Compare commits

..

No commits in common. "master" and "transform_analysis" have entirely different histories.

15 changed files with 55 additions and 240 deletions

View File

@ -172,7 +172,6 @@ my_pattern.place(abstract, ...)
# or
my_pattern.place(library << make_tree(...), ...)
```
### Quickly add geometry, labels, or refs:
@ -234,3 +233,5 @@ my_pattern.ref(_make_my_subpattern(), offset=..., ...)
* Tests tests tests
* check renderpather
* pather and renderpather examples
* context manager for retool
* allow a specific mismatch when connecting ports

View File

@ -265,12 +265,6 @@ def main() -> None:
# when using pather.retool().
pather.path_to('VCC', None, -50_000, out_ptype='m1wire')
# Now extend GND out to x=-50_000, using M2 for a portion of the path.
# We can use `pather.toolctx()` to temporarily retool, instead of calling `retool()` twice.
with pather.toolctx(M2_tool, keys=['GND']):
pather.path_to('GND', None, -40_000)
pather.path_to('GND', None, -50_000)
# Save the pather's pattern into our library
library['Pather_and_BasicTool'] = pather.pattern

View File

@ -83,12 +83,10 @@ from .builder import (
from .utils import (
ports2data as ports2data,
oneshot as oneshot,
R90 as R90,
R180 as R180,
)
__author__ = 'Jan Petykiewicz'
__version__ = '3.3'
__version__ = '3.2'
version = __version__ # legacy

View File

@ -2,7 +2,7 @@
Simplified Pattern assembly (`Builder`)
"""
from typing import Self
from collections.abc import Iterable, Sequence, Mapping
from collections.abc import Sequence, Mapping
import copy
import logging
from functools import wraps
@ -226,7 +226,6 @@ class Builder(PortList):
inherit_name: bool = True,
set_rotation: bool | None = None,
append: bool = False,
ok_connections: Iterable[tuple[str, str]] = (),
) -> Self:
"""
Wrapper around `Pattern.plug` which allows a string for `other`.
@ -261,11 +260,6 @@ class Builder(PortList):
append: If `True`, `other` is appended instead of being referenced.
Note that this does not flatten `other`, so its refs will still
be refs (now inside `self`).
ok_connections: Set of "allowed" ptype combinations. Identical
ptypes are always allowed to connect, as is `'unk'` with
any other ptypte. Non-allowed ptype connections will emit a
warning. Order is ignored, i.e. `(a, b)` is equivalent to
`(b, a)`.
Returns:
self
@ -299,7 +293,6 @@ class Builder(PortList):
inherit_name=inherit_name,
set_rotation=set_rotation,
append=append,
ok_connections=ok_connections,
)
return self

View File

@ -2,10 +2,9 @@
Manual wire/waveguide routing (`Pather`)
"""
from typing import Self
from collections.abc import Sequence, MutableMapping, Mapping, Iterator
from collections.abc import Sequence, MutableMapping, Mapping
import copy
import logging
from contextlib import contextmanager
from pprint import pformat
import numpy
@ -282,37 +281,6 @@ class Pather(Builder):
self.tools[key] = tool
return self
@contextmanager
def toolctx(
self,
tool: Tool,
keys: str | Sequence[str | None] | None = None,
) -> Iterator[Self]:
"""
Context manager for temporarily `retool`-ing and reverting the `retool`
upon exiting the context.
Args:
tool: The new `Tool` to use for the given ports.
keys: Which ports the tool should apply to. `None` indicates the default tool,
used when there is no matching entry in `self.tools` for the port in question.
Returns:
self
"""
if keys is None or isinstance(keys, str):
keys = [keys]
saved_tools = {kk: self.tools.get(kk, None) for kk in keys} # If not in self.tools, save `None`
try:
yield self.retool(tool=tool, keys=keys)
finally:
for kk, tt in saved_tools.items():
if tt is None:
# delete if present
self.tools.pop(kk, None)
else:
self.tools[kk] = tt
def path(
self,
portspec: str,

View File

@ -21,7 +21,7 @@ def ell(
*,
spacing: float | ArrayLike | None = None,
set_rotation: float | None = None,
) -> dict[str, numpy.float64]:
) -> dict[str, float]:
"""
Calculate extension for each port in order to build a 90-degree bend with the provided
channel spacing:

View File

@ -542,7 +542,7 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
Return:
Topologically sorted list of pattern names.
"""
return cast(list[str], list(TopologicalSorter(self.child_graph()).static_order()))
return list(TopologicalSorter(self.child_graph()).static_order())
def find_refs_local(
self,
@ -1068,22 +1068,20 @@ class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
Returns:
A set containing the names of all deleted patterns
"""
parent_graph = self.parent_graph()
empty = {name for name, pat in self.items() if pat.is_empty()}
trimmed = set()
while empty:
parents = set()
while empty := {name for name, pat in self.items() if pat.is_empty()}:
for name in empty:
del self[name]
for parent in parent_graph[name]:
del self[parent].refs[name]
parents |= parent_graph[name]
for pat in self.values():
for name in empty:
# Second pass to skip looking at refs in empty patterns
if name in pat.refs:
del pat.refs[name]
trimmed |= empty
if not repeat:
break
empty = {parent for parent in parents if self[parent].is_empty()}
return trimmed
def delete(

View File

@ -1225,7 +1225,6 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
inherit_name: bool = True,
set_rotation: bool | None = None,
append: bool = False,
ok_connections: Iterable[tuple[str, str]] = (),
) -> Self:
"""
Instantiate or append a pattern into the current pattern, connecting
@ -1271,11 +1270,6 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
append: If `True`, `other` is appended instead of being referenced.
Note that this does not flatten `other`, so its refs will still
be refs (now inside `self`).
ok_connections: Set of "allowed" ptype combinations. Identical
ptypes are always allowed to connect, as is `'unk'` with
any other ptypte. Non-allowed ptype connections will emit a
warning. Order is ignored, i.e. `(a, b)` is equivalent to
`(b, a)`.
Returns:
self
@ -1306,7 +1300,6 @@ class Pattern(PortList, AnnotatableImpl, Mirrorable):
map_in,
mirrored=mirrored,
set_rotation=set_rotation,
ok_connections=ok_connections,
)
# get rid of plugged ports

View File

@ -419,7 +419,6 @@ class PortList(metaclass=ABCMeta):
*,
mirrored: bool = False,
set_rotation: bool | None = None,
ok_connections: Iterable[tuple[str, str]] = (),
) -> tuple[NDArray[numpy.float64], float, NDArray[numpy.float64]]:
"""
Given a device `other` and a mapping `map_in` specifying port connections,
@ -436,11 +435,6 @@ class PortList(metaclass=ABCMeta):
port with `rotation=None`), `set_rotation` must be provided
to indicate how much `other` should be rotated. Otherwise,
`set_rotation` must remain `None`.
ok_connections: Set of "allowed" ptype combinations. Identical
ptypes are always allowed to connect, as is `'unk'` with
any other ptypte. Non-allowed ptype connections will emit a
warning. Order is ignored, i.e. `(a, b)` is equivalent to
`(b, a)`.
Returns:
- The (x, y) translation (performed last)
@ -457,7 +451,6 @@ class PortList(metaclass=ABCMeta):
map_in=map_in,
mirrored=mirrored,
set_rotation=set_rotation,
ok_connections=ok_connections,
)
@staticmethod
@ -468,14 +461,13 @@ class PortList(metaclass=ABCMeta):
*,
mirrored: bool = False,
set_rotation: bool | None = None,
ok_connections: Iterable[tuple[str, str]] = (),
) -> tuple[NDArray[numpy.float64], float, NDArray[numpy.float64]]:
"""
Given two sets of ports (s_ports and o_ports) and a mapping `map_in`
specifying port connections, find the transform which will correctly
align the specified o_ports onto their respective s_ports.
Args:
Args:t
s_ports: A list of stationary ports
o_ports: A list of ports which are to be moved/mirrored.
map_in: dict of `{'s_port': 'o_port'}` mappings, specifying
@ -487,11 +479,6 @@ class PortList(metaclass=ABCMeta):
port with `rotation=None`), `set_rotation` must be provided
to indicate how much `o_ports` should be rotated. Otherwise,
`set_rotation` must remain `None`.
ok_connections: Set of "allowed" ptype combinations. Identical
ptypes are always allowed to connect, as is `'unk'` with
any other ptypte. Non-allowed ptype connections will emit a
warning. Order is ignored, i.e. `(a, b)` is equivalent to
`(b, a)`.
Returns:
- The (x, y) translation (performed last)
@ -515,8 +502,7 @@ class PortList(metaclass=ABCMeta):
o_offsets[:, 1] *= -1
o_rotations *= -1
ok_pairs = {tuple(sorted(pair)) for pair in ok_connections if pair[0] != pair[1]}
type_conflicts = numpy.array([(st != ot) and ('unk' not in (st, ot)) and (tuple(sorted((st, ot))) not in ok_pairs)
type_conflicts = numpy.array([st != ot and 'unk' not in (st, ot)
for st, ot in zip(s_types, o_types, strict=True)])
if type_conflicts.any():
msg = 'Ports have conflicting types:\n'
@ -537,8 +523,8 @@ class PortList(metaclass=ABCMeta):
if not numpy.allclose(rotations[:1], rotations):
rot_deg = numpy.rad2deg(rotations)
msg = 'Port orientations do not match:\n'
for nn, (kk, vv) in enumerate(map_in.items()):
msg += f'{kk} | {rot_deg[nn]:g} | {vv}\n'
for nn, (k, v) in enumerate(map_in.items()):
msg += f'{k} | {rot_deg[nn]:g} | {v}\n'
raise PortError(msg)
pivot = o_offsets[0].copy()
@ -546,8 +532,8 @@ class PortList(metaclass=ABCMeta):
translations = s_offsets - o_offsets
if not numpy.allclose(translations[:1], translations):
msg = 'Port translations do not match:\n'
for nn, (kk, vv) in enumerate(map_in.items()):
msg += f'{kk} | {translations[nn]} | {vv}\n'
for nn, (k, v) in enumerate(map_in.items()):
msg += f'{k} | {translations[nn]} | {v}\n'
raise PortError(msg)
return translations[0], rotations[0], o_offsets[0]

View File

@ -233,7 +233,7 @@ class Arc(Shape):
r0, r1 = self.radii
# Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation)
a_ranges = cast(_array2x2_t, self._angles_to_parameters())
a_ranges = self._angles_to_parameters()
# Approximate perimeter via numerical integration
@ -244,31 +244,30 @@ class Arc(Shape):
#t0 = ellipeinc(a0 - pi / 2, m)
#perimeter2 = r0 * (t1 - t0)
def get_arclens(n_pts: int, a0: float, a1: float, dr: float) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
def get_arclens(n_pts: int, a0: float, a1: float) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
""" Get `n_pts` arclengths """
tt, dt = numpy.linspace(a0, a1, n_pts, retstep=True) # NOTE: could probably use an adaptive number of points
r0sin = (r0 + dr) * numpy.sin(tt)
r1cos = (r1 + dr) * numpy.cos(tt)
t, dt = numpy.linspace(a0, a1, n_pts, retstep=True) # NOTE: could probably use an adaptive number of points
r0sin = r0 * numpy.sin(t)
r1cos = r1 * numpy.cos(t)
arc_dl = numpy.sqrt(r0sin * r0sin + r1cos * r1cos)
#arc_lengths = numpy.diff(tt) * (arc_dl[1:] + arc_dl[:-1]) / 2
#arc_lengths = numpy.diff(t) * (arc_dl[1:] + arc_dl[:-1]) / 2
arc_lengths = (arc_dl[1:] + arc_dl[:-1]) * numpy.abs(dt) / 2
return arc_lengths, tt
return arc_lengths, t
wh = self.width / 2.0
if num_vertices is not None:
n_pts = numpy.ceil(max(self.radii + wh) / min(self.radii) * num_vertices * 100).astype(int)
perimeter_inner = get_arclens(n_pts, *a_ranges[0], dr=-wh)[0].sum()
perimeter_outer = get_arclens(n_pts, *a_ranges[1], dr= wh)[0].sum()
n_pts = numpy.ceil(max(self.radii) / min(self.radii) * num_vertices * 100).astype(int)
perimeter_inner = get_arclens(n_pts, *a_ranges[0])[0].sum()
perimeter_outer = get_arclens(n_pts, *a_ranges[1])[0].sum()
implied_arclen = (perimeter_outer + perimeter_inner + self.width * 2) / num_vertices
max_arclen = min(implied_arclen, max_arclen if max_arclen is not None else numpy.inf)
assert max_arclen is not None
def get_thetas(inner: bool) -> NDArray[numpy.float64]:
""" Figure out the parameter values at which we should place vertices to meet the arclength constraint"""
dr = -wh if inner else wh
#dr = -self.width / 2.0 * (-1 if inner else 1)
n_pts = numpy.ceil(2 * pi * max(self.radii + dr) / max_arclen).astype(int)
arc_lengths, thetas = get_arclens(n_pts, *a_ranges[0 if inner else 1], dr=dr)
n_pts = numpy.ceil(2 * pi * max(self.radii) / max_arclen).astype(int)
arc_lengths, thetas = get_arclens(n_pts, *a_ranges[0 if inner else 1])
keep = [0]
removable = (numpy.cumsum(arc_lengths) <= max_arclen)
@ -286,7 +285,7 @@ class Arc(Shape):
thetas = thetas[::-1]
return thetas
thetas_inner: NDArray[numpy.float64]
wh = self.width / 2.0
if wh in (r0, r1):
thetas_inner = numpy.zeros(1) # Don't generate multiple vertices if we're at the origin
else:
@ -321,11 +320,11 @@ class Arc(Shape):
If the extrema are innaccessible due to arc constraints, check the arc endpoints instead.
"""
a_ranges = cast(_array2x2_t, self._angles_to_parameters())
a_ranges = self._angles_to_parameters()
mins = []
maxs = []
for aa, sgn in zip(a_ranges, (-1, +1), strict=True):
for a, sgn in zip(a_ranges, (-1, +1), strict=True):
wh = sgn * self.width / 2
rx = self.radius_x + wh
ry = self.radius_y + wh
@ -336,13 +335,13 @@ class Arc(Shape):
maxs.append([0, 0])
continue
a0, a1 = aa
a0, a1 = a
a0_offset = a0 - (a0 % (2 * pi))
sin_r = numpy.sin(self.rotation)
cos_r = numpy.cos(self.rotation)
sin_a = numpy.sin(aa)
cos_a = numpy.cos(aa)
sin_a = numpy.sin(a)
cos_a = numpy.cos(a)
# Cutoff angles
xpt = (-self.rotation) % (2 * pi) + a0_offset
@ -432,19 +431,19 @@ class Arc(Shape):
[[x2, y2], [x3, y3]]], would create this arc from its corresponding ellipse.
```
"""
a_ranges = cast(_array2x2_t, self._angles_to_parameters())
a_ranges = self._angles_to_parameters()
mins = []
maxs = []
for aa, sgn in zip(a_ranges, (-1, +1), strict=True):
for a, sgn in zip(a_ranges, (-1, +1), strict=True):
wh = sgn * self.width / 2
rx = self.radius_x + wh
ry = self.radius_y + wh
sin_r = numpy.sin(self.rotation)
cos_r = numpy.cos(self.rotation)
sin_a = numpy.sin(aa)
cos_a = numpy.cos(aa)
sin_a = numpy.sin(a)
cos_a = numpy.cos(a)
# arc endpoints
xn, xp = sorted(rx * cos_r * cos_a - ry * sin_r * sin_a)
@ -456,29 +455,26 @@ class Arc(Shape):
def _angles_to_parameters(self) -> NDArray[numpy.float64]:
"""
Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation)
Returns:
"Eccentric anomaly" parameter ranges for the inner and outer edges, in the form
`[[a_min_inner, a_max_inner], [a_min_outer, a_max_outer]]`
"""
aa = []
a = []
for sgn in (-1, +1):
wh = sgn * self.width / 2.0
wh = sgn * self.width / 2
rx = self.radius_x + wh
ry = self.radius_y + wh
a0, a1 = (numpy.arctan2(rx * numpy.sin(ai), ry * numpy.cos(ai)) for ai in self.angles)
# create paremeter 'a' for parametrized ellipse
a0, a1 = (numpy.arctan2(rx * numpy.sin(a), ry * numpy.cos(a)) for a in self.angles)
sign = numpy.sign(self.angles[1] - self.angles[0])
if sign != numpy.sign(a1 - a0):
a1 += sign * 2 * pi
aa.append((a0, a1))
return numpy.array(aa, dtype=float)
a.append((a0, a1))
return numpy.array(a, dtype=float)
def __repr__(self) -> str:
angles = f'{numpy.rad2deg(self.angles)}'
rotation = f'{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
return f'<Arc o{self.offset} r{self.radii}{angles} w{self.width:g}{rotation}>'
_array2x2_t = tuple[tuple[float, float], tuple[float, float]]

View File

@ -271,7 +271,7 @@ class Path(Shape):
# TODO: Path.travel() needs testing
direction = numpy.array([1, 0])
verts: list[NDArray[numpy.float64]] = [numpy.zeros(2)]
verts = [numpy.zeros(2)]
for angle, distance in travel_pairs:
direction = numpy.dot(rotation_matrix_2d(angle), direction.T).T
verts.append(verts[-1] + direction * distance)
@ -307,8 +307,8 @@ class Path(Shape):
bs = v[1:-1] - v[:-2] + perp[1:] - perp[:-1]
ds = v[1:-1] - v[:-2] - perp[1:] + perp[:-1]
rp = numpy.linalg.solve(As, bs[:, :, None])[:, 0]
rn = numpy.linalg.solve(As, ds[:, :, None])[:, 0]
rp = numpy.linalg.solve(As, bs)[:, 0, None]
rn = numpy.linalg.solve(As, ds)[:, 0, None]
intersection_p = v[:-2] + rp * dv[:-1] + perp[:-1]
intersection_n = v[:-2] + rn * dv[:-1] - perp[:-1]

View File

@ -20,7 +20,7 @@ class Polygon(Shape):
A polygon, consisting of a bunch of vertices (Nx2 ndarray) which specify an
implicitly-closed boundary, and an offset.
Note that the setter for `Polygon.vertices` creates a copy of the
Note that the setter for `Polygon.vertices` may creates a copy of the
passed vertex coordinates.
A `normalized_form(...)` is available, but can be quite slow with lots of vertices.
@ -379,9 +379,8 @@ class Polygon(Shape):
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
# Note: this function is going to be pretty slow for many-vertexed polygons, relative to
# other shapes
meanv = self.vertices.mean(axis=0)
zeroed_vertices = self.vertices - meanv
offset = meanv + self.offset
offset = self.vertices.mean(axis=0) + self.offset
zeroed_vertices = self.vertices - offset
scale = zeroed_vertices.std()
normed_vertices = zeroed_vertices / scale

View File

@ -25,8 +25,6 @@ from .transform import (
normalize_mirror as normalize_mirror,
rotate_offsets_around as rotate_offsets_around,
apply_transforms as apply_transforms,
R90 as R90,
R180 as R180,
)
from .comparisons import (
annotation2key as annotation2key,

View File

@ -1,104 +0,0 @@
import numpy
from numpy.typing import ArrayLike, NDArray
from numpy import pi
try:
from numpy import trapezoid
except ImportError:
from numpy import trapz as trapezoid
def bezier(
nodes: ArrayLike,
tt: ArrayLike,
weights: ArrayLike | None = None,
) -> NDArray[numpy.float64]:
"""
Sample a Bezier curve with the provided control points at the parametrized positions `tt`.
Using the calculation method from arXiv:1803.06843, Chudy and Woźny.
Args:
nodes: `[[x0, y0], ...]` control points for the Bezier curve
tt: Parametrized positions at which to sample the curve (1D array with values in the interval [0, 1])
weights: Control point weights; if provided, length should be the same as number of control points.
Default 1 for all control points.
Returns:
`[[x0, y0], [x1, y1], ...]` corresponding to `[tt0, tt1, ...]`
"""
nodes = numpy.asarray(nodes)
tt = numpy.asarray(tt)
nn = nodes.shape[0]
weights = numpy.ones(nn) if weights is None else numpy.asarray(weights)
with numpy.errstate(divide='ignore'):
umul = (tt / (1 - tt)).clip(max=1)
udiv = ((1 - tt) / tt).clip(max=1)
hh = numpy.ones((tt.size,))
qq = nodes[None, 0, :] * hh[:, None]
for kk in range(1, nn):
hh *= umul * (nn - kk) * weights[kk]
hh /= kk * udiv * weights[kk - 1] + hh
qq *= 1.0 - hh[:, None]
qq += hh[:, None] * nodes[None, kk, :]
return qq
def euler_bend(
switchover_angle: float,
num_points: int = 200,
) -> NDArray[numpy.float64]:
"""
Generate a 90 degree Euler bend (AKA Clothoid bend or Cornu spiral).
Args:
switchover_angle: After this angle, the bend will transition into a circular arc
(and transition back to an Euler spiral on the far side). If this is set to
`>= pi / 4`, no circular arc will be added.
num_points: Number of points in the curve
Returns:
`[[x0, y0], ...]` for the curve
"""
ll_max = numpy.sqrt(2 * switchover_angle) # total length of (one) spiral portion
ll_tot = 2 * ll_max + (pi / 2 - 2 * switchover_angle)
num_points_spiral = numpy.floor(ll_max / ll_tot * num_points).astype(int)
num_points_arc = num_points - 2 * num_points_spiral
def gen_spiral(ll_max: float) -> NDArray[numpy.float64]:
xx = []
yy = []
for ll in numpy.linspace(0, ll_max, num_points_spiral):
qq = numpy.linspace(0, ll, 1000) # integrate to current arclength
xx.append(trapezoid( numpy.cos(qq * qq / 2), qq))
yy.append(trapezoid(-numpy.sin(qq * qq / 2), qq))
xy_part = numpy.stack((xx, yy), axis=1)
return xy_part
xy_spiral = gen_spiral(ll_max)
xy_parts = [xy_spiral]
if switchover_angle < pi / 4:
# Build a circular segment to join the two euler portions
rmin = 1.0 / ll_max
half_angle = pi / 4 - switchover_angle
qq = numpy.linspace(half_angle * 2, 0, num_points_arc + 1) + switchover_angle
xc = rmin * numpy.cos(qq)
yc = rmin * numpy.sin(qq) + xy_spiral[-1, 1]
xc += xy_spiral[-1, 0] - xc[0]
yc += xy_spiral[-1, 1] - yc[0]
xy_parts.append(numpy.stack((xc[1:], yc[1:]), axis=1))
endpoint_xy = xy_parts[-1][-1, :]
second_spiral = xy_spiral[::-1, ::-1] + endpoint_xy - xy_spiral[-1, ::-1]
xy_parts.append(second_spiral)
xy = numpy.concatenate(xy_parts)
# Remove any 2x-duplicate points
xy = xy[(numpy.roll(xy, 1, axis=0) != xy).any(axis=1)]
return xy

View File

@ -9,11 +9,6 @@ from numpy.typing import NDArray, ArrayLike
from numpy import pi
# Constants for shorthand rotations
R90 = pi / 2
R180 = pi
@lru_cache
def rotation_matrix_2d(theta: float) -> NDArray[numpy.float64]:
"""