if present
self.tools.pop(kk, None)
else:
self.tools[kk] = tt
def path(
self,
portspec: str,
@ -320,7 +287,6 @@ class Pather(Builder):
length: float,
*,
tool_port_names: tuple[str, str] = ('A', 'B'),
plug_into: str | None = None,
**kwargs,
) -> Self:
"""
@ -341,8 +307,6 @@ class Pather(Builder):
tool_port_names: The names of the ports on the generated pattern. It is unlikely
that you will need to change these. The first port is the input (to be
connected to `portspec`).
plug_into: If not None, attempts to plug the wire's output port into the provided
port on `self`.
Returns:
self
@ -359,11 +323,7 @@ class Pather(Builder):
in_ptype = self.pattern[portspec].ptype
tree = tool.path(ccw, length, in_ptype=in_ptype, port_names=tool_port_names, **kwargs)
abstract = self.library << tree
if plug_into is not None:
output = {plug_into: tool_port_names[1]}
else:
output = {}
return self.plug(abstract, {portspec: tool_port_names[0], **output})
return self.plug(abstract, {portspec: tool_port_names[0]})
def path_to(
self,
@ -374,7 +334,6 @@ class Pather(Builder):
x: float | None = None,
y: float | None = None,
tool_port_names: tuple[str, str] = ('A', 'B'),
plug_into: str | None = None,
**kwargs,
) -> Self:
"""
@ -403,8 +362,6 @@ class Pather(Builder):
tool_port_names: The names of the ports on the generated pattern. It is unlikely
that you will need to change these. The first port is the input (to be
connected to `portspec`).
plug_into: If not None, attempts to plug the wire's output port into the provided
port on `self`.
Returns:
self
@ -454,136 +411,7 @@ class Pather(Builder):
raise BuildError(f'path_to routing to behind source port: y0={y0:g} to {position:g}')
length = numpy.abs(position - y0)
return self.path(
portspec,
ccw,
length,
tool_port_names=tool_port_names,
plug_into=plug_into,
**kwargs,
)
def path_into(
self,
portspec_src: str,
portspec_dst: str,
*,
tool_port_names: tuple[str, str] = ('A', 'B'),
out_ptype: str | None = None,
plug_destination: bool = True,
**kwargs,
) -> Self:
"""
Create a "wire"/"waveguide" and traveling between the ports `portspec_src` and
`portspec_dst`, and `plug` it into both (or just the source port).
Only unambiguous scenarios are allowed:
- Straight connector between facing ports
- Single 90 degree bend
- Jog between facing ports
(jog is done as late as possible, i.e. only 2 L-shaped segments are used)
By default, the destination's `pytpe` will be used as the `out_ptype` for the
wire, and the `portspec_dst` will be plugged (i.e. removed).
Args:
portspec_src: The name of the starting port into which the wire will be plugged.
portspec_dst: The name of the destination port.
tool_port_names: The names of the ports on the generated pattern. It is unlikely
that you will need to change these. The first port is the input (to be
connected to `portspec`).
out_ptype: Passed to the pathing tool in order to specify the desired port type
to be generated at the destination end. If `None` (default), the destination
port's `ptype` will be used.
Returns:
self
Raises:
PortError if either port does not have a specified rotation.
BuildError if and invalid port config is encountered:
- Non-manhattan ports
- U-bend
- Destination too close to (or behind) source
"""
if self._dead:
logger.error('Skipping path_into() since device is dead')
return self
port_src = self.pattern[portspec_src]
port_dst = self.pattern[portspec_dst]
if out_ptype is None:
out_ptype = port_dst.ptype
if port_src.rotation is None:
raise PortError(f'Port {portspec_src} has no rotation and cannot be used for path_into()')
if port_dst.rotation is None:
raise PortError(f'Port {portspec_dst} has no rotation and cannot be used for path_into()')
if not numpy.isclose(port_src.rotation % (pi / 2), 0):
raise BuildError('path_into was asked to route from non-manhattan port')
if not numpy.isclose(port_dst.rotation % (pi / 2), 0):
raise BuildError('path_into was asked to route to non-manhattan port')
src_is_horizontal = numpy.isclose(port_src.rotation % pi, 0)
dst_is_horizontal = numpy.isclose(port_dst.rotation % pi, 0)
xs, ys = port_src.offset
xd, yd = port_dst.offset
angle = (port_dst.rotation - port_src.rotation) % (2 * pi)
src_ne = port_src.rotation % (2 * pi) > (3 * pi / 4) # path from src will go north or east
def get_jog(ccw: SupportsBool, length: float) -> float:
tool = self.tools.get(portspec_src, self.tools[None])
in_ptype = 'unk' # Could use port_src.ptype, but we're assuming this is after one bend already...
tree2 = tool.path(ccw, length, in_ptype=in_ptype, port_names=('A', 'B'), out_ptype=out_ptype, **kwargs)
top2 = tree2.top_pattern()
jog = rotation_matrix_2d(top2['A'].rotation) @ (top2['B'].offset - top2['A'].offset)
return jog[1] * [-1, 1][int(bool(ccw))]
dst_extra_args = {'out_ptype': out_ptype}
if plug_destination:
dst_extra_args['plug_into'] = portspec_dst
src_args = {**kwargs, 'tool_port_names': tool_port_names}
dst_args = {**src_args, **dst_extra_args}
if src_is_horizontal and not dst_is_horizontal:
# single bend should suffice
self.path_to(portspec_src, angle > pi, x=xd, **src_args)
self.path_to(portspec_src, None, y=yd, **dst_args)
elif dst_is_horizontal and not src_is_horizontal:
# single bend should suffice
self.path_to(portspec_src, angle > pi, y=yd, **src_args)
self.path_to(portspec_src, None, x=xd, **dst_args)
elif numpy.isclose(angle, pi):
if src_is_horizontal and ys == yd:
# straight connector
self.path_to(portspec_src, None, x=xd, **dst_args)
elif not src_is_horizontal and xs == xd:
# straight connector
self.path_to(portspec_src, None, y=yd, **dst_args)
elif src_is_horizontal:
# figure out how much x our y-segment (2nd) takes up, then path based on that
y_len = numpy.abs(yd - ys)
ccw2 = src_ne != (yd > ys)
jog = get_jog(ccw2, y_len) * numpy.sign(xd - xs)
self.path_to(portspec_src, not ccw2, x=xd - jog, **src_args)
self.path_to(portspec_src, ccw2, y=yd, **dst_args)
else:
# figure out how much y our x-segment (2nd) takes up, then path based on that
x_len = numpy.abs(xd - xs)
ccw2 = src_ne != (xd < xs)
jog = get_jog(ccw2, x_len) * numpy.sign(yd - ys)
self.path_to(portspec_src, not ccw2, y=yd - jog, **src_args)
self.path_to(portspec_src, ccw2, x=xd, **dst_args)
elif numpy.isclose(angle, 0):
raise BuildError('Don\'t know how to route a U-bend at this time!')
else:
raise BuildError(f'Don\'t know how to route ports with relative angle {angle}')
return self
return self.path(portspec, ccw, length, tool_port_names=tool_port_names, **kwargs)
def mpath(
self,
@ -680,17 +508,14 @@ class Pather(Builder):
if 'bound_type' in kwargs:
bound_types.add(kwargs['bound_type'])
bound = kwargs['bound']
del kwargs['bound_type']
del kwargs['bound']
for bt in ('emin', 'emax', 'pmin', 'pmax', 'xmin', 'xmax', 'ymin', 'ymax', 'min_past_furthest'):
if bt in kwargs:
bound_types.add(bt)
bound = kwargs[bt]
del kwargs[bt]
if not bound_types:
raise BuildError('No bound type specified for mpath')
if len(bound_types) > 1:
elif len(bound_types) > 1:
raise BuildError(f'Too many bound types specified for mpath: {bound_types}')
bound_type = tuple(bound_types)[0]
@ -703,16 +528,16 @@ class Pather(Builder):
if len(ports) == 1 and not force_container:
# Not a bus, so having a container just adds noise to the layout
port_name = tuple(portspec)[0]
return self.path(port_name, ccw, extensions[port_name], tool_port_names=tool_port_names, **kwargs)
return self.path(port_name, ccw, extensions[port_name], tool_port_names=tool_port_names)
else:
bld = Pather.interface(source=ports, library=self.library, tools=self.tools)
for port_name, length in extensions.items():
bld.path(port_name, ccw, length, tool_port_names=tool_port_names, **kwargs)
bld.path(port_name, ccw, length, tool_port_names=tool_port_names)
name = self.library.get_name(base_name)
self.library[name] = bld.pattern
return self.plug(Abstract(name, bld.pattern.ports), {sp: 'in_' + sp for sp in ports}) # TODO safe to use 'in_'?
return self.plug(Abstract(name, bld.pattern.ports), {sp: 'in_' + sp for sp in ports.keys()}) # TODO safe to use 'in_'?
# TODO def bus_join()?
# TODO def path_join() and def bus_join()?
def flatten(self) -> Self:
"""

View File

@ -1,8 +1,7 @@
"""
Pather with batched (multi-step) rendering
"""
from typing import Self
from collections.abc import Sequence, Mapping, MutableMapping
from typing import Self, Sequence, Mapping, MutableMapping
import copy
import logging
from collections import defaultdict
@ -128,7 +127,7 @@ class RenderPather(PortList):
@classmethod
def interface(
cls: type['RenderPather'],
cls,
source: PortList | Mapping[str, Port] | str,
*,
library: ILibrary | None = None,
@ -248,7 +247,7 @@ class RenderPather(PortList):
other_tgt = self.library[other.name]
# get rid of plugged ports
for kk in map_in:
for kk in map_in.keys():
if kk in self.paths:
self.paths[kk].append(RenderStep('P', None, self.ports[kk].copy(), self.ports[kk].copy(), None))
@ -561,7 +560,7 @@ class RenderPather(PortList):
if not bound_types:
raise BuildError('No bound type specified for mpath')
if len(bound_types) > 1:
elif len(bound_types) > 1:
raise BuildError(f'Too many bound types specified for mpath: {bound_types}')
bound_type = tuple(bound_types)[0]

View File

@ -3,8 +3,7 @@ Tools are objects which dynamically generate simple single-use devices (e.g. wir
# TODO document all tools
"""
from typing import Literal, Any
from collections.abc import Sequence, Callable
from typing import Sequence, Literal, Callable, Any
from abc import ABCMeta # , abstractmethod # TODO any way to make Tool ok with implementing only one method?
from dataclasses import dataclass
@ -223,8 +222,8 @@ class Tool:
self,
batch: Sequence[RenderStep],
*,
port_names: Sequence[str] = ('A', 'B'), # noqa: ARG002 (unused)
**kwargs, # noqa: ARG002 (unused)
port_names: Sequence[str] = ('A', 'B'),
**kwargs,
) -> ILibrary:
"""
Render the provided `batch` of `RenderStep`s into geometry, returning a tree
@ -290,12 +289,12 @@ class BasicTool(Tool, metaclass=ABCMeta):
gen_straight, sport_in, sport_out = self.straight
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
pat.add_port_pair(names=port_names, ptype=in_ptype)
pat.add_port_pair(names=port_names)
if data.in_transition:
ipat, iport_theirs, _iport_ours = data.in_transition
pat.plug(ipat, {port_names[1]: iport_theirs})
if not numpy.isclose(data.straight_length, 0):
straight = tree <= {SINGLE_USE_PREFIX + 'straight': gen_straight(data.straight_length, **kwargs)}
straight = tree <= {SINGLE_USE_PREFIX + 'straight': gen_straight(data.straight_length)}
pat.plug(straight, {port_names[1]: sport_in})
if data.ccw is not None:
bend, bport_in, bport_out = self.bend
@ -313,7 +312,7 @@ class BasicTool(Tool, metaclass=ABCMeta):
*,
in_ptype: str | None = None,
out_ptype: str | None = None,
**kwargs, # noqa: ARG002 (unused)
**kwargs,
) -> tuple[Port, LData]:
# TODO check all the math for L-shaped bends
if ccw is not None:
@ -405,7 +404,7 @@ class BasicTool(Tool, metaclass=ABCMeta):
ipat, iport_theirs, _iport_ours = in_transition
pat.plug(ipat, {port_names[1]: iport_theirs})
if not numpy.isclose(straight_length, 0):
straight_pat = gen_straight(straight_length, **kwargs)
straight_pat = gen_straight(straight_length)
if append:
pat.plug(straight_pat, {port_names[1]: sport_in}, append=True)
else:
@ -455,7 +454,7 @@ class PathTool(Tool, metaclass=ABCMeta):
in_ptype: str | None = None,
out_ptype: str | None = None,
port_names: tuple[str, str] = ('A', 'B'),
**kwargs, # noqa: ARG002 (unused)
**kwargs,
) -> Library:
out_port, dxy = self.planL(
ccw,
@ -486,9 +485,9 @@ class PathTool(Tool, metaclass=ABCMeta):
ccw: SupportsBool | None,
length: float,
*,
in_ptype: str | None = None, # noqa: ARG002 (unused)
in_ptype: str | None = None,
out_ptype: str | None = None,
**kwargs, # noqa: ARG002 (unused)
**kwargs,
) -> tuple[Port, NDArray[numpy.float64]]:
# TODO check all the math for L-shaped bends
@ -522,7 +521,7 @@ class PathTool(Tool, metaclass=ABCMeta):
batch: Sequence[RenderStep],
*,
port_names: Sequence[str] = ('A', 'B'),
**kwargs, # noqa: ARG002 (unused)
**kwargs,
) -> ILibrary:
path_vertices = [batch[0].start_port.offset]

View File

@ -1,5 +1,4 @@
from typing import SupportsFloat, cast, TYPE_CHECKING
from collections.abc import Mapping, Sequence
from typing import Mapping, Sequence, SupportsFloat, cast, TYPE_CHECKING
from pprint import pformat
import numpy
@ -21,7 +20,7 @@ def ell(
*,
spacing: float | ArrayLike | None = None,
set_rotation: float | None = None,
) -> dict[str, numpy.float64]:
) -> dict[str, float]:
"""
Calculate extension for each port in order to build a 90-degree bend with the provided
channel spacing:
@ -112,9 +111,9 @@ def ell(
is_horizontal = numpy.isclose(rotations[0] % pi, 0)
if bound_type in ('ymin', 'ymax') and is_horizontal:
raise BuildError(f'Asked for {bound_type} position but ports are pointing along the x-axis!')
if bound_type in ('xmin', 'xmax') and not is_horizontal:
raise BuildError(f'Asked for {bound_type} position but ports are pointing along the y-axis!')
raise BuildError('Asked for {bound_type} position but ports are pointing along the x-axis!')
elif bound_type in ('xmin', 'xmax') and not is_horizontal:
raise BuildError('Asked for {bound_type} position but ports are pointing along the y-axis!')
direction = rotations[0] + pi # direction we want to travel in (+pi relative to port)
rot_matrix = rotation_matrix_2d(-direction)
@ -169,11 +168,11 @@ def ell(
'emax', 'max_extension',
'min_past_furthest',):
if numpy.size(bound) == 2:
bound = cast('Sequence[float]', bound)
bound = cast(Sequence[float], bound)
rot_bound = (rot_matrix @ ((bound[0], 0),
(0, bound[1])))[0, :]
else:
bound = cast('float', bound)
bound = cast(float, bound)
rot_bound = numpy.array(bound)
if rot_bound < 0:
@ -185,10 +184,10 @@ def ell(
offsets += rot_bound.min() - offsets.max()
else:
if numpy.size(bound) == 2:
bound = cast('Sequence[float]', bound)
bound = cast(Sequence[float], bound)
rot_bound = (rot_matrix @ bound)[0]
else:
bound = cast('float', bound)
bound = cast(float, bound)
neg = (direction + pi / 4) % (2 * pi) > pi
rot_bound = -bound if neg else bound
@ -202,7 +201,7 @@ def ell(
if extension < 0:
ext_floor = -numpy.floor(extension)
raise BuildError(f'Position is too close by at least {ext_floor}. Total extensions would be\n\t'
+ '\n\t'.join(f'{key}: {off}' for key, off in zip(ports.keys(), offsets, strict=True)))
+ '\n\t'.join(f'{key}: {off}' for key, off in zip(ports.keys(), offsets)))
result = dict(zip(ports.keys(), offsets, strict=True))
result = dict(zip(ports.keys(), offsets))
return result

View File

@ -6,8 +6,7 @@ Notes:
* ezdxf sets creation time, write time, $VERSIONGUID, and $FINGERPRINTGUID
to unique values, so byte-for-byte reproducibility is not achievable for now
"""
from typing import Any, cast, TextIO, IO
from collections.abc import Mapping, Callable
from typing import Any, Callable, Mapping, cast, TextIO, IO
import io
import logging
import pathlib
@ -16,7 +15,6 @@ import gzip
import numpy
import ezdxf
from ezdxf.enums import TextEntityAlignment
from ezdxf.entities import LWPolyline, Polyline, Text, Insert
from .utils import is_gzipped, tmpfile
from .. import Pattern, Ref, PatternError, Label
@ -40,7 +38,7 @@ def write(
top_name: str,
stream: TextIO,
*,
dxf_version: str = 'AC1024',
dxf_version='AC1024',
) -> None:
"""
Write a `Pattern` to a DXF file, by first calling `.polygonize()` to change the shapes
@ -132,7 +130,7 @@ def writefile(
with tmpfile(path) as base_stream:
streams: tuple[Any, ...] = (base_stream,)
if path.suffix == '.gz':
gz_stream = cast('IO[bytes]', gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb'))
gz_stream = cast(IO[bytes], gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb'))
streams = (gz_stream,) + streams
else:
gz_stream = base_stream
@ -206,25 +204,26 @@ def read(
return mlib, library_info
def _read_block(block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace) -> tuple[str, Pattern]:
def _read_block(block) -> tuple[str, Pattern]:
name = block.name
pat = Pattern()
for element in block:
if isinstance(element, LWPolyline | Polyline):
if isinstance(element, LWPolyline):
points = numpy.asarray(element.get_points())
elif isinstance(element, Polyline):
points = numpy.asarray([pp.xyz for pp in element.points()])
eltype = element.dxftype()
if eltype in ('POLYLINE', 'LWPOLYLINE'):
if eltype == 'LWPOLYLINE':
points = numpy.array(tuple(element.lwpoints))
else:
points = numpy.array(tuple(element.points()))
attr = element.dxfattribs()
layer = attr.get('layer', DEFAULT_LAYER)
if points.shape[1] == 2:
raise PatternError('Invalid or unimplemented polygon?')
if points.shape[1] > 2:
#shape = Polygon()
elif points.shape[1] > 2:
if (points[0, 2] != points[:, 2]).any():
raise PatternError('PolyLine has non-constant width (not yet representable in masque!)')
if points.shape[1] == 4 and (points[:, 3] != 0).any():
elif points.shape[1] == 4 and (points[:, 3] != 0).any():
raise PatternError('LWPolyLine has bulge (not yet representable in masque!)')
width = points[0, 2]
@ -239,9 +238,9 @@ def _read_block(block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace) ->
pat.shapes[layer].append(shape)
elif isinstance(element, Text):
elif eltype in ('TEXT',):
args = dict(
offset=numpy.asarray(element.get_placement()[1])[:2],
offset=numpy.array(element.get_pos()[1])[:2],
layer=element.dxfattribs().get('layer', DEFAULT_LAYER),
)
string = element.dxfattribs().get('text', '')
@ -252,7 +251,7 @@ def _read_block(block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace) ->
pat.label(string=string, **args)
# else:
# pat.shapes[args['layer']].append(Text(string=string, height=height, font_path=????))
elif isinstance(element, Insert):
elif eltype in ('INSERT',):
attr = element.dxfattribs()
xscale = attr.get('xscale', 1)
yscale = attr.get('yscale', 1)
@ -262,7 +261,7 @@ def _read_block(block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace) ->
mirrored, extra_angle = normalize_mirror((yscale < 0, xscale < 0))
rotation = numpy.deg2rad(attr.get('rotation', 0)) + extra_angle
offset = numpy.asarray(attr.get('insert', (0, 0, 0)))[:2]
offset = numpy.array(attr.get('insert', (0, 0, 0)))[:2]
args = dict(
target=attr.get('name', None),
@ -337,10 +336,10 @@ def _mrefs_to_drefs(
def _shapes_to_elements(
block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace,
shapes: dict[layer_t, list[Shape]],
polygonize_paths: bool = False,
) -> None:
# Add `LWPolyline`s for each shape.
# Could set do paths with width setting, but need to consider endcaps.
# TODO: can DXF do paths?
for layer, sseq in shapes.items():
attribs = dict(layer=_mlayer2dxf(layer))
for shape in sseq:

View File

@ -19,8 +19,7 @@ Notes:
* GDS creation/modification/access times are set to 1900-01-01 for reproducibility.
* Gzip modification time is set to 0 (start of current epoch, usually 1970-01-01)
"""
from typing import IO, cast, Any
from collections.abc import Iterable, Mapping, Callable
from typing import Callable, Iterable, Mapping, IO, cast, Any
import io
import mmap
import logging
@ -145,7 +144,7 @@ def writefile(
with tmpfile(path) as base_stream:
streams: tuple[Any, ...] = (base_stream,)
if path.suffix == '.gz':
stream = cast('IO[bytes]', gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb', compresslevel=6))
stream = cast(IO[bytes], gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb'))
streams = (stream,) + streams
else:
stream = base_stream
@ -357,7 +356,7 @@ def _mrefs_to_grefs(refs: dict[str | None, list[Ref]]) -> list[klamath.library.R
if isinstance(rep, Grid):
b_vector = rep.b_vector if rep.b_vector is not None else numpy.zeros(2)
b_count = rep.b_count if rep.b_count is not None else 1
xy = numpy.asarray(ref.offset) + numpy.array([
xy = numpy.array(ref.offset) + numpy.array([
[0.0, 0.0],
rep.a_vector * rep.a_count,
b_vector * b_count,
@ -409,8 +408,8 @@ def _annotations_to_properties(annotations: annotations_t, max_len: int = 126) -
for key, vals in annotations.items():
try:
i = int(key)
except ValueError as err:
raise PatternError(f'Annotation key {key} is not convertable to an integer') from err
except ValueError:
raise PatternError(f'Annotation key {key} is not convertable to an integer')
if not (0 < i < 126):
raise PatternError(f'Annotation key {key} converts to {i} (must be in the range [1,125])')
@ -597,19 +596,19 @@ def load_libraryfile(
path = pathlib.Path(filename)
stream: IO[bytes]
if is_gzipped(path):
if use_mmap:
if mmap:
logger.info('Asked to mmap a gzipped file, reading into memory instead...')
gz_stream = gzip.open(path, mode='rb') # noqa: SIM115
gz_stream = gzip.open(path, mode='rb')
stream = io.BytesIO(gz_stream.read()) # type: ignore
else:
gz_stream = gzip.open(path, mode='rb') # noqa: SIM115
gz_stream = gzip.open(path, mode='rb')
stream = io.BufferedReader(gz_stream) # type: ignore
else: # noqa: PLR5501
if use_mmap:
base_stream = path.open(mode='rb', buffering=0) # noqa: SIM115
else:
if mmap:
base_stream = open(path, mode='rb', buffering=0)
stream = mmap.mmap(base_stream.fileno(), 0, access=mmap.ACCESS_READ) # type: ignore
else:
stream = path.open(mode='rb') # noqa: SIM115
stream = open(path, mode='rb')
return load_library(stream, full_load=full_load, postprocess=postprocess)

View File

@ -14,8 +14,7 @@ Note that OASIS references follow the same convention as `masque`,
Notes:
* Gzip modification time is set to 0 (start of current epoch, usually 1970-01-01)
"""
from typing import Any, IO, cast
from collections.abc import Sequence, Iterable, Mapping, Callable
from typing import Any, Callable, Iterable, IO, Mapping, cast, Sequence
import logging
import pathlib
import gzip
@ -190,7 +189,7 @@ def writefile(
with tmpfile(path) as base_stream:
streams: tuple[Any, ...] = (base_stream,)
if path.suffix == '.gz':
stream = cast('IO[bytes]', gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb'))
stream = cast(IO[bytes], gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb'))
streams += (stream,)
else:
stream = base_stream
@ -298,7 +297,7 @@ def read(
cap_start = path_cap_map[element.get_extension_start()[0]]
cap_end = path_cap_map[element.get_extension_end()[0]]
if cap_start != cap_end:
raise PatternError('masque does not support multiple cap types on a single path.') # TODO handle multiple cap types
raise Exception('masque does not support multiple cap types on a single path.') # TODO handle multiple cap types
cap = cap_start
path_args: dict[str, Any] = {}
@ -453,8 +452,6 @@ def read(
for placement in cell.placements:
target, ref = _placement_to_ref(placement, lib)
if isinstance(target, int):
target = lib.cellnames[target].nstring.string
pat.refs[target].append(ref)
mlib[cell_name] = pat
@ -551,7 +548,7 @@ def _shapes_to_elements(
circle = fatrec.Circle(
layer=layer,
datatype=datatype,
radius=cast('int', radius),
radius=cast(int, radius),
x=offset[0],
y=offset[1],
properties=properties,
@ -568,8 +565,8 @@ def _shapes_to_elements(
path = fatrec.Path(
layer=layer,
datatype=datatype,
point_list=cast('Sequence[Sequence[int]]', deltas),
half_width=cast('int', half_width),
point_list=cast(Sequence[Sequence[int]], deltas),
half_width=cast(int, half_width),
x=xy[0],
y=xy[1],
extension_start=extension_start, # TODO implement multiple cap types?
@ -587,7 +584,7 @@ def _shapes_to_elements(
datatype=datatype,
x=xy[0],
y=xy[1],
point_list=cast('list[list[int]]', points),
point_list=cast(list[list[int]], points),
properties=properties,
repetition=repetition,
))
@ -651,10 +648,10 @@ def repetition_masq2fata(
a_count = rint_cast(rep.a_count)
b_count = rint_cast(rep.b_count) if rep.b_count is not None else None
frep = fatamorgana.GridRepetition(
a_vector=cast('list[int]', a_vector),
b_vector=cast('list[int] | None', b_vector),
a_count=cast('int', a_count),
b_count=cast('int | None', b_count),
a_vector=cast(list[int], a_vector),
b_vector=cast(list[int] | None, b_vector),
a_count=cast(int, a_count),
b_count=cast(int | None, b_count),
)
offset = (0, 0)
elif isinstance(rep, Arbitrary):
@ -695,9 +692,9 @@ def properties_to_annotations(
assert proprec.values is not None
for value in proprec.values:
if isinstance(value, float | int):
if isinstance(value, (float, int)):
values.append(value)
elif isinstance(value, NString | AString):
elif isinstance(value, (NString, AString)):
values.append(value.string)
elif isinstance(value, PropStringReference):
values.append(propstrings[value.ref].string) # dereference

View File

@ -1,7 +1,7 @@
"""
SVG file format readers and writers
"""
from collections.abc import Mapping
from typing import Mapping
import warnings
import numpy
@ -50,7 +50,7 @@ def writefile(
bounds = pattern.get_bounds(library=library)
if bounds is None:
bounds_min, bounds_max = numpy.array([[-1, -1], [1, 1]])
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox', stacklevel=1)
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox')
else:
bounds_min, bounds_max = bounds
@ -117,7 +117,7 @@ def writefile_inverted(
bounds = pattern.get_bounds(library=library)
if bounds is None:
bounds_min, bounds_max = numpy.array([[-1, -1], [1, 1]])
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox', stacklevel=1)
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox')
else:
bounds_min, bounds_max = bounds
@ -154,9 +154,9 @@ def poly2path(vertices: ArrayLike) -> str:
Returns:
SVG path-string.
"""
verts = numpy.asarray(vertices)
commands = 'M{:g},{:g} '.format(verts[0][0], verts[0][1]) # noqa: UP032
verts = numpy.array(vertices, copy=False)
commands = 'M{:g},{:g} '.format(verts[0][0], verts[0][1])
for vertex in verts[1:]:
commands += 'L{:g},{:g}'.format(vertex[0], vertex[1]) # noqa: UP032
commands += 'L{:g},{:g}'.format(vertex[0], vertex[1])
commands += ' Z '
return commands

View File

@ -1,93 +1,21 @@
"""
Helper functions for file reading and writing
"""
from typing import IO
from collections.abc import Iterator, Mapping
from typing import IO, Iterator
import re
import pathlib
import logging
import tempfile
import shutil
from collections import defaultdict
from contextlib import contextmanager
from pprint import pformat
from itertools import chain
from .. import Pattern, PatternError, Library, LibraryError
from .. import Pattern, PatternError
from ..shapes import Polygon, Path
logger = logging.getLogger(__name__)
def preflight(
lib: Library,
sort: bool = True,
sort_elements: bool = False,
allow_dangling_refs: bool | None = None,
allow_named_layers: bool = True,
prune_empty_patterns: bool = False,
wrap_repeated_shapes: bool = False,
) -> Library:
"""
Run a standard set of useful operations and checks, usually done immediately prior
to writing to a file (or immediately after reading).
Args:
sort: Whether to sort the patterns based on their names, and optionaly sort the pattern contents.
Default True. Useful for reproducible builds.
sort_elements: Whether to sort the pattern contents. Requires sort=True to run.
allow_dangling_refs: If `None` (default), warns about any refs to patterns that are not
in the provided library. If `True`, no check is performed; if `False`, a `LibraryError`
is raised instead.
allow_named_layers: If `False`, raises a `PatternError` if any layer is referred to by
a string instead of a number (or tuple).
prune_empty_patterns: Runs `Library.prune_empty()`, recursively deleting any empty patterns.
wrap_repeated_shapes: Runs `Library.wrap_repeated_shapes()`, turning repeated shapes into
repeated refs containing non-repeated shapes.
Returns:
`lib` or an equivalent sorted library
"""
if sort:
lib = Library(dict(sorted(
(nn, pp.sort(sort_elements=sort_elements)) for nn, pp in lib.items()
)))
if not allow_dangling_refs:
refs = lib.referenced_patterns()
dangling = refs - set(lib.keys())
if dangling:
msg = 'Dangling refs found: ' + pformat(dangling)
if allow_dangling_refs is None:
logger.warning(msg)
else:
raise LibraryError(msg)
if not allow_named_layers:
named_layers: Mapping[str, set] = defaultdict(set)
for name, pat in lib.items():
for layer in chain(pat.shapes.keys(), pat.labels.keys()):
if isinstance(layer, str):
named_layers[name].add(layer)
named_layers = dict(named_layers)
if named_layers:
raise PatternError('Non-numeric layers found:' + pformat(named_layers))
if prune_empty_patterns:
pruned = lib.prune_empty()
if pruned:
logger.info(f'Preflight pruned {len(pruned)} empty patterns')
logger.debug('Pruned: ' + pformat(pruned))
else:
logger.debug('Preflight found no empty patterns')
if wrap_repeated_shapes:
lib.wrap_repeated_shapes()
return lib
def mangle_name(name: str) -> str:
"""
Sanitize a name.
@ -117,7 +45,7 @@ def clean_pattern_vertices(pat: Pattern) -> Pattern:
for shapes in pat.shapes.values():
remove_inds = []
for ii, shape in enumerate(shapes):
if not isinstance(shape, Polygon | Path):
if not isinstance(shape, (Polygon, Path)):
continue
try:
shape.clean_vertices()
@ -129,7 +57,7 @@ def clean_pattern_vertices(pat: Pattern) -> Pattern:
def is_gzipped(path: pathlib.Path) -> bool:
with path.open('rb') as stream:
with open(path, 'rb') as stream:
magic_bytes = stream.read(2)
return magic_bytes == b'\x1f\x8b'

View File

@ -1,17 +1,15 @@
from typing import Self, Any
from typing import Self
import copy
import functools
import numpy
from numpy.typing import ArrayLike, NDArray
from .repetition import Repetition
from .utils import rotation_matrix_2d, annotations_t, annotations_eq, annotations_lt, rep2key
from .utils import rotation_matrix_2d, annotations_t
from .traits import PositionableImpl, Copyable, Pivotable, RepeatableImpl, Bounded
from .traits import AnnotatableImpl
@functools.total_ordering
class Label(PositionableImpl, RepeatableImpl, AnnotatableImpl, Bounded, Pivotable, Copyable):
"""
A text annotation with a position (but no size; it is not drawn)
@ -49,7 +47,7 @@ class Label(PositionableImpl, RepeatableImpl, AnnotatableImpl, Bounded, Pivotabl
annotations: annotations_t | None = None,
) -> None:
self.string = string
self.offset = numpy.array(offset, dtype=float)
self.offset = numpy.array(offset, dtype=float, copy=True)
self.repetition = repetition
self.annotations = annotations if annotations is not None else {}
@ -66,23 +64,6 @@ class Label(PositionableImpl, RepeatableImpl, AnnotatableImpl, Bounded, Pivotabl
new._offset = self._offset.copy()
return new
def __lt__(self, other: 'Label') -> bool:
if self.string != other.string:
return self.string < other.string
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
def __eq__(self, other: Any) -> bool:
return (
self.string == other.string
and numpy.array_equal(self.offset, other.offset)
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def rotate_around(self, pivot: ArrayLike, rotation: float) -> Self:
"""
Rotate the label around a point.
@ -94,7 +75,7 @@ class Label(PositionableImpl, RepeatableImpl, AnnotatableImpl, Bounded, Pivotabl
Returns:
self
"""
pivot = numpy.asarray(pivot, dtype=float)
pivot = numpy.array(pivot, dtype=float)
self.translate(-pivot)
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
self.translate(+pivot)

View File

@ -14,21 +14,22 @@ Classes include:
- `AbstractView`: Provides a way to use []-indexing to generate abstracts for patterns in the linked
library. Generated with `ILibraryView.abstract_view()`.
"""
from typing import Self, TYPE_CHECKING, cast, TypeAlias, Protocol, Literal
from collections.abc import Iterator, Mapping, MutableMapping, Sequence, Callable
from typing import Callable, Self, Type, TYPE_CHECKING, cast
from typing import Iterator, Mapping, MutableMapping, Sequence
import logging
import base64
import struct
import re
import copy
from pprint import pformat
from collections import defaultdict
from abc import ABCMeta, abstractmethod
from graphlib import TopologicalSorter
import numpy
from numpy.typing import ArrayLike, NDArray
from numpy.typing import ArrayLike
from .error import LibraryError, PatternError
from .utils import layer_t, apply_transforms
from .utils import rotation_matrix_2d, layer_t
from .shapes import Shape, Polygon
from .label import Label
from .abstract import Abstract
@ -41,24 +42,7 @@ if TYPE_CHECKING:
logger = logging.getLogger(__name__)
class visitor_function_t(Protocol):
""" Signature for `Library.dfs()` visitor functions. """
def __call__(
self,
pattern: 'Pattern',
hierarchy: tuple[str | None, ...],
memo: dict,
transform: NDArray[numpy.float64] | Literal[False],
) -> 'Pattern':
...
TreeView: TypeAlias = Mapping[str, 'Pattern']
""" A name-to-`Pattern` mapping which is expected to have only one top-level cell """
Tree: TypeAlias = MutableMapping[str, 'Pattern']
""" A mutable name-to-`Pattern` mapping which is expected to have only one top-level cell """
visitor_function_t = Callable[..., 'Pattern']
SINGLE_USE_PREFIX = '_'
"""
@ -174,7 +158,7 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
tops = tuple(self.keys())
if skip is None:
skip = {None}
skip = set([None])
if isinstance(tops, str):
tops = (tops,)
@ -211,7 +195,7 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
if isinstance(tops, str):
tops = (tops,)
keep = cast('set[str]', self.referenced_patterns(tops) - {None})
keep = cast(set[str], self.referenced_patterns(tops) - set((None,)))
keep |= set(tops)
filtered = {kk: vv for kk, vv in self.items() if kk in keep}
@ -283,7 +267,7 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
if isinstance(tops, str):
tops = (tops,)
flattened: dict[str, Pattern | None] = {}
flattened: dict[str, 'Pattern | None'] = {}
def flatten_single(name: str) -> None:
flattened[name] = None
@ -314,7 +298,7 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
flatten_single(top)
assert None not in flattened.values()
return cast('dict[str, Pattern]', flattened)
return cast(dict[str, 'Pattern'], flattened)
def get_name(
self,
@ -347,13 +331,12 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
else:
sanitized_name = name
suffixed_name = sanitized_name
if sanitized_name in self:
ii = sum(1 for nn in self.keys() if nn.startswith(sanitized_name))
else:
ii = 0
suffixed_name = sanitized_name
while suffixed_name in self or suffixed_name == '':
suffixed_name = sanitized_name + b64suffix(ii)
suffix = base64.b64encode(struct.pack('>Q', ii), altchars=b'$?').decode('ASCII')
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
ii += 1
if len(suffixed_name) > max_length:
@ -387,9 +370,6 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
def top(self) -> str:
"""
Return the name of the topcell, or raise an exception if there isn't a single topcell
Raises:
LibraryError if there is not exactly one topcell.
"""
tops = self.tops()
if len(tops) != 1:
@ -399,9 +379,6 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
def top_pattern(self) -> 'Pattern':
"""
Shorthand for self[self.top()]
Raises:
LibraryError if there is not exactly one topcell.
"""
return self[self.top()]
@ -461,7 +438,7 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
if transform is None or transform is True:
transform = numpy.zeros(4)
elif transform is not False:
transform = numpy.asarray(transform, dtype=float)
transform = numpy.array(transform)
original_pattern = pattern
@ -475,13 +452,16 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
raise LibraryError(f'.dfs() called on pattern with circular reference to "{target}"')
for ref in pattern.refs[target]:
ref_transforms: list[bool] | NDArray[numpy.float64]
if transform is not False:
ref_transforms = apply_transforms(transform, ref.as_transforms())
sign = numpy.ones(2)
if transform[3]:
sign[1] = -1
xy = numpy.dot(rotation_matrix_2d(transform[2]), ref.offset * sign)
ref_transform = transform + (xy[0], xy[1], ref.rotation, ref.mirrored)
ref_transform[3] %= 2
else:
ref_transforms = [False]
ref_transform = False
for ref_transform in ref_transforms:
self.dfs(
pattern=self[target],
visit_before=visit_before,
@ -504,147 +484,10 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
raise LibraryError('visit_* functions returned a new `Pattern` object'
' but no top-level name was provided in `hierarchy`')
cast('ILibrary', self)[name] = pattern
cast(ILibrary, self)[name] = pattern
return self
def child_graph(self) -> dict[str, set[str | None]]:
"""
Return a mapping from pattern name to a set of all child patterns
(patterns it references).
Returns:
Mapping from pattern name to a set of all pattern names it references.
"""
graph = {name: set(pat.refs.keys()) for name, pat in self.items()}
return graph
def parent_graph(self) -> dict[str, set[str]]:
"""
Return a mapping from pattern name to a set of all parent patterns
(patterns which reference it).
Returns:
Mapping from pattern name to a set of all patterns which reference it.
"""
igraph: dict[str, set[str]] = {name: set() for name in self}
for name, pat in self.items():
for child, reflist in pat.refs.items():
if reflist and child is not None:
igraph[child].add(name)
return igraph
def child_order(self) -> list[str]:
"""
Return a topologically sorted list of all contained pattern names.
Child (referenced) patterns will appear before their parents.
Return:
Topologically sorted list of pattern names.
"""
return cast('list[str]', list(TopologicalSorter(self.child_graph()).static_order()))
def find_refs_local(
self,
name: str,
parent_graph: dict[str, set[str]] | None = None,
) -> dict[str, list[NDArray[numpy.float64]]]:
"""
Find the location and orientation of all refs pointing to `name`.
Refs with a `repetition` are resolved into multiple instances (locations).
Args:
name: Name of the referenced pattern.
parent_graph: Mapping from pattern name to the set of patterns which
reference it. Default (`None`) calls `self.parent_graph()`.
The provided graph may be for a superset of `self` (i.e. it may
contain additional patterns which are not present in self; they
will be ignored).
Returns:
Mapping of {parent_name: transform_list}, where transform_list
is an Nx4 ndarray with rows
`(x_offset, y_offset, rotation_ccw_rad, mirror_across_x)`.
"""
instances = defaultdict(list)
if parent_graph is None:
parent_graph = self.parent_graph()
for parent in parent_graph[name]:
if parent not in self: # parent_graph may be a for a superset of self
continue
for ref in self[parent].refs[name]:
instances[parent].append(ref.as_transforms())
return instances
def find_refs_global(
self,
name: str,
order: list[str] | None = None,
parent_graph: dict[str, set[str]] | None = None,
) -> dict[tuple[str, ...], NDArray[numpy.float64]]:
"""
Find the absolute (top-level) location and orientation of all refs (including
repetitions) pointing to `name`.
Args:
name: Name of the referenced pattern.
order: List of pattern names in which children are guaranteed
to appear before their parents (i.e. topologically sorted).
Default (`None`) calls `self.child_order()`.
parent_graph: Passed to `find_refs_local`.
Mapping from pattern name to the set of patterns which
reference it. Default (`None`) calls `self.parent_graph()`.
The provided graph may be for a superset of `self` (i.e. it may
contain additional patterns which are not present in self; they
will be ignored).
Returns:
Mapping of `{hierarchy: transform_list}`, where `hierarchy` is a tuple of the form
`(toplevel_pattern, lvl1_pattern, ..., name)` and `transform_list` is an Nx4 ndarray
with rows `(x_offset, y_offset, rotation_ccw_rad, mirror_across_x)`.
"""
if name not in self:
return {}
if order is None:
order = self.child_order()
if parent_graph is None:
parent_graph = self.parent_graph()
self_keys = set(self.keys())
transforms: dict[str, list[tuple[
tuple[str, ...],
NDArray[numpy.float64]
]]]
transforms = defaultdict(list)
for parent, vals in self.find_refs_local(name, parent_graph=parent_graph).items():
transforms[parent] = [((name,), numpy.concatenate(vals))]
for next_name in order:
if next_name not in transforms:
continue
if not parent_graph[next_name] & self_keys:
continue
outers = self.find_refs_local(next_name, parent_graph=parent_graph)
inners = transforms.pop(next_name)
for parent, outer in outers.items():
for path, inner in inners:
combined = apply_transforms(numpy.concatenate(outer), inner)
transforms[parent].append((
(next_name,) + path,
combined,
))
result = {}
for parent, targets in transforms.items():
for path, instances in targets:
full_path = (parent,) + path
assert full_path not in result
result[full_path] = instances
return result
class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
"""
@ -800,7 +643,7 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
duplicates = set(self.keys()) & set(other.keys())
if not duplicates:
for key in other:
for key in other.keys():
self._merge(key, other, key)
return {}
@ -827,19 +670,11 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
for old_name in temp:
new_name = rename_map.get(old_name, old_name)
pat = self[new_name]
pat.refs = map_targets(pat.refs, lambda tt: cast('dict[str | None, str | None]', rename_map).get(tt, tt))
pat.refs = map_targets(pat.refs, lambda tt: cast(dict[str | None, str | None], rename_map).get(tt, tt))
return rename_map
def __lshift__(self, other: TreeView) -> str:
"""
`add()` items from a tree (single-topcell name: pattern mapping) into this one,
and return the name of the tree's topcell (in this library; it may have changed
based on `add()`'s default `rename_theirs` argument).
Raises:
LibraryError if there is more than one topcell in `other`.
"""
def __lshift__(self, other: Mapping[str, 'Pattern']) -> str:
if len(other) == 1:
name = next(iter(other))
else:
@ -857,20 +692,13 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
return new_name
def __le__(self, other: Mapping[str, 'Pattern']) -> Abstract:
"""
Perform the same operation as `__lshift__` / `<<`, but return an `Abstract` instead
of just the pattern's name.
Raises:
LibraryError if there is more than one topcell in `other`.
"""
new_name = self << other
return self.abstract(new_name)
def dedup(
self,
norm_value: int = int(1e6),
exclude_types: tuple[type] = (Polygon,),
exclude_types: tuple[Type] = (Polygon,),
label2name: Callable[[tuple], str] | None = None,
threshold: int = 2,
) -> Self:
@ -908,7 +736,7 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
exclude_types = ()
if label2name is None:
def label2name(label: tuple) -> str: # noqa: ARG001
def label2name(label):
return self.get_name(SINGLE_USE_PREFIX + 'shape')
shape_counts: MutableMapping[tuple, int] = defaultdict(int)
@ -944,8 +772,8 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
shape_table: dict[tuple, list] = defaultdict(list)
for layer, sseq in pat.shapes.items():
for ii, shape in enumerate(sseq):
if any(isinstance(shape, tt) for tt in exclude_types):
for i, shape in enumerate(sseq):
if any(isinstance(shape, t) for t in exclude_types):
continue
base_label, values, _func = shape.normalized_form(norm_value)
@ -954,16 +782,16 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
if label not in shape_pats:
continue
shape_table[label].append((ii, values))
shape_table[label].append((i, values))
# For repeated shapes, create a `Pattern` holding a normalized shape object,
# and add `pat.refs` entries for each occurrence in pat. Also, note down that
# we should delete the `pat.shapes` entries for which we made `Ref`s.
shapes_to_remove = []
for label, shape_entries in shape_table.items():
for label in shape_table:
layer = label[-1]
target = label2name(label)
for ii, values in shape_entries:
for ii, values in shape_table[label]:
offset, scale, rotation, mirror_x = values
pat.ref(target=target, offset=offset, scale=scale,
rotation=rotation, mirrored=(mirror_x, False))
@ -998,8 +826,8 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
from .pattern import Pattern
if name_func is None:
def name_func(_pat: Pattern, _shape: Shape | Label) -> str:
return self.get_name(SINGLE_USE_PREFIX + 'rep')
def name_func(_pat, _shape):
return self.get_name(SINGLE_USE_PREFIX = 'rep')
for pat in tuple(self.values()):
for layer in pat.shapes:
@ -1047,7 +875,7 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
if isinstance(tops, str):
tops = (tops,)
keep = cast('set[str]', self.referenced_patterns(tops) - {None})
keep = cast(set[str], self.referenced_patterns(tops) - set((None,)))
keep |= set(tops)
new = type(self)()
@ -1068,22 +896,20 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
Returns:
A set containing the names of all deleted patterns
"""
parent_graph = self.parent_graph()
empty = {name for name, pat in self.items() if pat.is_empty()}
trimmed = set()
while empty:
parents = set()
while empty := set(name for name, pat in self.items() if pat.is_empty()):
for name in empty:
del self[name]
for parent in parent_graph[name]:
del self[parent].refs[name]
parents |= parent_graph[name]
for pat in self.values():
for name in empty:
# Second pass to skip looking at refs in empty patterns
if name in pat.refs:
del pat.refs[name]
trimmed |= empty
if not repeat:
break
empty = {parent for parent in parents if self[parent].is_empty()}
return trimmed
def delete(
@ -1175,7 +1001,10 @@ class Library(ILibrary):
if key in self.mapping:
raise LibraryError(f'"{key}" already exists in the library. Overwriting is not allowed!')
value = value() if callable(value) else value
if callable(value):
value = value()
else:
value = value
self.mapping[key] = value
def __delitem__(self, key: str) -> None:
@ -1188,7 +1017,7 @@ class Library(ILibrary):
return f'<Library ({type(self.mapping)}) with keys\n' + pformat(list(self.keys())) + '>'
@classmethod
def mktree(cls: type[Self], name: str) -> tuple[Self, 'Pattern']:
def mktree(cls, name: str) -> tuple[Self, 'Pattern']:
"""
Create a new Library and immediately add a pattern
@ -1364,20 +1193,3 @@ class AbstractView(Mapping[str, Abstract]):
def __len__(self) -> int:
return self.library.__len__()
def b64suffix(ii: int) -> str:
"""
Turn an integer into a base64-equivalent suffix.
This could be done with base64.b64encode, but this way is faster for many small `ii`.
"""
def i2a(nn: int) -> str:
return 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789$?'[nn]
parts = ['$', i2a(ii % 64)]
ii >>= 6
while ii:
parts.append(i2a(ii % 64))
ii >>= 6
return ''.join(parts)

View File

@ -2,11 +2,9 @@
Object representing a one multi-layer lithographic layout.
A single level of hierarchical references is included.
"""
from typing import cast, Self, Any, TypeVar
from collections.abc import Sequence, Mapping, MutableMapping, Iterable, Callable
from typing import Callable, Sequence, cast, Mapping, Self, Any, Iterable, TypeVar, MutableMapping
import copy
import logging
import functools
from itertools import chain
from collections import defaultdict
@ -19,8 +17,7 @@ from .ref import Ref
from .abstract import Abstract
from .shapes import Shape, Polygon, Path, DEFAULT_POLY_NUM_VERTICES
from .label import Label
from .utils import rotation_matrix_2d, annotations_t, layer_t, annotations_eq, annotations_lt, layer2key
from .utils import ports_eq, ports_lt
from .utils import rotation_matrix_2d, annotations_t, layer_t
from .error import PatternError, PortError
from .traits import AnnotatableImpl, Scalable, Mirrorable, Rotatable, Positionable, Repeatable, Bounded
from .ports import Port, PortList
@ -29,7 +26,6 @@ from .ports import Port, PortList
logger = logging.getLogger(__name__)
@functools.total_ordering
class Pattern(PortList, AnnotatableImpl, Mirrorable):
"""
2D layout consisting of some set of shapes, labels, and references to other
@ -91,7 +87,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
__slots__ = (
'shapes', 'labels', 'refs', '_ports',
# inherited
'_annotations',
'_offset', '_annotations',
)
shapes: defaultdict[layer_t, list[Shape]]
@ -196,146 +192,6 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
# )
# return new
def __lt__(self, other: 'Pattern') -> bool:
self_nonempty_targets = [target for target, reflist in self.refs.items() if reflist]
other_nonempty_targets = [target for target, reflist in self.refs.items() if reflist]
self_tgtkeys = tuple(sorted((target is None, target) for target in self_nonempty_targets))
other_tgtkeys = tuple(sorted((target is None, target) for target in other_nonempty_targets))
if self_tgtkeys != other_tgtkeys:
return self_tgtkeys < other_tgtkeys
for _, target in self_tgtkeys:
refs_ours = tuple(sorted(self.refs[target]))
refs_theirs = tuple(sorted(other.refs[target]))
if refs_ours != refs_theirs:
return refs_ours < refs_theirs
self_nonempty_layers = [ll for ll, elems in self.shapes.items() if elems]
other_nonempty_layers = [ll for ll, elems in self.shapes.items() if elems]
self_layerkeys = tuple(sorted(layer2key(ll) for ll in self_nonempty_layers))
other_layerkeys = tuple(sorted(layer2key(ll) for ll in other_nonempty_layers))
if self_layerkeys != other_layerkeys:
return self_layerkeys < other_layerkeys
for _, _, layer in self_layerkeys:
shapes_ours = tuple(sorted(self.shapes[layer]))
shapes_theirs = tuple(sorted(self.shapes[layer]))
if shapes_ours != shapes_theirs:
return shapes_ours < shapes_theirs
self_nonempty_txtlayers = [ll for ll, elems in self.labels.items() if elems]
other_nonempty_txtlayers = [ll for ll, elems in self.labels.items() if elems]
self_txtlayerkeys = tuple(sorted(layer2key(ll) for ll in self_nonempty_txtlayers))
other_txtlayerkeys = tuple(sorted(layer2key(ll) for ll in other_nonempty_txtlayers))
if self_txtlayerkeys != other_txtlayerkeys:
return self_txtlayerkeys < other_txtlayerkeys
for _, _, layer in self_layerkeys:
labels_ours = tuple(sorted(self.labels[layer]))
labels_theirs = tuple(sorted(self.labels[layer]))
if labels_ours != labels_theirs:
return labels_ours < labels_theirs
if not annotations_eq(self.annotations, other.annotations):
return annotations_lt(self.annotations, other.annotations)
if not ports_eq(self.ports, other.ports):
return ports_lt(self.ports, other.ports)
return False
def __eq__(self, other: Any) -> bool:
if type(self) is not type(other):
return False
self_nonempty_targets = [target for target, reflist in self.refs.items() if reflist]
other_nonempty_targets = [target for target, reflist in self.refs.items() if reflist]
self_tgtkeys = tuple(sorted((target is None, target) for target in self_nonempty_targets))
other_tgtkeys = tuple(sorted((target is None, target) for target in other_nonempty_targets))
if self_tgtkeys != other_tgtkeys:
return False
for _, target in self_tgtkeys:
refs_ours = tuple(sorted(self.refs[target]))
refs_theirs = tuple(sorted(other.refs[target]))
if refs_ours != refs_theirs:
return False
self_nonempty_layers = [ll for ll, elems in self.shapes.items() if elems]
other_nonempty_layers = [ll for ll, elems in self.shapes.items() if elems]
self_layerkeys = tuple(sorted(layer2key(ll) for ll in self_nonempty_layers))
other_layerkeys = tuple(sorted(layer2key(ll) for ll in other_nonempty_layers))
if self_layerkeys != other_layerkeys:
return False
for _, _, layer in self_layerkeys:
shapes_ours = tuple(sorted(self.shapes[layer]))
shapes_theirs = tuple(sorted(self.shapes[layer]))
if shapes_ours != shapes_theirs:
return False
self_nonempty_txtlayers = [ll for ll, elems in self.labels.items() if elems]
other_nonempty_txtlayers = [ll for ll, elems in self.labels.items() if elems]
self_txtlayerkeys = tuple(sorted(layer2key(ll) for ll in self_nonempty_txtlayers))
other_txtlayerkeys = tuple(sorted(layer2key(ll) for ll in other_nonempty_txtlayers))
if self_txtlayerkeys != other_txtlayerkeys:
return False
for _, _, layer in self_layerkeys:
labels_ours = tuple(sorted(self.labels[layer]))
labels_theirs = tuple(sorted(self.labels[layer]))
if labels_ours != labels_theirs:
return False
if not annotations_eq(self.annotations, other.annotations):
return False
if not ports_eq(self.ports, other.ports): # noqa: SIM103
return False
return True
def sort(self, sort_elements: bool = True) -> Self:
"""
Sort the element dicts (shapes, labels, refs) and (optionally) their contained lists.
This is primarily useful for making builds more reproducible.
Args:
sort_elements: Whether to sort all the shapes/labels/refs within each layer/target.
Returns:
self
"""
if sort_elements:
def maybe_sort(xx): # noqa:ANN001,ANN202
return sorted(xx)
else:
def maybe_sort(xx): # noqa:ANN001,ANN202
return xx
self.refs = defaultdict(list, sorted(
(tgt, maybe_sort(rrs)) for tgt, rrs in self.refs.items()
))
self.labels = defaultdict(list, sorted(
((layer, maybe_sort(lls)) for layer, lls in self.labels.items()),
key=lambda tt: layer2key(tt[0]),
))
self.shapes = defaultdict(list, sorted(
((layer, maybe_sort(sss)) for layer, sss in self.shapes.items()),
key=lambda tt: layer2key(tt[0]),
))
self.ports = dict(sorted(self.ports.items()))
self.annotations = dict(sorted(self.annotations.items()))
return self
def append(self, other_pattern: 'Pattern') -> Self:
"""
Appends all shapes, labels and refs from other_pattern to self's shapes,
@ -472,10 +328,10 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
self.polygonize()
for layer in self.shapes:
self.shapes[layer] = list(chain.from_iterable(
self.shapes[layer] = list(chain.from_iterable((
ss.manhattanize(grid_x, grid_y)
for ss in self.shapes[layer]
))
)))
return self
def as_polygons(self, library: Mapping[str, 'Pattern']) -> list[NDArray[numpy.float64]]:
@ -491,7 +347,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
"""
pat = self.deepcopy().polygonize().flatten(library=library)
polys = [
cast('Polygon', shape).vertices + cast('Polygon', shape).offset
cast(Polygon, shape).vertices + cast(Polygon, shape).offset
for shape in chain_elements(pat.shapes)
]
return polys
@ -533,7 +389,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
n_elems = sum(1 for _ in chain_elements(self.shapes, self.labels))
ebounds = numpy.full((n_elems, 2, 2), nan)
for ee, entry in enumerate(chain_elements(self.shapes, self.labels)):
maybe_ebounds = cast('Bounded', entry).get_bounds()
maybe_ebounds = cast(Bounded, entry).get_bounds()
if maybe_ebounds is not None:
ebounds[ee] = maybe_ebounds
mask = ~numpy.isnan(ebounds[:, 0, 0])
@ -580,8 +436,6 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
corners = (rotation_matrix_2d(ref.rotation) @ ubounds.T).T
bounds = numpy.vstack((numpy.min(corners, axis=0),
numpy.max(corners, axis=0))) * ref.scale + [ref.offset]
if ref.repetition is not None:
bounds += ref.repetition.get_bounds()
else:
# Non-manhattan rotation, have to figure out bounds by rotating the pattern
@ -595,6 +449,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
if (cbounds[1] < cbounds[0]).any():
return None
else:
return cbounds
def get_bounds_nonempty(
@ -616,7 +471,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
Returns:
`[[x_min, y_min], [x_max, y_max]]`
"""
bounds = self.get_bounds(library, recurse=recurse)
bounds = self.get_bounds(library)
assert bounds is not None
return bounds
@ -631,7 +486,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
self
"""
for entry in chain(chain_elements(self.shapes, self.labels, self.refs), self.ports.values()):
cast('Positionable', entry).translate(offset)
cast(Positionable, entry).translate(offset)
return self
def scale_elements(self, c: float) -> Self:
@ -645,37 +500,33 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
self
"""
for entry in chain_elements(self.shapes, self.refs):
cast('Scalable', entry).scale_by(c)
cast(Scalable, entry).scale_by(c)
return self
def scale_by(self, c: float, scale_refs: bool = True) -> Self:
def scale_by(self, c: float) -> Self:
"""
Scale this Pattern by the given value
All shapes and (optionally) refs and their offsets are scaled,
as are all label and port offsets.
(all shapes and refs and their offsets are scaled,
as are all label and port offsets)
Args:
c: factor to scale by
scale_refs: Whether to scale refs. Ref offsets are always scaled,
but it may be desirable to not scale the ref itself (e.g. if
the target cell was also scaled).
Returns:
self
"""
for entry in chain_elements(self.shapes, self.refs):
cast('Positionable', entry).offset *= c
if scale_refs or not isinstance(entry, Ref):
cast('Scalable', entry).scale_by(c)
cast(Positionable, entry).offset *= c
cast(Scalable, entry).scale_by(c)
rep = cast('Repeatable', entry).repetition
rep = cast(Repeatable, entry).repetition
if rep:
rep.scale_by(c)
for label in chain_elements(self.labels):
cast('Positionable', label).offset *= c
cast(Positionable, label).offset *= c
rep = cast('Repeatable', label).repetition
rep = cast(Repeatable, label).repetition
if rep:
rep.scale_by(c)
@ -694,7 +545,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
Returns:
self
"""
pivot = numpy.asarray(pivot, dtype=float)
pivot = numpy.array(pivot)
self.translate_elements(-pivot)
self.rotate_elements(rotation)
self.rotate_element_centers(rotation)
@ -712,8 +563,8 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
self
"""
for entry in chain(chain_elements(self.shapes, self.refs, self.labels), self.ports.values()):
old_offset = cast('Positionable', entry).offset
cast('Positionable', entry).offset = numpy.dot(rotation_matrix_2d(rotation), old_offset)
old_offset = cast(Positionable, entry).offset
cast(Positionable, entry).offset = numpy.dot(rotation_matrix_2d(rotation), old_offset)
return self
def rotate_elements(self, rotation: float) -> Self:
@ -727,7 +578,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
self
"""
for entry in chain(chain_elements(self.shapes, self.refs), self.ports.values()):
cast('Rotatable', entry).rotate(rotation)
cast(Rotatable, entry).rotate(rotation)
return self
def mirror_element_centers(self, across_axis: int = 0) -> Self:
@ -742,7 +593,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
self
"""
for entry in chain(chain_elements(self.shapes, self.refs, self.labels), self.ports.values()):
cast('Positionable', entry).offset[across_axis - 1] *= -1
cast(Positionable, entry).offset[across_axis - 1] *= -1
return self
def mirror_elements(self, across_axis: int = 0) -> Self:
@ -758,7 +609,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
self
"""
for entry in chain(chain_elements(self.shapes, self.refs), self.ports.values()):
cast('Mirrorable', entry).mirror(across_axis)
cast(Mirrorable, entry).mirror(across_axis)
return self
def mirror(self, across_axis: int = 0) -> Self:
@ -957,7 +808,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
Returns:
self
"""
flattened: dict[str | None, Pattern | None] = {}
flattened: dict[str | None, 'Pattern | None'] = {}
def flatten_single(name: str | None) -> None:
if name is None:
@ -1019,15 +870,15 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
try:
from matplotlib import pyplot # type: ignore
import matplotlib.collections # type: ignore
except ImportError:
logger.exception('Pattern.visualize() depends on matplotlib!\n'
+ 'Make sure to install masque with the [visualize] option to pull in the needed dependencies.')
raise
except ImportError as err:
logger.error('Pattern.visualize() depends on matplotlib!')
logger.error('Make sure to install masque with the [visualize] option to pull in the needed dependencies.')
raise err
if self.has_refs() and library is None:
raise PatternError('Must provide a library when visualizing a pattern with refs')
offset = numpy.asarray(offset, dtype=float)
offset = numpy.array(offset, dtype=float)
if not overdraw:
figure = pyplot.figure()
@ -1229,7 +1080,6 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
inherit_name: bool = True,
set_rotation: bool | None = None,
append: bool = False,
ok_connections: Iterable[tuple[str, str]] = (),
) -> Self:
"""
Instantiate or append a pattern into the current pattern, connecting
@ -1237,7 +1087,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
ports specified by `map_out`.
Examples:
======list, ===
=========
- `my_pat.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
instantiates `subdevice` into `my_pat`, plugging ports 'A' and 'B'
of `my_pat` into ports 'C' and 'B' of `subdevice`. The connected ports
@ -1275,11 +1125,6 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
append: If `True`, `other` is appended instead of being referenced.
Note that this does not flatten `other`, so its refs will still
be refs (now inside `self`).
ok_connections: Set of "allowed" ptype combinations. Identical
ptypes are always allowed to connect, as is `'unk'` with
any other ptypte. Non-allowed ptype connections will emit a
warning. Order is ignored, i.e. `(a, b)` is equivalent to
`(b, a)`.
Returns:
self
@ -1310,7 +1155,6 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
map_in,
mirrored=mirrored,
set_rotation=set_rotation,
ok_connections=ok_connections,
)
# get rid of plugged ports
@ -1319,7 +1163,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
map_out[vi] = None
if isinstance(other, Pattern):
assert append, 'Got a name (not an abstract) but was asked to reference (not append)'
assert append
self.place(
other,
@ -1335,7 +1179,7 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
@classmethod
def interface(
cls: type['Pattern'],
cls,
source: PortList | Mapping[str, Port],
*,
in_prefix: str = 'in_',

View File

@ -1,12 +1,9 @@
from typing import overload, Self, NoReturn, Any
from collections.abc import Iterable, KeysView, ValuesView, Mapping
from typing import Iterable, KeysView, ValuesView, overload, Self, Mapping, NoReturn
import warnings
import traceback
import logging
import functools
from collections import Counter
from abc import ABCMeta, abstractmethod
from itertools import chain
import numpy
from numpy import pi
@ -20,7 +17,6 @@ from .error import PortError
logger = logging.getLogger(__name__)
@functools.total_ordering
class Port(PositionableImpl, Rotatable, PivotableImpl, Copyable, Mirrorable):
"""
A point at which a `Device` can be snapped to another `Device`.
@ -72,28 +68,7 @@ class Port(PositionableImpl, Rotatable, PivotableImpl, Copyable, Mirrorable):
raise PortError('Rotation must be a scalar')
self._rotation = val % (2 * pi)
@property
def x(self) -> float:
""" Alias for offset[0] """
return self.offset[0]
@x.setter
def x(self, val: float) -> None:
self.offset[0] = val
@property
def y(self) -> float:
""" Alias for offset[1] """
return self.offset[1]
@y.setter
def y(self, val: float) -> None:
self.offset[1] = val
def copy(self) -> Self:
return self.deepcopy()
def get_bounds(self) -> NDArray[numpy.float64]:
def get_bounds(self):
return numpy.vstack((self.offset, self.offset))
def set_ptype(self, ptype: str) -> Self:
@ -124,27 +99,6 @@ class Port(PositionableImpl, Rotatable, PivotableImpl, Copyable, Mirrorable):
rot = str(numpy.rad2deg(self.rotation))
return f'<{self.offset}, {rot}, [{self.ptype}]>'
def __lt__(self, other: 'Port') -> bool:
if self.ptype != other.ptype:
return self.ptype < other.ptype
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.rotation != other.rotation:
if self.rotation is None:
return True
if other.rotation is None:
return False
return self.rotation < other.rotation
return False
def __eq__(self, other: Any) -> bool:
return (
type(self) is type(other)
and self.ptype == other.ptype
and numpy.array_equal(self.offset, other.offset)
and self.rotation == other.rotation
)
class PortList(metaclass=ABCMeta):
__slots__ = () # Allow subclasses to use __slots__
@ -181,7 +135,7 @@ class PortList(metaclass=ABCMeta):
"""
if isinstance(key, str):
return self.ports[key]
else: # noqa: RET505
else:
return {k: self.ports[k] for k in key}
def __contains__(self, key: str) -> NoReturn:
@ -239,7 +193,7 @@ class PortList(metaclass=ABCMeta):
if duplicates:
raise PortError(f'Unrenamed ports would be overwritten: {duplicates}')
renamed = {vv: self.ports.pop(kk) for kk, vv in mapping.items()}
renamed = {mapping[k]: self.ports.pop(k) for k in mapping.keys()}
if None in renamed:
del renamed[None]
@ -274,75 +228,6 @@ class PortList(metaclass=ABCMeta):
self.ports.update(new_ports)
return self
def plugged(
self,
connections: dict[str, str],
) -> Self:
"""
Verify that the ports specified by `connections` are coincident and have opposing
rotations, then remove the ports.
This is used when ports have been "manually" aligned as part of some other routing,
but for whatever reason were not eliminated via `plug()`.
Args:
connections: Pairs of ports which "plug" each other (same offset, opposing directions)
Returns:
self
Raises:
`PortError` if the ports are not properly aligned.
"""
a_names, b_names = list(zip(*connections.items(), strict=True))
a_ports = [self.ports[pp] for pp in a_names]
b_ports = [self.ports[pp] for pp in b_names]
a_types = [pp.ptype for pp in a_ports]
b_types = [pp.ptype for pp in b_ports]
type_conflicts = numpy.array([at != bt and 'unk' not in (at, bt)
for at, bt in zip(a_types, b_types, strict=True)])
if type_conflicts.any():
msg = 'Ports have conflicting types:\n'
for nn, (k, v) in enumerate(connections.items()):
if type_conflicts[nn]:
msg += f'{k} | {a_types[nn]}:{b_types[nn]} | {v}\n'
msg = ''.join(traceback.format_stack()) + '\n' + msg
warnings.warn(msg, stacklevel=2)
a_offsets = numpy.array([pp.offset for pp in a_ports])
b_offsets = numpy.array([pp.offset for pp in b_ports])
a_rotations = numpy.array([pp.rotation if pp.rotation is not None else 0 for pp in a_ports])
b_rotations = numpy.array([pp.rotation if pp.rotation is not None else 0 for pp in b_ports])
a_has_rot = numpy.array([pp.rotation is not None for pp in a_ports], dtype=bool)
b_has_rot = numpy.array([pp.rotation is not None for pp in b_ports], dtype=bool)
has_rot = a_has_rot & b_has_rot
if has_rot.any():
rotations = numpy.mod(a_rotations - b_rotations - pi, 2 * pi)
rotations[~has_rot] = rotations[has_rot][0]
if not numpy.allclose(rotations, 0):
rot_deg = numpy.rad2deg(rotations)
msg = 'Port orientations do not match:\n'
for nn, (k, v) in enumerate(connections.items()):
if not numpy.isclose(rot_deg[nn], 0):
msg += f'{k} | {rot_deg[nn]:g} | {v}\n'
raise PortError(msg)
translations = a_offsets - b_offsets
if not numpy.allclose(translations, 0):
msg = 'Port translations do not match:\n'
for nn, (k, v) in enumerate(connections.items()):
if not numpy.allclose(translations[nn], 0):
msg += f'{k} | {translations[nn]} | {v}\n'
raise PortError(msg)
for pp in chain(a_names, b_names):
del self.ports[pp]
return self
def check_ports(
self,
other_names: Iterable[str],
@ -419,7 +304,6 @@ class PortList(metaclass=ABCMeta):
*,
mirrored: bool = False,
set_rotation: bool | None = None,
ok_connections: Iterable[tuple[str, str]] = (),
) -> tuple[NDArray[numpy.float64], float, NDArray[numpy.float64]]:
"""
Given a device `other` and a mapping `map_in` specifying port connections,
@ -436,11 +320,6 @@ class PortList(metaclass=ABCMeta):
port with `rotation=None`), `set_rotation` must be provided
to indicate how much `other` should be rotated. Otherwise,
`set_rotation` must remain `None`.
ok_connections: Set of "allowed" ptype combinations. Identical
ptypes are always allowed to connect, as is `'unk'` with
any other ptypte. Non-allowed ptype connections will emit a
warning. Order is ignored, i.e. `(a, b)` is equivalent to
`(b, a)`.
Returns:
- The (x, y) translation (performed last)
@ -457,7 +336,6 @@ class PortList(metaclass=ABCMeta):
map_in=map_in,
mirrored=mirrored,
set_rotation=set_rotation,
ok_connections=ok_connections,
)
@staticmethod
@ -468,14 +346,13 @@ class PortList(metaclass=ABCMeta):
*,
mirrored: bool = False,
set_rotation: bool | None = None,
ok_connections: Iterable[tuple[str, str]] = (),
) -> tuple[NDArray[numpy.float64], float, NDArray[numpy.float64]]:
"""
Given two sets of ports (s_ports and o_ports) and a mapping `map_in`
specifying port connections, find the transform which will correctly
align the specified o_ports onto their respective s_ports.
Args:
Args:t
s_ports: A list of stationary ports
o_ports: A list of ports which are to be moved/mirrored.
map_in: dict of `{'s_port': 'o_port'}` mappings, specifying
@ -487,11 +364,6 @@ class PortList(metaclass=ABCMeta):
port with `rotation=None`), `set_rotation` must be provided
to indicate how much `o_ports` should be rotated. Otherwise,
`set_rotation` must remain `None`.
ok_connections: Set of "allowed" ptype combinations. Identical
ptypes are always allowed to connect, as is `'unk'` with
any other ptypte. Non-allowed ptype connections will emit a
warning. Order is ignored, i.e. `(a, b)` is equivalent to
`(b, a)`.
Returns:
- The (x, y) translation (performed last)
@ -515,9 +387,8 @@ class PortList(metaclass=ABCMeta):
o_offsets[:, 1] *= -1
o_rotations *= -1
ok_pairs = {tuple(sorted(pair)) for pair in ok_connections if pair[0] != pair[1]}
type_conflicts = numpy.array([(st != ot) and ('unk' not in (st, ot)) and (tuple(sorted((st, ot))) not in ok_pairs)
for st, ot in zip(s_types, o_types, strict=True)])
type_conflicts = numpy.array([st != ot and st != 'unk' and ot != 'unk'
for st, ot in zip(s_types, o_types)])
if type_conflicts.any():
msg = 'Ports have conflicting types:\n'
for nn, (k, v) in enumerate(map_in.items()):
@ -537,8 +408,8 @@ class PortList(metaclass=ABCMeta):
if not numpy.allclose(rotations[:1], rotations):
rot_deg = numpy.rad2deg(rotations)
msg = 'Port orientations do not match:\n'
for nn, (kk, vv) in enumerate(map_in.items()):
msg += f'{kk} | {rot_deg[nn]:g} | {vv}\n'
for nn, (k, v) in enumerate(map_in.items()):
msg += f'{k} | {rot_deg[nn]:g} | {v}\n'
raise PortError(msg)
pivot = o_offsets[0].copy()
@ -546,8 +417,8 @@ class PortList(metaclass=ABCMeta):
translations = s_offsets - o_offsets
if not numpy.allclose(translations[:1], translations):
msg = 'Port translations do not match:\n'
for nn, (kk, vv) in enumerate(map_in.items()):
msg += f'{kk} | {translations[nn]} | {vv}\n'
for nn, (k, v) in enumerate(map_in.items()):
msg += f'{k} | {translations[nn]} | {v}\n'
raise PortError(msg)
return translations[0], rotations[0], o_offsets[0]

View File

@ -2,16 +2,14 @@
Ref provides basic support for nesting Pattern objects within each other.
It carries offset, rotation, mirroring, and scaling data for each individual instance.
"""
from typing import TYPE_CHECKING, Self, Any
from collections.abc import Mapping
from typing import Mapping, TYPE_CHECKING, Self
import copy
import functools
import numpy
from numpy import pi
from numpy.typing import NDArray, ArrayLike
from .utils import annotations_t, rotation_matrix_2d, annotations_eq, annotations_lt, rep2key
from .utils import annotations_t, rotation_matrix_2d
from .repetition import Repetition
from .traits import (
PositionableImpl, RotatableImpl, ScalableImpl,
@ -23,7 +21,6 @@ if TYPE_CHECKING:
from . import Pattern
@functools.total_ordering
class Ref(
PositionableImpl, RotatableImpl, ScalableImpl, Mirrorable,
PivotableImpl, Copyable, RepeatableImpl, AnnotatableImpl,
@ -102,29 +99,6 @@ class Ref(
#new.annotations = copy.deepcopy(self.annotations, memo)
return new
def __lt__(self, other: 'Ref') -> bool:
if (self.offset != other.offset).any():
return tuple(self.offset) < tuple(other.offset)
if self.mirrored != other.mirrored:
return self.mirrored < other.mirrored
if self.rotation != other.rotation:
return self.rotation < other.rotation
if self.scale != other.scale:
return self.scale < other.scale
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
def __eq__(self, other: Any) -> bool:
return (
numpy.array_equal(self.offset, other.offset)
and self.mirrored == other.mirrored
and self.rotation == other.rotation
and self.scale == other.scale
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def as_pattern(
self,
pattern: 'Pattern',
@ -183,16 +157,6 @@ class Ref(
self.rotation += pi
return self
def as_transforms(self) -> NDArray[numpy.float64]:
xys = self.offset[None, :]
if self.repetition is not None:
xys = xys + self.repetition.displacements
transforms = numpy.empty((xys.shape[0], 4))
transforms[:, :2] = xys
transforms[:, 2] = self.rotation
transforms[:, 3] = self.mirrored
return transforms
def get_bounds_single(
self,
pattern: 'Pattern',

View File

@ -2,9 +2,8 @@
Repetitions provide support for efficiently representing multiple identical
instances of an object .
"""
from typing import Any, Self, TypeVar, cast
from typing import Any, Type, Self, TypeVar
import copy
import functools
from abc import ABCMeta, abstractmethod
import numpy
@ -18,7 +17,6 @@ from .utils import rotation_matrix_2d
GG = TypeVar('GG', bound='Grid')
@functools.total_ordering
class Repetition(Copyable, Rotatable, Mirrorable, Scalable, Bounded, metaclass=ABCMeta):
"""
Interface common to all objects which specify repetitions
@ -33,14 +31,6 @@ class Repetition(Copyable, Rotatable, Mirrorable, Scalable, Bounded, metaclass=A
"""
pass
@abstractmethod
def __le__(self, other: 'Repetition') -> bool:
pass
@abstractmethod
def __eq__(self, other: Any) -> bool:
pass
class Grid(Repetition):
"""
@ -101,6 +91,7 @@ class Grid(Repetition):
if b_vector is None:
if b_count > 1:
raise PatternError('Repetition has b_count > 1 but no b_vector')
else:
b_vector = numpy.array([0.0, 0.0])
if a_count < 1:
@ -115,7 +106,7 @@ class Grid(Repetition):
@classmethod
def aligned(
cls: type[GG],
cls: Type[GG],
x: float,
y: float,
x_count: int,
@ -156,11 +147,12 @@ class Grid(Repetition):
@a_vector.setter
def a_vector(self, val: ArrayLike) -> None:
if not isinstance(val, numpy.ndarray):
val = numpy.array(val, dtype=float)
if val.size != 2:
raise PatternError('a_vector must be convertible to size-2 ndarray')
self._a_vector = val.flatten()
self._a_vector = val.flatten().astype(float)
# b_vector property
@property
@ -169,7 +161,8 @@ class Grid(Repetition):
@b_vector.setter
def b_vector(self, val: ArrayLike) -> None:
val = numpy.array(val, dtype=float)
if not isinstance(val, numpy.ndarray):
val = numpy.array(val, dtype=float, copy=True)
if val.size != 2:
raise PatternError('b_vector must be convertible to size-2 ndarray')
@ -277,7 +270,7 @@ class Grid(Repetition):
return (f'<Grid {self.a_count}x{self.b_count} ({self.a_vector}{bv})>')
def __eq__(self, other: Any) -> bool:
if type(other) is not type(self):
if not isinstance(other, type(self)):
return False
if self.a_count != other.a_count or self.b_count != other.b_count:
return False
@ -287,28 +280,10 @@ class Grid(Repetition):
return True
if self.b_vector is None or other.b_vector is None:
return False
if any(self.b_vector[ii] != other.b_vector[ii] for ii in range(2)): # noqa: SIM103
if any(self.b_vector[ii] != other.b_vector[ii] for ii in range(2)):
return False
return True
def __le__(self, other: Repetition) -> bool:
if type(self) is not type(other):
return repr(type(self)) < repr(type(other))
other = cast('Grid', other)
if self.a_count != other.a_count:
return self.a_count < other.a_count
if self.b_count != other.b_count:
return self.b_count < other.b_count
if not numpy.array_equal(self.a_vector, other.a_vector):
return tuple(self.a_vector) < tuple(other.a_vector)
if self.b_vector is None:
return other.b_vector is not None
if other.b_vector is None:
return False
if not numpy.array_equal(self.b_vector, other.b_vector):
return tuple(self.a_vector) < tuple(other.a_vector)
return False
class Arbitrary(Repetition):
"""
@ -332,9 +307,9 @@ class Arbitrary(Repetition):
@displacements.setter
def displacements(self, val: ArrayLike) -> None:
vala = numpy.array(val, dtype=float)
order = numpy.lexsort(vala.T[::-1]) # sortrows
self._displacements = vala[order]
vala: NDArray[numpy.float64] = numpy.array(val, dtype=float)
vala = numpy.sort(vala.view([('', vala.dtype)] * vala.shape[1]), 0).view(vala.dtype) # sort rows
self._displacements = vala
def __init__(
self,
@ -350,23 +325,10 @@ class Arbitrary(Repetition):
return (f'<Arbitrary {len(self.displacements)}pts >')
def __eq__(self, other: Any) -> bool:
if not type(other) is not type(self):
if not isinstance(other, type(self)):
return False
return numpy.array_equal(self.displacements, other.displacements)
def __le__(self, other: Repetition) -> bool:
if type(self) is not type(other):
return repr(type(self)) < repr(type(other))
other = cast('Arbitrary', other)
if self.displacements.size != other.displacements.size:
return self.displacements.size < other.displacements.size
neq = (self.displacements != other.displacements)
if neq.any():
return self.displacements[neq][0] < other.displacements[neq][0]
return False
def rotate(self, rotation: float) -> Self:
"""
Rotate dispacements (around (0, 0))

View File

@ -3,15 +3,11 @@ Shapes for use with the Pattern class, as well as the Shape abstract class from
which they are derived.
"""
from .shape import (
Shape as Shape,
normalized_shape_tuple as normalized_shape_tuple,
DEFAULT_POLY_NUM_VERTICES as DEFAULT_POLY_NUM_VERTICES,
)
from .shape import Shape, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
from .polygon import Polygon as Polygon
from .circle import Circle as Circle
from .ellipse import Ellipse as Ellipse
from .arc import Arc as Arc
from .text import Text as Text
from .path import Path as Path
from .polygon import Polygon
from .circle import Circle
from .ellipse import Ellipse
from .arc import Arc
from .text import Text
from .path import Path

View File

@ -1,6 +1,5 @@
from typing import Any, cast
from typing import Any
import copy
import functools
import numpy
from numpy import pi
@ -9,10 +8,9 @@ from numpy.typing import NDArray, ArrayLike
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
from ..error import PatternError
from ..repetition import Repetition
from ..utils import is_scalar, annotations_t, annotations_lt, annotations_eq, rep2key
from ..utils import is_scalar, annotations_t
@functools.total_ordering
class Arc(Shape):
"""
An elliptical arc, formed by cutting off an elliptical ring with two rays which exit from its
@ -189,38 +187,6 @@ class Arc(Shape):
new._annotations = copy.deepcopy(self._annotations)
return new
def __eq__(self, other: Any) -> bool:
return (
type(self) is type(other)
and numpy.array_equal(self.offset, other.offset)
and numpy.array_equal(self.radii, other.radii)
and numpy.array_equal(self.angles, other.angles)
and self.width == other.width
and self.rotation == other.rotation
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def __lt__(self, other: Shape) -> bool:
if type(self) is not type(other):
if repr(type(self)) != repr(type(other)):
return repr(type(self)) < repr(type(other))
return id(type(self)) < id(type(other))
other = cast('Arc', other)
if self.width != other.width:
return self.width < other.width
if not numpy.array_equal(self.radii, other.radii):
return tuple(self.radii) < tuple(other.radii)
if not numpy.array_equal(self.angles, other.angles):
return tuple(self.angles) < tuple(other.angles)
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.rotation != other.rotation:
return self.rotation < other.rotation
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
def to_polygons(
self,
num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES,
@ -233,7 +199,7 @@ class Arc(Shape):
r0, r1 = self.radii
# Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation)
a_ranges = cast('_array2x2_t', self._angles_to_parameters())
a_ranges = self._angles_to_parameters()
# Approximate perimeter via numerical integration
@ -244,50 +210,43 @@ class Arc(Shape):
#t0 = ellipeinc(a0 - pi / 2, m)
#perimeter2 = r0 * (t1 - t0)
def get_arclens(n_pts: int, a0: float, a1: float, dr: float) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
def get_arclens(n_pts: int, a0: float, a1: float) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
""" Get `n_pts` arclengths """
tt, dt = numpy.linspace(a0, a1, n_pts, retstep=True) # NOTE: could probably use an adaptive number of points
r0sin = (r0 + dr) * numpy.sin(tt)
r1cos = (r1 + dr) * numpy.cos(tt)
t, dt = numpy.linspace(a0, a1, n_pts, retstep=True) # NOTE: could probably use an adaptive number of points
r0sin = r0 * numpy.sin(t)
r1cos = r1 * numpy.cos(t)
arc_dl = numpy.sqrt(r0sin * r0sin + r1cos * r1cos)
#arc_lengths = numpy.diff(tt) * (arc_dl[1:] + arc_dl[:-1]) / 2
#arc_lengths = numpy.diff(t) * (arc_dl[1:] + arc_dl[:-1]) / 2
arc_lengths = (arc_dl[1:] + arc_dl[:-1]) * numpy.abs(dt) / 2
return arc_lengths, tt
return arc_lengths, t
wh = self.width / 2.0
if num_vertices is not None:
n_pts = numpy.ceil(max(self.radii + wh) / min(self.radii) * num_vertices * 100).astype(int)
perimeter_inner = get_arclens(n_pts, *a_ranges[0], dr=-wh)[0].sum()
perimeter_outer = get_arclens(n_pts, *a_ranges[1], dr= wh)[0].sum()
n_pts = numpy.ceil(max(self.radii) / min(self.radii) * num_vertices * 100).astype(int)
perimeter_inner = get_arclens(n_pts, *a_ranges[0])[0].sum()
perimeter_outer = get_arclens(n_pts, *a_ranges[1])[0].sum()
implied_arclen = (perimeter_outer + perimeter_inner + self.width * 2) / num_vertices
max_arclen = min(implied_arclen, max_arclen if max_arclen is not None else numpy.inf)
assert max_arclen is not None
def get_thetas(inner: bool) -> NDArray[numpy.float64]:
""" Figure out the parameter values at which we should place vertices to meet the arclength constraint"""
dr = -wh if inner else wh
#dr = -self.width / 2.0 * (-1 if inner else 1)
n_pts = numpy.ceil(2 * pi * max(self.radii + dr) / max_arclen).astype(int)
arc_lengths, thetas = get_arclens(n_pts, *a_ranges[0 if inner else 1], dr=dr)
n_pts = numpy.ceil(2 * pi * max(self.radii) / max_arclen).astype(int)
arc_lengths, thetas = get_arclens(n_pts, *a_ranges[0 if inner else 1])
keep = [0]
keep = []
removable = (numpy.cumsum(arc_lengths) <= max_arclen)
start = 1
start = 0
while start < arc_lengths.size:
next_to_keep = start + numpy.where(removable)[0][-1] # TODO: any chance we haven't sampled finely enough?
keep.append(next_to_keep)
removable = (numpy.cumsum(arc_lengths[next_to_keep + 1:]) <= max_arclen)
start = next_to_keep + 1
if keep[-1] != thetas.size - 1:
keep.append(thetas.size - 1)
return thetas[keep]
thetas = thetas[keep]
if inner:
thetas = thetas[::-1]
return thetas
thetas_inner: NDArray[numpy.float64]
if wh in (r0, r1):
wh = self.width / 2.0
if wh == r0 or wh == r1:
thetas_inner = numpy.zeros(1) # Don't generate multiple vertices if we're at the origin
else:
thetas_inner = get_thetas(inner=True)
@ -309,7 +268,7 @@ class Arc(Shape):
return [poly]
def get_bounds_single(self) -> NDArray[numpy.float64]:
"""
'''
Equation for rotated ellipse is
`x = x0 + a * cos(t) * cos(rot) - b * sin(t) * sin(phi)`
`y = y0 + a * cos(t) * sin(rot) + b * sin(t) * cos(rot)`
@ -320,12 +279,12 @@ class Arc(Shape):
where -+ is for x, y cases, so that's where the extrema are.
If the extrema are innaccessible due to arc constraints, check the arc endpoints instead.
"""
a_ranges = cast('_array2x2_t', self._angles_to_parameters())
'''
a_ranges = self._angles_to_parameters()
mins = []
maxs = []
for aa, sgn in zip(a_ranges, (-1, +1), strict=True):
for a, sgn in zip(a_ranges, (-1, +1)):
wh = sgn * self.width / 2
rx = self.radius_x + wh
ry = self.radius_y + wh
@ -336,13 +295,13 @@ class Arc(Shape):
maxs.append([0, 0])
continue
a0, a1 = aa
a0, a1 = a
a0_offset = a0 - (a0 % (2 * pi))
sin_r = numpy.sin(self.rotation)
cos_r = numpy.cos(self.rotation)
sin_a = numpy.sin(aa)
cos_a = numpy.cos(aa)
sin_a = numpy.sin(a)
cos_a = numpy.cos(a)
# Cutoff angles
xpt = (-self.rotation) % (2 * pi) + a0_offset
@ -425,26 +384,26 @@ class Arc(Shape):
))
def get_cap_edges(self) -> NDArray[numpy.float64]:
"""
'''
Returns:
```
[[[x0, y0], [x1, y1]], array of 4 points, specifying the two cuts which
[[x2, y2], [x3, y3]]], would create this arc from its corresponding ellipse.
```
"""
a_ranges = cast('_array2x2_t', self._angles_to_parameters())
'''
a_ranges = self._angles_to_parameters()
mins = []
maxs = []
for aa, sgn in zip(a_ranges, (-1, +1), strict=True):
for a, sgn in zip(a_ranges, (-1, +1)):
wh = sgn * self.width / 2
rx = self.radius_x + wh
ry = self.radius_y + wh
sin_r = numpy.sin(self.rotation)
cos_r = numpy.cos(self.rotation)
sin_a = numpy.sin(aa)
cos_a = numpy.cos(aa)
sin_a = numpy.sin(a)
cos_a = numpy.cos(a)
# arc endpoints
xn, xp = sorted(rx * cos_r * cos_a - ry * sin_r * sin_a)
@ -455,30 +414,27 @@ class Arc(Shape):
return numpy.array([mins, maxs]) + self.offset
def _angles_to_parameters(self) -> NDArray[numpy.float64]:
"""
Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation)
'''
Returns:
"Eccentric anomaly" parameter ranges for the inner and outer edges, in the form
`[[a_min_inner, a_max_inner], [a_min_outer, a_max_outer]]`
"""
aa = []
'''
a = []
for sgn in (-1, +1):
wh = sgn * self.width / 2.0
wh = sgn * self.width / 2
rx = self.radius_x + wh
ry = self.radius_y + wh
a0, a1 = (numpy.arctan2(rx * numpy.sin(ai), ry * numpy.cos(ai)) for ai in self.angles)
# create paremeter 'a' for parametrized ellipse
a0, a1 = (numpy.arctan2(rx * numpy.sin(a), ry * numpy.cos(a)) for a in self.angles)
sign = numpy.sign(self.angles[1] - self.angles[0])
if sign != numpy.sign(a1 - a0):
a1 += sign * 2 * pi
aa.append((a0, a1))
return numpy.array(aa, dtype=float)
a.append((a0, a1))
return numpy.array(a)
def __repr__(self) -> str:
angles = f'{numpy.rad2deg(self.angles)}'
rotation = f'{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
return f'<Arc o{self.offset} r{self.radii}{angles} w{self.width:g}{rotation}>'
_array2x2_t = tuple[tuple[float, float], tuple[float, float]]

View File

@ -1,6 +1,4 @@
from typing import Any, cast
import copy
import functools
import numpy
from numpy import pi
@ -9,10 +7,9 @@ from numpy.typing import NDArray, ArrayLike
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
from ..error import PatternError
from ..repetition import Repetition
from ..utils import is_scalar, annotations_t, annotations_lt, annotations_eq, rep2key
from ..utils import is_scalar, annotations_t
@functools.total_ordering
class Circle(Shape):
"""
A circle, which has a position and radius.
@ -70,29 +67,6 @@ class Circle(Shape):
new._annotations = copy.deepcopy(self._annotations)
return new
def __eq__(self, other: Any) -> bool:
return (
type(self) is type(other)
and numpy.array_equal(self.offset, other.offset)
and self.radius == other.radius
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def __lt__(self, other: Shape) -> bool:
if type(self) is not type(other):
if repr(type(self)) != repr(type(other)):
return repr(type(self)) < repr(type(other))
return id(type(self)) < id(type(other))
other = cast('Circle', other)
if not self.radius == other.radius:
return self.radius < other.radius
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
def to_polygons(
self,
num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES,
@ -119,10 +93,10 @@ class Circle(Shape):
return numpy.vstack((self.offset - self.radius,
self.offset + self.radius))
def rotate(self, theta: float) -> 'Circle': # noqa: ARG002 (theta unused)
def rotate(self, theta: float) -> 'Circle':
return self
def mirror(self, axis: int = 0) -> 'Circle': # noqa: ARG002 (axis unused)
def mirror(self, axis: int = 0) -> 'Circle':
self.offset *= -1
return self
@ -130,7 +104,7 @@ class Circle(Shape):
self.radius *= c
return self
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
def normalized_form(self, norm_value) -> normalized_shape_tuple:
rotation = 0.0
magnitude = self.radius / norm_value
return ((type(self),),

View File

@ -1,7 +1,6 @@
from typing import Any, Self, cast
from typing import Any, Self
import copy
import math
import functools
import numpy
from numpy import pi
@ -10,10 +9,9 @@ from numpy.typing import ArrayLike, NDArray
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
from ..error import PatternError
from ..repetition import Repetition
from ..utils import is_scalar, rotation_matrix_2d, annotations_t, annotations_lt, annotations_eq, rep2key
from ..utils import is_scalar, rotation_matrix_2d, annotations_t
@functools.total_ordering
class Ellipse(Shape):
"""
An ellipse, which has a position, two radii, and a rotation.
@ -119,32 +117,6 @@ class Ellipse(Shape):
new._annotations = copy.deepcopy(self._annotations)
return new
def __eq__(self, other: Any) -> bool:
return (
type(self) is type(other)
and numpy.array_equal(self.offset, other.offset)
and numpy.array_equal(self.radii, other.radii)
and self.rotation == other.rotation
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def __lt__(self, other: Shape) -> bool:
if type(self) is not type(other):
if repr(type(self)) != repr(type(other)):
return repr(type(self)) < repr(type(other))
return id(type(self)) < id(type(other))
other = cast('Ellipse', other)
if not numpy.array_equal(self.radii, other.radii):
return tuple(self.radii) < tuple(other.radii)
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.rotation != other.rotation:
return self.rotation < other.rotation
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
def to_polygons(
self,
num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES,

View File

@ -1,7 +1,5 @@
from typing import Any, cast
from collections.abc import Sequence
from typing import Sequence, Any, cast
import copy
import functools
from enum import Enum
import numpy
@ -11,11 +9,10 @@ from numpy.typing import NDArray, ArrayLike
from . import Shape, normalized_shape_tuple, Polygon, Circle
from ..error import PatternError
from ..repetition import Repetition
from ..utils import is_scalar, rotation_matrix_2d, annotations_lt, annotations_eq, rep2key
from ..utils import is_scalar, rotation_matrix_2d
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
@functools.total_ordering
class PathCap(Enum):
Flush = 0 # Path ends at final vertices
Circle = 1 # Path extends past final vertices with a semicircle of radius width/2
@ -23,17 +20,14 @@ class PathCap(Enum):
SquareCustom = 4 # Path extends past final vertices with a rectangle of length
# # defined by path.cap_extensions
def __lt__(self, other: Any) -> bool:
return self.value == other.value
@functools.total_ordering
class Path(Shape):
"""
A path, consisting of a bunch of vertices (Nx2 ndarray), a width, an end-cap shape,
and an offset.
Note that the setter for `Path.vertices` will create a copy of the passed vertex coordinates.
Note that the setter for `Path.vertices` may (but may not) create a copy of the
passed vertex coordinates. See `numpy.array(..., copy=False)` for details.
A normalized_form(...) is available, but can be quite slow with lots of vertices.
"""
@ -104,11 +98,11 @@ class Path(Shape):
custom_caps = (PathCap.SquareCustom,)
if self.cap in custom_caps:
if vals is None:
raise PatternError('Tried to set cap extensions to None on path with custom cap type')
raise Exception('Tried to set cap extensions to None on path with custom cap type')
self._cap_extensions = numpy.array(vals, dtype=float)
else:
if vals is not None:
raise PatternError('Tried to set custom cap extensions on path with non-custom cap type')
raise Exception('Tried to set custom cap extensions on path with non-custom cap type')
self._cap_extensions = vals
# vertices property
@ -117,7 +111,8 @@ class Path(Shape):
"""
Vertices of the path (Nx2 ndarray: `[[x0, y0], [x1, y1], ...]`
When setting, note that a copy of the provided vertices will be made.
When setting, note that a copy of the provided vertices may or may not be made,
following the rules from `numpy.array(.., copy=False)`.
"""
return self._vertices
@ -206,40 +201,6 @@ class Path(Shape):
new._annotations = copy.deepcopy(self._annotations)
return new
def __eq__(self, other: Any) -> bool:
return (
type(self) is type(other)
and numpy.array_equal(self.offset, other.offset)
and numpy.array_equal(self.vertices, other.vertices)
and self.width == other.width
and self.cap == other.cap
and numpy.array_equal(self.cap_extensions, other.cap_extensions) # type: ignore
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def __lt__(self, other: Shape) -> bool:
if type(self) is not type(other):
if repr(type(self)) != repr(type(other)):
return repr(type(self)) < repr(type(other))
return id(type(self)) < id(type(other))
other = cast('Path', other)
if self.width != other.width:
return self.width < other.width
if self.cap != other.cap:
return self.cap < other.cap
if not numpy.array_equal(self.cap_extensions, other.cap_extensions): # type: ignore
if other.cap_extensions is None:
return False
if self.cap_extensions is None:
return True
return tuple(self.cap_extensions) < tuple(other.cap_extensions)
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
@staticmethod
def travel(
travel_pairs: Sequence[tuple[float, float]],
@ -271,7 +232,7 @@ class Path(Shape):
# TODO: Path.travel() needs testing
direction = numpy.array([1, 0])
verts: list[NDArray[numpy.float64]] = [numpy.zeros(2)]
verts = [numpy.zeros(2)]
for angle, distance in travel_pairs:
direction = numpy.dot(rotation_matrix_2d(angle), direction.T).T
verts.append(verts[-1] + direction * distance)
@ -307,8 +268,8 @@ class Path(Shape):
bs = v[1:-1] - v[:-2] + perp[1:] - perp[:-1]
ds = v[1:-1] - v[:-2] - perp[1:] + perp[:-1]
rp = numpy.linalg.solve(As, bs[:, :, None])[:, 0]
rn = numpy.linalg.solve(As, ds[:, :, None])[:, 0]
rp = numpy.linalg.solve(As, bs)[:, 0, None]
rn = numpy.linalg.solve(As, ds)[:, 0, None]
intersection_p = v[:-2] + rp * dv[:-1] + perp[:-1]
intersection_n = v[:-2] + rn * dv[:-1] - perp[:-1]
@ -405,7 +366,7 @@ class Path(Shape):
x_min = rotated_vertices[:, 0].argmin()
if not is_scalar(x_min):
y_min = rotated_vertices[x_min, 1].argmin()
x_min = cast('Sequence', x_min)[y_min]
x_min = cast(Sequence, x_min)[y_min]
reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
width0 = self.width / norm_value
@ -429,22 +390,22 @@ class Path(Shape):
return self
def remove_duplicate_vertices(self) -> 'Path':
"""
'''
Removes all consecutive duplicate (repeated) vertices.
Returns:
self
"""
'''
self.vertices = remove_duplicate_vertices(self.vertices, closed_path=False)
return self
def remove_colinear_vertices(self) -> 'Path':
"""
'''
Removes consecutive co-linear vertices.
Returns:
self
"""
'''
self.vertices = remove_colinear_vertices(self.vertices, closed_path=False)
return self

View File

@ -1,6 +1,5 @@
from typing import Any, cast, TYPE_CHECKING
from typing import Sequence, Any, cast
import copy
import functools
import numpy
from numpy import pi
@ -9,21 +8,17 @@ from numpy.typing import NDArray, ArrayLike
from . import Shape, normalized_shape_tuple
from ..error import PatternError
from ..repetition import Repetition
from ..utils import is_scalar, rotation_matrix_2d, annotations_lt, annotations_eq, rep2key
from ..utils import is_scalar, rotation_matrix_2d
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
if TYPE_CHECKING:
from collections.abc import Sequence
@functools.total_ordering
class Polygon(Shape):
"""
A polygon, consisting of a bunch of vertices (Nx2 ndarray) which specify an
implicitly-closed boundary, and an offset.
Note that the setter for `Polygon.vertices` creates a copy of the
passed vertex coordinates.
Note that the setter for `Polygon.vertices` may (but may not) create a copy of the
passed vertex coordinates. See `numpy.array(..., copy=False)` for details.
A `normalized_form(...)` is available, but can be quite slow with lots of vertices.
"""
@ -42,7 +37,8 @@ class Polygon(Shape):
"""
Vertices of the polygon (Nx2 ndarray: `[[x0, y0], [x1, y1], ...]`)
When setting, note that a copy of the provided vertices will be made,
When setting, note that a copy of the provided vertices may or may not be made,
following the rules from `numpy.array(.., copy=False)`.
"""
return self._vertices
@ -107,7 +103,6 @@ class Polygon(Shape):
self.offset = offset
self.repetition = repetition
self.annotations = annotations if annotations is not None else {}
if rotation:
self.rotate(rotation)
def __deepcopy__(self, memo: dict | None = None) -> 'Polygon':
@ -118,35 +113,6 @@ class Polygon(Shape):
new._annotations = copy.deepcopy(self._annotations)
return new
def __eq__(self, other: Any) -> bool:
return (
type(self) is type(other)
and numpy.array_equal(self.offset, other.offset)
and numpy.array_equal(self.vertices, other.vertices)
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def __lt__(self, other: Shape) -> bool:
if type(self) is not type(other):
if repr(type(self)) != repr(type(other)):
return repr(type(self)) < repr(type(other))
return id(type(self)) < id(type(other))
other = cast('Polygon', other)
if not numpy.array_equal(self.vertices, other.vertices):
min_len = min(self.vertices.shape[0], other.vertices.shape[0])
eq_mask = self.vertices[:min_len] != other.vertices[:min_len]
eq_lt = self.vertices[:min_len] < other.vertices[:min_len]
eq_lt_masked = eq_lt[eq_mask]
if eq_lt_masked.size > 0:
return eq_lt_masked.flat[0]
return self.vertices.shape[0] < other.vertices.shape[0]
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
@staticmethod
def square(
side_length: float,
@ -255,7 +221,7 @@ class Polygon(Shape):
lx = 2 * (xmax - xctr)
else:
raise PatternError('Two of xmin, xctr, xmax, lx must be None!')
else: # noqa: PLR5501
else:
if xctr is not None:
pass
elif xmax is None:
@ -285,7 +251,7 @@ class Polygon(Shape):
ly = 2 * (ymax - yctr)
else:
raise PatternError('Two of ymin, yctr, ymax, ly must be None!')
else: # noqa: PLR5501
else:
if yctr is not None:
pass
elif ymax is None:
@ -333,7 +299,10 @@ class Polygon(Shape):
Returns:
A Polygon object containing the requested octagon
"""
s = (1 + numpy.sqrt(2)) if regular else 2
if regular:
s = 1 + numpy.sqrt(2)
else:
s = 2
norm_oct = numpy.array([
[-1, -s],
@ -357,8 +326,8 @@ class Polygon(Shape):
def to_polygons(
self,
num_vertices: int | None = None, # unused # noqa: ARG002
max_arclen: float | None = None, # unused # noqa: ARG002
num_vertices: int | None = None, # unused
max_arclen: float | None = None, # unused
) -> list['Polygon']:
return [copy.deepcopy(self)]
@ -382,9 +351,8 @@ class Polygon(Shape):
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
# Note: this function is going to be pretty slow for many-vertexed polygons, relative to
# other shapes
meanv = self.vertices.mean(axis=0)
zeroed_vertices = self.vertices - meanv
offset = meanv + self.offset
offset = self.vertices.mean(axis=0) + self.offset
zeroed_vertices = self.vertices - offset
scale = zeroed_vertices.std()
normed_vertices = zeroed_vertices / scale
@ -398,7 +366,7 @@ class Polygon(Shape):
x_min = rotated_vertices[:, 0].argmin()
if not is_scalar(x_min):
y_min = rotated_vertices[x_min, 1].argmin()
x_min = cast('Sequence', x_min)[y_min]
x_min = cast(Sequence, x_min)[y_min]
reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
# TODO: normalize mirroring?
@ -418,22 +386,22 @@ class Polygon(Shape):
return self
def remove_duplicate_vertices(self) -> 'Polygon':
"""
'''
Removes all consecutive duplicate (repeated) vertices.
Returns:
self
"""
'''
self.vertices = remove_duplicate_vertices(self.vertices, closed_path=True)
return self
def remove_colinear_vertices(self) -> 'Polygon':
"""
'''
Removes consecutive co-linear vertices.
Returns:
self
"""
'''
self.vertices = remove_colinear_vertices(self.vertices, closed_path=True)
return self

View File

@ -1,5 +1,4 @@
from typing import TYPE_CHECKING, Any
from collections.abc import Callable
from typing import Callable, Self, TYPE_CHECKING
from abc import ABCMeta, abstractmethod
import numpy
@ -33,24 +32,16 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
"""
__slots__ = () # Children should use AutoSlots or set slots themselves
#def __copy__(self) -> Self:
# cls = self.__class__
# new = cls.__new__(cls)
# for name in self.__slots__: # type: str
# object.__setattr__(new, name, getattr(self, name))
# return new
def __copy__(self) -> Self:
cls = self.__class__
new = cls.__new__(cls)
for name in self.__slots__: # type: str
object.__setattr__(new, name, getattr(self, name))
return new
#
# Methods (abstract)
#
@abstractmethod
def __eq__(self, other: Any) -> bool:
pass
@abstractmethod
def __lt__(self, other: 'Shape') -> bool:
pass
@abstractmethod
def to_polygons(
self,
@ -135,7 +126,7 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
vertex_lists = []
p_verts = polygon.vertices + polygon.offset
for v, v_next in zip(p_verts, numpy.roll(p_verts, -1, axis=0), strict=True):
for v, v_next in zip(p_verts, numpy.roll(p_verts, -1, axis=0)):
dv = v_next - v
# Find x-index bounds for the line # TODO: fix this and err_xmin/xmax for grids smaller than the line / shape
@ -165,7 +156,7 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
m = dv[1] / dv[0]
def get_grid_inds(xes: ArrayLike, m: float = m, v: NDArray = v) -> NDArray[numpy.float64]:
def get_grid_inds(xes: ArrayLike) -> NDArray[numpy.float64]:
ys = m * (xes - v[0]) + v[1]
# (inds - 1) is the index of the y-grid line below the edge's intersection with the x-grid
@ -266,12 +257,11 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
mins, maxs = bounds
keep_x = numpy.logical_and(grx > mins[0], grx < maxs[0])
keep_y = numpy.logical_and(gry > mins[1], gry < maxs[1])
# Flood left & rightwards by 2 cells
for kk in (keep_x, keep_y):
for ss in (1, 2):
kk[ss:] += kk[:-ss]
kk[:-ss] += kk[ss:]
kk[:] = kk > 0
for k in (keep_x, keep_y):
for s in (1, 2):
k[s:] += k[:-s]
k[:-s] += k[s:]
k = k > 0
gx = grx[keep_x]
gy = gry[keep_y]

View File

@ -1,6 +1,5 @@
from typing import Self, Any, cast
from typing import Self
import copy
import functools
import numpy
from numpy import pi, nan
@ -10,14 +9,13 @@ from . import Shape, Polygon, normalized_shape_tuple
from ..error import PatternError
from ..repetition import Repetition
from ..traits import RotatableImpl
from ..utils import is_scalar, get_bit, annotations_t, annotations_lt, annotations_eq, rep2key
from ..utils import is_scalar, get_bit, annotations_t
# Loaded on use:
# from freetype import Face
# from matplotlib.path import Path
@functools.total_ordering
class Text(RotatableImpl, Shape):
"""
Text (to be printed e.g. as a set of polygons).
@ -98,42 +96,10 @@ class Text(RotatableImpl, Shape):
new._annotations = copy.deepcopy(self._annotations)
return new
def __eq__(self, other: Any) -> bool:
return (
type(self) is type(other)
and numpy.array_equal(self.offset, other.offset)
and self.string == other.string
and self.height == other.height
and self.font_path == other.font_path
and self.rotation == other.rotation
and self.repetition == other.repetition
and annotations_eq(self.annotations, other.annotations)
)
def __lt__(self, other: Shape) -> bool:
if type(self) is not type(other):
if repr(type(self)) != repr(type(other)):
return repr(type(self)) < repr(type(other))
return id(type(self)) < id(type(other))
other = cast('Text', other)
if not self.height == other.height:
return self.height < other.height
if not self.string == other.string:
return self.string < other.string
if not self.font_path == other.font_path:
return self.font_path < other.font_path
if not numpy.array_equal(self.offset, other.offset):
return tuple(self.offset) < tuple(other.offset)
if self.rotation != other.rotation:
return self.rotation < other.rotation
if self.repetition != other.repetition:
return rep2key(self.repetition) < rep2key(other.repetition)
return annotations_lt(self.annotations, other.annotations)
def to_polygons(
self,
num_vertices: int | None = None, # unused # noqa: ARG002
max_arclen: float | None = None, # unused # noqa: ARG002
num_vertices: int | None = None, # unused
max_arclen: float | None = None, # unused
) -> list[Polygon]:
all_polygons = []
total_advance = 0.0
@ -191,11 +157,6 @@ class Text(RotatableImpl, Shape):
return bounds
def __repr__(self) -> str:
rotation = f'{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
mirrored = ' m{:d}' if self.mirrored else ''
return f'<TextShape "{self.string}" o{self.offset} h{self.height:g}{rotation}{mirrored}>'
def get_char_as_polygons(
font_path: str,
@ -221,7 +182,7 @@ def get_char_as_polygons(
'advance' distance (distance from the start of this glyph to the start of the next one)
"""
if len(char) != 1:
raise PatternError('get_char_as_polygons called with non-char')
raise Exception('get_char_as_polygons called with non-char')
face = Face(font_path)
face.set_char_size(resolution)
@ -230,8 +191,7 @@ def get_char_as_polygons(
outline = slot.outline
start = 0
all_verts_list = []
all_codes = []
all_verts_list, all_codes = [], []
for end in outline.contours:
points = outline.points[start:end + 1]
points.append(points[0])
@ -284,3 +244,8 @@ def get_char_as_polygons(
polygons = path.to_polygons()
return polygons, advance
def __repr__(self) -> str:
rotation = f'{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
mirrored = ' m{:d}' if self.mirrored else ''
return f'<TextShape "{self.string}" o{self.offset} h{self.height:g}{rotation}{mirrored}>'

View File

@ -3,32 +3,11 @@ Traits (mixins) and default implementations
Traits and mixins should set `__slots__ = ()` to enable use of `__slots__` in subclasses.
"""
from .positionable import (
Positionable as Positionable,
PositionableImpl as PositionableImpl,
Bounded as Bounded,
)
from .layerable import (
Layerable as Layerable,
LayerableImpl as LayerableImpl,
)
from .rotatable import (
Rotatable as Rotatable,
RotatableImpl as RotatableImpl,
Pivotable as Pivotable,
PivotableImpl as PivotableImpl,
)
from .repeatable import (
Repeatable as Repeatable,
RepeatableImpl as RepeatableImpl,
)
from .scalable import (
Scalable as Scalable,
ScalableImpl as ScalableImpl,
)
from .mirrorable import Mirrorable as Mirrorable
from .copyable import Copyable as Copyable
from .annotatable import (
Annotatable as Annotatable,
AnnotatableImpl as AnnotatableImpl,
)
from .positionable import Positionable, PositionableImpl, Bounded
from .layerable import Layerable, LayerableImpl
from .rotatable import Rotatable, RotatableImpl, Pivotable, PivotableImpl
from .repeatable import Repeatable, RepeatableImpl
from .scalable import Scalable, ScalableImpl
from .mirrorable import Mirrorable
from .copyable import Copyable
from .annotatable import Annotatable, AnnotatableImpl

View File

@ -1,8 +1,9 @@
from typing import Self
from abc import ABCMeta
import copy
class Copyable:
class Copyable(metaclass=ABCMeta):
"""
Trait class which adds .copy() and .deepcopy()
"""

View File

@ -63,7 +63,7 @@ class LayerableImpl(Layerable, metaclass=ABCMeta):
return self._layer
@layer.setter
def layer(self, val: layer_t) -> None:
def layer(self, val: layer_t):
self._layer = val
#

View File

@ -44,7 +44,7 @@ class Mirrorable(metaclass=ABCMeta):
# """
# __slots__ = ()
#
# _mirrored: NDArray[numpy.bool]
# _mirrored: numpy.ndarray # ndarray[bool]
# """ Whether to mirror the instance across the x and/or y axes. """
#
# #
@ -52,15 +52,15 @@ class Mirrorable(metaclass=ABCMeta):
# #
# # Mirrored property
# @property
# def mirrored(self) -> NDArray[numpy.bool]:
# def mirrored(self) -> numpy.ndarray: # ndarray[bool]
# """ Whether to mirror across the [x, y] axes, respectively """
# return self._mirrored
#
# @mirrored.setter
# def mirrored(self, val: Sequence[bool]) -> None:
# def mirrored(self, val: Sequence[bool]):
# if is_scalar(val):
# raise MasqueError('Mirrored must be a 2-element list of booleans')
# self._mirrored = numpy.array(val, dtype=bool)
# self._mirrored = numpy.array(val, dtype=bool, copy=True)
#
# #
# # Methods

View File

@ -81,11 +81,12 @@ class PositionableImpl(Positionable, metaclass=ABCMeta):
@offset.setter
def offset(self, val: ArrayLike) -> None:
if not isinstance(val, numpy.ndarray) or val.dtype != numpy.float64:
val = numpy.array(val, dtype=float)
if val.size != 2:
raise MasqueError('Offset must be convertible to size-2 ndarray')
self._offset = val.flatten()
self._offset = val.flatten() # type: ignore
#
# Methods

View File

@ -34,7 +34,7 @@ class Repeatable(metaclass=ABCMeta):
# @repetition.setter
# @abstractmethod
# def repetition(self, repetition: 'Repetition | None') -> None:
# def repetition(self, repetition: 'Repetition | None'):
# pass
#
@ -75,7 +75,7 @@ class RepeatableImpl(Repeatable, Bounded, metaclass=ABCMeta):
return self._repetition
@repetition.setter
def repetition(self, repetition: 'Repetition | None') -> None:
def repetition(self, repetition: 'Repetition | None'):
from ..repetition import Repetition
if repetition is not None and not isinstance(repetition, Repetition):
raise MasqueError(f'{repetition} is not a valid Repetition object!')

View File

@ -1,15 +1,14 @@
from typing import Self, cast, Any, TYPE_CHECKING
from typing import Self, cast, Any
from abc import ABCMeta, abstractmethod
import numpy
from numpy import pi
from numpy.typing import ArrayLike
from .positionable import Positionable
from ..error import MasqueError
from ..utils import rotation_matrix_2d
if TYPE_CHECKING:
from .positionable import Positionable
_empty_slots = () # Workaround to get mypy to ignore intentionally empty slots for superclass
@ -55,7 +54,7 @@ class RotatableImpl(Rotatable, metaclass=ABCMeta):
return self._rotation
@rotation.setter
def rotation(self, val: float) -> None:
def rotation(self, val: float):
if not numpy.size(val) == 1:
raise MasqueError('Rotation must be a scalar')
self._rotation = val % (2 * pi)
@ -113,10 +112,10 @@ class PivotableImpl(Pivotable, metaclass=ABCMeta):
""" `[x_offset, y_offset]` """
def rotate_around(self, pivot: ArrayLike, rotation: float) -> Self:
pivot = numpy.asarray(pivot, dtype=float)
cast('Positionable', self).translate(-pivot)
cast('Rotatable', self).rotate(rotation)
pivot = numpy.array(pivot, dtype=float)
cast(Positionable, self).translate(-pivot)
cast(Rotatable, self).rotate(rotation)
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset) # type: ignore # mypy#3004
cast('Positionable', self).translate(+pivot)
cast(Positionable, self).translate(+pivot)
return self

View File

@ -48,7 +48,7 @@ class ScalableImpl(Scalable, metaclass=ABCMeta):
return self._scale
@scale.setter
def scale(self, val: float) -> None:
def scale(self, val: float):
if not is_scalar(val):
raise MasqueError('Scale must be a scalar')
if not val > 0:

View File

@ -1,43 +1,18 @@
"""
Various helper functions, type definitions, etc.
"""
from .types import (
layer_t as layer_t,
annotations_t as annotations_t,
SupportsBool as SupportsBool,
)
from .array import is_scalar as is_scalar
from .autoslots import AutoSlots as AutoSlots
from .deferreddict import DeferredDict as DeferredDict
from .decorators import oneshot as oneshot
from .types import layer_t, annotations_t, SupportsBool
from .array import is_scalar
from .autoslots import AutoSlots
from .deferreddict import DeferredDict
from .decorators import oneshot
from .bitwise import (
get_bit as get_bit,
set_bit as set_bit,
)
from .bitwise import get_bit, set_bit
from .vertices import (
remove_duplicate_vertices as remove_duplicate_vertices,
remove_colinear_vertices as remove_colinear_vertices,
poly_contains_points as poly_contains_points,
)
from .transform import (
rotation_matrix_2d as rotation_matrix_2d,
normalize_mirror as normalize_mirror,
rotate_offsets_around as rotate_offsets_around,
apply_transforms as apply_transforms,
R90 as R90,
R180 as R180,
)
from .comparisons import (
annotation2key as annotation2key,
annotations_lt as annotations_lt,
annotations_eq as annotations_eq,
layer2key as layer2key,
ports_lt as ports_lt,
ports_eq as ports_eq,
rep2key as rep2key,
remove_duplicate_vertices, remove_colinear_vertices, poly_contains_points
)
from .transform import rotation_matrix_2d, normalize_mirror, rotate_offsets_around
from . import ports2data as ports2data
from . import ports2data
from . import pack2d as pack2d
from . import pack2d

View File

@ -12,16 +12,16 @@ class AutoSlots(ABCMeta):
classes, they can have empty `__slots__` and their attribute type annotations
can be used to generate a full `__slots__` for the concrete class.
"""
def __new__(cls, name, bases, dctn): # noqa: ANN001,ANN204
def __new__(cls, name, bases, dctn):
parents = set()
for base in bases:
parents |= set(base.mro())
slots = tuple(dctn.get('__slots__', ()))
slots = tuple(dctn.get('__slots__', tuple()))
for parent in parents:
if not hasattr(parent, '__annotations__'):
continue
slots += tuple(parent.__annotations__.keys())
slots += tuple(getattr(parent, '__annotations__').keys())
dctn['__slots__'] = slots
return super().__new__(cls, name, bases, dctn)

View File

@ -1,106 +0,0 @@
from typing import Any
from .types import annotations_t, layer_t
from ..ports import Port
from ..repetition import Repetition
def annotation2key(aaa: int | float | str) -> tuple[bool, Any]:
return (isinstance(aaa, str), aaa)
def annotations_lt(aa: annotations_t, bb: annotations_t) -> bool:
if aa is None:
return bb is not None
elif bb is None: # noqa: RET505
return False
if len(aa) != len(bb):
return len(aa) < len(bb)
keys_a = tuple(sorted(aa.keys()))
keys_b = tuple(sorted(bb.keys()))
if keys_a != keys_b:
return keys_a < keys_b
for key in keys_a:
va = aa[key]
vb = bb[key]
if len(va) != len(vb):
return len(va) < len(vb)
for aaa, bbb in zip(va, vb, strict=True):
if aaa != bbb:
return annotation2key(aaa) < annotation2key(bbb)
return False
def annotations_eq(aa: annotations_t, bb: annotations_t) -> bool:
if aa is None:
return bb is None
elif bb is None: # noqa: RET505
return False
if len(aa) != len(bb):
return False
keys_a = tuple(sorted(aa.keys()))
keys_b = tuple(sorted(bb.keys()))
if keys_a != keys_b:
return keys_a < keys_b
for key in keys_a:
va = aa[key]
vb = bb[key]
if len(va) != len(vb):
return False
for aaa, bbb in zip(va, vb, strict=True):
if aaa != bbb:
return False
return True
def layer2key(layer: layer_t) -> tuple[bool, bool, Any]:
is_int = isinstance(layer, int)
is_str = isinstance(layer, str)
layer_tup = (layer) if (is_str or is_int) else layer
tup = (
is_str,
not is_int,
layer_tup,
)
return tup
def rep2key(repetition: Repetition | None) -> tuple[bool, Repetition | None]:
return (repetition is None, repetition)
def ports_eq(aa: dict[str, Port], bb: dict[str, Port]) -> bool:
if len(aa) != len(bb):
return False
keys = sorted(aa.keys())
if keys != sorted(bb.keys()):
return False
return all(aa[kk] == bb[kk] for kk in keys)
def ports_lt(aa: dict[str, Port], bb: dict[str, Port]) -> bool:
if len(aa) != len(bb):
return len(aa) < len(bb)
aa_keys = tuple(sorted(aa.keys()))
bb_keys = tuple(sorted(bb.keys()))
if aa_keys != bb_keys:
return aa_keys < bb_keys
for key in aa_keys:
pa = aa[key]
pb = bb[key]
if pa != pb:
return pa < pb
return False

View File

@ -1,104 +0,0 @@
import numpy
from numpy.typing import ArrayLike, NDArray
from numpy import pi
try:
from numpy import trapezoid
except ImportError:
from numpy import trapz as trapezoid
def bezier(
nodes: ArrayLike,
tt: ArrayLike,
weights: ArrayLike | None = None,
) -> NDArray[numpy.float64]:
"""
Sample a Bezier curve with the provided control points at the parametrized positions `tt`.
Using the calculation method from arXiv:1803.06843, Chudy and Woźny.
Args:
nodes: `[[x0, y0], ...]` control points for the Bezier curve
tt: Parametrized positions at which to sample the curve (1D array with values in the interval [0, 1])
weights: Control point weights; if provided, length should be the same as number of control points.
Default 1 for all control points.
Returns:
`[[x0, y0], [x1, y1], ...]` corresponding to `[tt0, tt1, ...]`
"""
nodes = numpy.asarray(nodes)
tt = numpy.asarray(tt)
nn = nodes.shape[0]
weights = numpy.ones(nn) if weights is None else numpy.asarray(weights)
with numpy.errstate(divide='ignore'):
umul = (tt / (1 - tt)).clip(max=1)
udiv = ((1 - tt) / tt).clip(max=1)
hh = numpy.ones((tt.size,))
qq = nodes[None, 0, :] * hh[:, None]
for kk in range(1, nn):
hh *= umul * (nn - kk) * weights[kk]
hh /= kk * udiv * weights[kk - 1] + hh
qq *= 1.0 - hh[:, None]
qq += hh[:, None] * nodes[None, kk, :]
return qq
def euler_bend(
switchover_angle: float,
num_points: int = 200,
) -> NDArray[numpy.float64]:
"""
Generate a 90 degree Euler bend (AKA Clothoid bend or Cornu spiral).
Args:
switchover_angle: After this angle, the bend will transition into a circular arc
(and transition back to an Euler spiral on the far side). If this is set to
`>= pi / 4`, no circular arc will be added.
num_points: Number of points in the curve
Returns:
`[[x0, y0], ...]` for the curve
"""
ll_max = numpy.sqrt(2 * switchover_angle) # total length of (one) spiral portion
ll_tot = 2 * ll_max + (pi / 2 - 2 * switchover_angle)
num_points_spiral = numpy.floor(ll_max / ll_tot * num_points).astype(int)
num_points_arc = num_points - 2 * num_points_spiral
def gen_spiral(ll_max: float) -> NDArray[numpy.float64]:
xx = []
yy = []
for ll in numpy.linspace(0, ll_max, num_points_spiral):
qq = numpy.linspace(0, ll, 1000) # integrate to current arclength
xx.append(trapezoid( numpy.cos(qq * qq / 2), qq))
yy.append(trapezoid(-numpy.sin(qq * qq / 2), qq))
xy_part = numpy.stack((xx, yy), axis=1)
return xy_part
xy_spiral = gen_spiral(ll_max)
xy_parts = [xy_spiral]
if switchover_angle < pi / 4:
# Build a circular segment to join the two euler portions
rmin = 1.0 / ll_max
half_angle = pi / 4 - switchover_angle
qq = numpy.linspace(half_angle * 2, 0, num_points_arc + 1) + switchover_angle
xc = rmin * numpy.cos(qq)
yc = rmin * numpy.sin(qq) + xy_spiral[-1, 1]
xc += xy_spiral[-1, 0] - xc[0]
yc += xy_spiral[-1, 1] - yc[0]
xy_parts.append(numpy.stack((xc[1:], yc[1:]), axis=1))
endpoint_xy = xy_parts[-1][-1, :]
second_spiral = xy_spiral[::-1, ::-1] + endpoint_xy - xy_spiral[-1, ::-1]
xy_parts.append(second_spiral)
xy = numpy.concatenate(xy_parts)
# Remove any 2x-duplicate points
xy = xy[(numpy.roll(xy, 1, axis=0) != xy).any(axis=1)]
return xy

View File

@ -1,4 +1,4 @@
from collections.abc import Callable
from typing import Callable
from functools import wraps
from ..error import OneShotError
@ -11,7 +11,7 @@ def oneshot(func: Callable) -> Callable:
expired = False
@wraps(func)
def wrapper(*args, **kwargs): # noqa: ANN202
def wrapper(*args, **kwargs):
nonlocal expired
if expired:
raise OneShotError(func.__name__)

View File

@ -1,5 +1,4 @@
from typing import TypeVar, Generic
from collections.abc import Callable
from typing import Callable, TypeVar, Generic
from functools import lru_cache

View File

@ -1,7 +1,7 @@
"""
2D bin-packing
"""
from collections.abc import Sequence, Mapping, Callable
from typing import Sequence, Callable, Mapping
import numpy
from numpy.typing import NDArray, ArrayLike
@ -38,8 +38,8 @@ def maxrects_bssf(
Raises:
MasqueError if `allow_rejects` is `True` but some `rects` could not be placed.
"""
regions = numpy.asarray(containers, dtype=float)
rect_sizes = numpy.asarray(rects, dtype=float)
regions = numpy.array(containers, copy=False, dtype=float)
rect_sizes = numpy.array(rects, copy=False, dtype=float)
rect_locs = numpy.zeros_like(rect_sizes)
rejected_inds = set()
@ -62,14 +62,14 @@ def maxrects_bssf(
''' Place the rect '''
# Best short-side fit (bssf) to pick a region
region_sizes = regions[:, 2:] - regions[:, :2]
bssf_scores = (region_sizes - rect_size).min(axis=1).astype(float)
bssf_scores = ((regions[:, 2:] - regions[:, :2]) - rect_size).min(axis=1).astype(float)
bssf_scores[bssf_scores < 0] = numpy.inf # doesn't fit!
rr = bssf_scores.argmin()
if numpy.isinf(bssf_scores[rr]):
if allow_rejects:
rejected_inds.add(rect_ind)
continue
else:
raise MasqueError(f'Failed to find a suitable location for rectangle {rect_ind}')
# Read out location
@ -139,8 +139,8 @@ def guillotine_bssf_sas(
Raises:
MasqueError if `allow_rejects` is `True` but some `rects` could not be placed.
"""
regions = numpy.asarray(containers, dtype=float)
rect_sizes = numpy.asarray(rects, dtype=float)
regions = numpy.array(containers, copy=False, dtype=float)
rect_sizes = numpy.array(rects, copy=False, dtype=float)
rect_locs = numpy.zeros_like(rect_sizes)
rejected_inds = set()
@ -152,21 +152,21 @@ def guillotine_bssf_sas(
for rect_ind, rect_size in enumerate(rect_sizes):
''' Place the rect '''
# Best short-side fit (bssf) to pick a region
region_sizes = regions[:, 2:] - regions[:, :2]
bssf_scores = (region_sizes - rect_size).min(axis=1).astype(float)
bssf_scores = ((regions[:, 2:] - regions[:, :2]) - rect_size).min(axis=1).astype(float)
bssf_scores[bssf_scores < 0] = numpy.inf # doesn't fit!
rr = bssf_scores.argmin()
if numpy.isinf(bssf_scores[rr]):
if allow_rejects:
rejected_inds.add(rect_ind)
continue
else:
raise MasqueError(f'Failed to find a suitable location for rectangle {rect_ind}')
# Read out location
loc = regions[rr, :2]
rect_locs[rect_ind] = loc
region_size = region_sizes[rr]
region_size = regions[rr, 2:] - loc
split_horiz = region_size[0] < region_size[1]
new_region0 = regions[rr].copy()
@ -227,7 +227,7 @@ def pack_patterns(
MasqueError if `allow_rejects` is `True` but some `rects` could not be placed.
"""
half_spacing = numpy.asarray(spacing, dtype=float) / 2
half_spacing = numpy.array(spacing, copy=False, dtype=float) / 2
bounds = [library[pp].get_bounds() for pp in patterns]
sizes = [bb[1] - bb[0] + spacing if bb is not None else spacing for bb in bounds]
@ -236,7 +236,7 @@ def pack_patterns(
locations, reject_inds = packer(sizes, containers, presort=presort, allow_rejects=allow_rejects)
pat = Pattern()
for pp, oo, loc in zip(patterns, offsets, locations, strict=True):
for pp, oo, loc in zip(patterns, offsets, locations):
pat.ref(pp, offset=oo + loc)
rejects = [patterns[ii] for ii in reject_inds]

View File

@ -6,7 +6,7 @@ and retrieving it (`data_to_ports`).
the port locations. This particular approach is just a sensible default; feel free to
to write equivalent functions for your own format or alternate storage methods.
"""
from collections.abc import Sequence, Mapping
from typing import Sequence, Mapping
import logging
from itertools import chain
@ -150,7 +150,7 @@ def data_to_ports_flat(
Returns:
The updated `pattern`. Port labels are not removed.
"""
labels = list(chain.from_iterable(pattern.labels[layer] for layer in layers))
labels = list(chain.from_iterable((pattern.labels[layer] for layer in layers)))
if not labels:
return pattern

View File

@ -1,19 +1,14 @@
"""
Geometric transforms
"""
from collections.abc import Sequence
from typing import Sequence
from functools import lru_cache
import numpy
from numpy.typing import NDArray, ArrayLike
from numpy.typing import NDArray
from numpy import pi
# Constants for shorthand rotations
R90 = pi / 2
R180 = pi
@lru_cache
def rotation_matrix_2d(theta: float) -> NDArray[numpy.float64]:
"""
@ -62,62 +57,8 @@ def rotate_offsets_around(
) -> NDArray[numpy.float64]:
"""
Rotates offsets around a pivot point.
Args:
offsets: Nx2 array, rows are (x, y) offsets
pivot: (x, y) location to rotate around
angle: rotation angle in radians
Returns:
Nx2 ndarray of (x, y) position after the rotation is applied.
"""
offsets -= pivot
offsets[:] = (rotation_matrix_2d(angle) @ offsets.T).T
offsets += pivot
return offsets
def apply_transforms(
outer: ArrayLike,
inner: ArrayLike,
tensor: bool = False,
) -> NDArray[numpy.float64]:
"""
Apply a set of transforms (`outer`) to a second set (`inner`).
This is used to find the "absolute" transform for nested `Ref`s.
The two transforms should be of shape Ox4 and Ix4.
Rows should be of the form `(x_offset, y_offset, rotation_ccw_rad, mirror_across_x)`.
The output will be of the form (O*I)x4 (if `tensor=False`) or OxIx4 (`tensor=True`).
Args:
outer: Transforms for the container refs. Shape Ox4.
inner: Transforms for the contained refs. Shape Ix4.
tensor: If `True`, an OxIx4 array is returned, with `result[oo, ii, :]` corresponding
to the `oo`th `outer` transform applied to the `ii`th inner transform.
If `False` (default), this is concatenated into `(O*I)x4` to allow simple
chaining into additional `apply_transforms()` calls.
Returns:
OxIx4 or (O*I)x4 array. Final dimension is
`(total_x, total_y, total_rotation_ccw_rad, net_mirrored_x)`.
"""
outer = numpy.atleast_2d(outer).astype(float, copy=False)
inner = numpy.atleast_2d(inner).astype(float, copy=False)
# If mirrored, flip y's
xy_mir = numpy.tile(inner[:, :2], (outer.shape[0], 1, 1)) # dims are outer, inner, xyrm
xy_mir[outer[:, 3].astype(bool), :, 1] *= -1
rot_mats = [rotation_matrix_2d(angle) for angle in outer[:, 2]]
xy = numpy.einsum('ort,oit->oir', rot_mats, xy_mir)
tot = numpy.empty((outer.shape[0], inner.shape[0], 4))
tot[:, :, :2] = outer[:, None, :2] + xy
tot[:, :, 2:] = outer[:, None, 2:] + inner[None, :, 2:] # sum rotations and mirrored
tot[:, :, 2] %= 2 * pi # clamp rot
tot[:, :, 3] %= 2 # clamp mirrored
if tensor:
return tot
return numpy.concatenate(tot)

View File

@ -15,9 +15,9 @@ def remove_duplicate_vertices(vertices: ArrayLike, closed_path: bool = True) ->
(i.e. the last vertex will be removed if it is the same as the first)
Returns:
`vertices` with no consecutive duplicates. This may be a view into the original array.
`vertices` with no consecutive duplicates.
"""
vertices = numpy.asarray(vertices)
vertices = numpy.array(vertices)
duplicates = (vertices == numpy.roll(vertices, 1, axis=0)).all(axis=1)
if not closed_path:
duplicates[0] = False
@ -35,7 +35,7 @@ def remove_colinear_vertices(vertices: ArrayLike, closed_path: bool = True) -> N
closed path. If `False`, the path is assumed to be open. Default `True`.
Returns:
`vertices` with colinear (superflous) vertices removed. May be a view into the original array.
`vertices` with colinear (superflous) vertices removed.
"""
vertices = remove_duplicate_vertices(vertices)
@ -73,8 +73,8 @@ def poly_contains_points(
Returns:
ndarray of booleans, [point0_is_in_shape, point1_is_in_shape, ...]
"""
points = numpy.asarray(points, dtype=float)
vertices = numpy.asarray(vertices, dtype=float)
points = numpy.array(points, copy=False)
vertices = numpy.array(vertices, copy=False)
if points.size == 0:
return numpy.zeros(0, dtype=numpy.int8)

View File

@ -39,11 +39,11 @@ classifiers = [
"Topic :: Scientific/Engineering :: Electronic Design Automation (EDA)",
"Topic :: Scientific/Engineering :: Visualization",
]
requires-python = ">=3.11"
requires-python = ">=3.8"
dynamic = ["version"]
dependencies = [
"numpy>=1.26",
"klamath~=1.4",
"numpy~=1.21",
"klamath~=1.2",
]
@ -57,39 +57,3 @@ svg = ["svgwrite"]
visualize = ["matplotlib"]
text = ["matplotlib", "freetype-py"]
[tool.ruff]
exclude = [
".git",
"dist",
]
line-length = 145
indent-width = 4
lint.dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
lint.select = [
"NPY", "E", "F", "W", "B", "ANN", "UP", "SLOT", "SIM", "LOG",
"C4", "ISC", "PIE", "PT", "RET", "TCH", "PTH", "INT",
"ARG", "PL", "R", "TRY",
"G010", "G101", "G201", "G202",
"Q002", "Q003", "Q004",
]
lint.ignore = [
#"ANN001", # No annotation
"ANN002", # *args
"ANN003", # **kwargs
"ANN401", # Any
"SIM108", # single-line if / else assignment
"RET504", # x=y+z; return x
"PIE790", # unnecessary pass
"ISC003", # non-implicit string concatenation
"C408", # dict(x=y) instead of {'x': y}
"PLR09", # Too many xxx
"PLR2004", # magic number
"PLC0414", # import x as x
"TRY003", # Long exception message
]
[tool.pytest.ini_options]
addopts = "-rsXx"
testpaths = ["masque"]