Compare commits
2 Commits
76511b95e6
...
e6d96bb7a5
Author | SHA1 | Date | |
---|---|---|---|
e6d96bb7a5 | |||
1fdfcbd85d |
275
masque/file/gdsii_arrow.py
Normal file
275
masque/file/gdsii_arrow.py
Normal file
@ -0,0 +1,275 @@
|
||||
"""
|
||||
GDSII file format readers and writers using the `klamath` library.
|
||||
|
||||
Note that GDSII references follow the same convention as `masque`,
|
||||
with this order of operations:
|
||||
1. Mirroring
|
||||
2. Rotation
|
||||
3. Scaling
|
||||
4. Offset and array expansion (no mirroring/rotation/scaling applied to offsets)
|
||||
|
||||
Scaling, rotation, and mirroring apply to individual instances, not grid
|
||||
vectors or offsets.
|
||||
|
||||
Notes:
|
||||
* absolute positioning is not supported
|
||||
* PLEX is not supported
|
||||
* ELFLAGS are not supported
|
||||
* GDS does not support library- or structure-level annotations
|
||||
* GDS creation/modification/access times are set to 1900-01-01 for reproducibility.
|
||||
* Gzip modification time is set to 0 (start of current epoch, usually 1970-01-01)
|
||||
"""
|
||||
from typing import IO, cast, Any
|
||||
from collections.abc import Iterable, Mapping, Callable
|
||||
import io
|
||||
import mmap
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
import string
|
||||
from pprint import pformat
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
import pyarrow
|
||||
from pyarrow.cffi import ffi
|
||||
|
||||
from .utils import is_gzipped, tmpfile
|
||||
from .. import Pattern, Ref, PatternError, LibraryError, Label, Shape
|
||||
from ..shapes import Polygon, Path
|
||||
from ..repetition import Grid
|
||||
from ..utils import layer_t, annotations_t
|
||||
from ..library import LazyLibrary, Library, ILibrary, ILibraryView
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
clib = ffi.dlopen('/home/jan/projects/klamath-rs/target/debug/libklamath_rs_ext.so')
|
||||
ffi.cdef('void read_path(char* path, struct ArrowArray* array, struct ArrowSchema* schema);')
|
||||
|
||||
|
||||
path_cap_map = {
|
||||
0: Path.Cap.Flush,
|
||||
1: Path.Cap.Circle,
|
||||
2: Path.Cap.Square,
|
||||
4: Path.Cap.SquareCustom,
|
||||
}
|
||||
|
||||
|
||||
def rint_cast(val: ArrayLike) -> NDArray[numpy.int32]:
|
||||
return numpy.rint(val).astype(numpy.int32)
|
||||
|
||||
|
||||
def readfile(
|
||||
filename: str | pathlib.Path,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> tuple[Library, dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `read()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically decompress gzipped files.
|
||||
|
||||
Args:
|
||||
filename: Filename to save to.
|
||||
*args: passed to `read()`
|
||||
**kwargs: passed to `read()`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
path.resolve()
|
||||
ptr_array = ffi.new('struct ArrowArray[]', 1)
|
||||
ptr_schema = ffi.new('struct ArrowSchema[]', 1)
|
||||
clib.read_path(str(path).encode(), ptr_array, ptr_schema)
|
||||
|
||||
iptr_schema = int(ffi.cast('uintptr_t', ptr_schema))
|
||||
iptr_array = int(ffi.cast('uintptr_t', ptr_array))
|
||||
arrow_arr = pyarrow.Array._import_from_c(iptr_array, iptr_schema)
|
||||
assert len(arrow_arr) == 1
|
||||
|
||||
results = read_arrow(arrow_arr[0])
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def read_arrow(
|
||||
libarr: pyarrow.Array,
|
||||
raw_mode: bool = True,
|
||||
) -> tuple[Library, dict[str, Any]]:
|
||||
"""
|
||||
# TODO check GDSII file for cycles!
|
||||
Read a gdsii file and translate it into a dict of Pattern objects. GDSII structures are
|
||||
translated into Pattern objects; boundaries are translated into polygons, and srefs and arefs
|
||||
are translated into Ref objects.
|
||||
|
||||
Additional library info is returned in a dict, containing:
|
||||
'name': name of the library
|
||||
'meters_per_unit': number of meters per database unit (all values are in database units)
|
||||
'logical_units_per_unit': number of "logical" units displayed by layout tools (typically microns)
|
||||
per database unit
|
||||
|
||||
Args:
|
||||
stream: Stream to read from.
|
||||
raw_mode: If True, constructs shapes in raw mode, bypassing most data validation, Default True.
|
||||
|
||||
Returns:
|
||||
- dict of pattern_name:Patterns generated from GDSII structures
|
||||
- dict of GDSII library info
|
||||
"""
|
||||
library_info = _read_header(libarr)
|
||||
|
||||
mlib = Library()
|
||||
for cell in libarr['cells']:
|
||||
name = libarr['cell_names'][cell['id'].as_py()].as_py()
|
||||
pat = read_cell(cell, libarr['cell_names'], raw_mode=raw_mode)
|
||||
mlib[name] = pat
|
||||
|
||||
return mlib, library_info
|
||||
|
||||
|
||||
def _read_header(libarr: pyarrow.Array) -> dict[str, Any]:
|
||||
"""
|
||||
Read the file header and create the library_info dict.
|
||||
"""
|
||||
library_info = dict(
|
||||
name = libarr['lib_name'],
|
||||
meters_per_unit = libarr['meters_per_db_unit'],
|
||||
logical_units_per_unit = libarr['user_units_per_db_unit'],
|
||||
)
|
||||
return library_info
|
||||
|
||||
|
||||
def read_cell(
|
||||
cellarr: pyarrow.Array,
|
||||
cell_names: pyarrow.Array,
|
||||
raw_mode: bool = True,
|
||||
) -> Pattern:
|
||||
"""
|
||||
TODO
|
||||
Read elements from a GDS structure and build a Pattern from them.
|
||||
|
||||
Args:
|
||||
stream: Seekable stream, positioned at a record boundary.
|
||||
Will be read until an ENDSTR record is consumed.
|
||||
name: Name of the resulting Pattern
|
||||
raw_mode: If True, bypass per-shape data validation. Default True.
|
||||
|
||||
Returns:
|
||||
A pattern containing the elements that were read.
|
||||
"""
|
||||
pat = Pattern()
|
||||
|
||||
for refarr in cellarr['refs']:
|
||||
target = cell_names[refarr['target'].as_py()].as_py()
|
||||
args = dict(
|
||||
offset = (refarr['x'].as_py(), refarr['y'].as_py()),
|
||||
)
|
||||
if (mirr := refarr['invert_y']).is_valid:
|
||||
args['mirrored'] = mirr.as_py()
|
||||
if (rot := refarr['angle_deg']).is_valid:
|
||||
args['rotation'] = numpy.deg2rad(rot.as_py())
|
||||
if (mag := refarr['mag']).is_valid:
|
||||
args['scale'] = mag.as_py()
|
||||
if (rep := refarr['repetition']).is_valid:
|
||||
repetition = Grid(
|
||||
a_vector = (rep['x0'].as_py(), rep['y0'].as_py()),
|
||||
b_vector = (rep['x1'].as_py(), rep['y1'].as_py()),
|
||||
a_count = rep['count0'].as_py(),
|
||||
b_count = rep['count1'].as_py(),
|
||||
)
|
||||
args['repetition'] = repetition
|
||||
ref = Ref(**args)
|
||||
pat.refs[target].append(ref)
|
||||
|
||||
for bnd in cellarr['boundaries']:
|
||||
layer = (bnd['layer'].as_py(), bnd['dtype'].as_py())
|
||||
args = dict(
|
||||
vertices = bnd['xy'].values.to_numpy().reshape((-1, 2))[:-1],
|
||||
)
|
||||
|
||||
if (props := bnd['properties']).is_valid:
|
||||
args['annotations'] = _properties_to_annotations(props)
|
||||
|
||||
poly = Polygon(**args)
|
||||
pat.shapes[layer].append(poly)
|
||||
|
||||
for gpath in cellarr['paths']:
|
||||
layer = (gpath['layer'].as_py(), gpath['dtype'].as_py())
|
||||
args = dict(
|
||||
vertices = gpath['xy'].values.to_numpy().reshape((-1, 2)),
|
||||
)
|
||||
|
||||
if (gcap := gpath['path_type']).is_valid:
|
||||
mcap = path_cap_map[gcap.as_py()]
|
||||
args['cap'] = mcap
|
||||
if mcap == Path.Cap.SquareCustom:
|
||||
extensions = [0, 0]
|
||||
if (ext0 := gpath['extension_start']).is_valid:
|
||||
extensions[0] = ext0.as_py()
|
||||
if (ext1 := gpath['extension_end']).is_valid:
|
||||
extensions[1] = ext1.as_py()
|
||||
|
||||
args['extensions'] = extensions
|
||||
|
||||
if (width := gpath['width']).is_valid:
|
||||
args['width'] = width.as_py()
|
||||
else:
|
||||
args['width'] = 0
|
||||
|
||||
if (props := gpath['properties']).is_valid:
|
||||
args['annotations'] = _properties_to_annotations(props)
|
||||
|
||||
mpath = Path(**args)
|
||||
pat.shapes[layer].append(mpath)
|
||||
|
||||
for gtext in cellarr['texts']:
|
||||
layer = (gtext['layer'].as_py(), gtext['dtype'].as_py())
|
||||
args = dict(
|
||||
offset = (gtext['x'].as_py(), gtext['y'].as_py()),
|
||||
string = gtext['string'].as_py(),
|
||||
)
|
||||
|
||||
if (props := gtext['properties']).is_valid:
|
||||
args['annotations'] = _properties_to_annotations(props)
|
||||
|
||||
mlabel = Label(**args)
|
||||
pat.labels[layer].append(mlabel)
|
||||
|
||||
return pat
|
||||
|
||||
|
||||
def _properties_to_annotations(properties: pyarrow.Array) -> annotations_t:
|
||||
return {prop['key'].as_py(): prop['value'].as_py() for prop in properties}
|
||||
|
||||
|
||||
def check_valid_names(
|
||||
names: Iterable[str],
|
||||
max_length: int = 32,
|
||||
) -> None:
|
||||
"""
|
||||
Check all provided names to see if they're valid GDSII cell names.
|
||||
|
||||
Args:
|
||||
names: Collection of names to check
|
||||
max_length: Max allowed length
|
||||
|
||||
"""
|
||||
allowed_chars = set(string.ascii_letters + string.digits + '_?$')
|
||||
|
||||
bad_chars = [
|
||||
name for name in names
|
||||
if not set(name).issubset(allowed_chars)
|
||||
]
|
||||
|
||||
bad_lengths = [
|
||||
name for name in names
|
||||
if len(name) > max_length
|
||||
]
|
||||
|
||||
if bad_chars:
|
||||
logger.error('Names contain invalid characters:\n' + pformat(bad_chars))
|
||||
|
||||
if bad_lengths:
|
||||
logger.error(f'Names too long (>{max_length}:\n' + pformat(bad_chars))
|
||||
|
||||
if bad_chars or bad_lengths:
|
||||
raise LibraryError('Library contains invalid names, see log above')
|
210
masque/shapes/poly_collection.py
Normal file
210
masque/shapes/poly_collection.py
Normal file
@ -0,0 +1,210 @@
|
||||
from typing import Any, cast, Iterable
|
||||
from collections.abc import Sequence
|
||||
import copy
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import Shape, normalized_shape_tuple
|
||||
from ..error import PatternError
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, rotation_matrix_2d, annotations_lt, annotations_eq, rep2key
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class PolyCollection(Shape):
|
||||
"""
|
||||
A collection of polygons, consisting of list of vertex arrays (N_m x 2 ndarrays) which specify
|
||||
implicitly-closed boundaries, and an offset.
|
||||
|
||||
Note that the setter for `PolyCollection.vertex_list` creates a copy of the
|
||||
passed vertex coordinates.
|
||||
|
||||
A `normalized_form(...)` is available, but can be quite slow with lots of vertices.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_vertex_lists',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations',
|
||||
)
|
||||
|
||||
_vertex_lists: list[NDArray[numpy.float64]]
|
||||
""" List of ndarrays (N_m x 2) of vertices `[ [[x0, y0], [x1, y1], ...] ]` """
|
||||
|
||||
# vertex_lists property
|
||||
@property
|
||||
def vertex_lists(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
||||
"""
|
||||
Vertices of the polygons (ist of ndarrays (N_m x 2) `[ [[x0, y0], [x1, y1], ...] ]`
|
||||
|
||||
When setting, note that a copy will be made,
|
||||
"""
|
||||
return self._vertex_lists
|
||||
|
||||
@vertex_lists.setter
|
||||
def vertex_lists(self, val: ArrayLike) -> None:
|
||||
val = [numpy.array(vv, dtype=float) for vv in val]
|
||||
for ii, vv in enumerate(val):
|
||||
if len(vv.shape) < 2 or vv.shape[1] != 2:
|
||||
raise PatternError(f'vertex_lists contents must be an Nx2 arrays (polygon #{ii} fails)')
|
||||
if vv.shape[0] < 3:
|
||||
raise PatternError(f'vertex_lists contents must have at least 3 vertices (Nx2 where N>2) (polygon ${ii} has shape {vv.shape})')
|
||||
self._vertices = val
|
||||
|
||||
# xs property
|
||||
@property
|
||||
def xs(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
All vertex x coords as a 1D ndarray
|
||||
"""
|
||||
return self.vertices[:, 0]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vertex_lists: Iterable[ArrayLike],
|
||||
*,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
raw: bool = False,
|
||||
) -> None:
|
||||
if raw:
|
||||
assert isinstance(vertex_lists, list)
|
||||
assert all(isinstance(vv, numpy.ndarray) for vv in vertex_lists)
|
||||
assert isinstance(offset, numpy.ndarray)
|
||||
self._vertex_lists = vertex_lists
|
||||
self._offset = offset
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
else:
|
||||
self.vertices = vertices
|
||||
self.offset = offset
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.rotate(rotation)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> 'PolyCollection':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
new._offset = self._offset.copy()
|
||||
new._vertex_lists = [vv.copy() for vv in self._vertex_lists]
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
return new
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and all(numpy.array_equal(ss, oo) for ss, oo in zip(self.vertices, other.vertices))
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def __lt__(self, other: Shape) -> bool:
|
||||
if type(self) is not type(other):
|
||||
if repr(type(self)) != repr(type(other)):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
return id(type(self)) < id(type(other))
|
||||
|
||||
other = cast(PolyCollection, other)
|
||||
for vv, oo in zip(self.vertices, other.vertices):
|
||||
if not numpy.array_equal(vv, oo):
|
||||
min_len = min(vv.shape[0], oo.shape[0])
|
||||
eq_mask = vv[:min_len] != oo[:min_len]
|
||||
eq_lt = vv[:min_len] < oo[:min_len]
|
||||
eq_lt_masked = eq_lt[eq_mask]
|
||||
if eq_lt_masked.size > 0:
|
||||
return eq_lt_masked.flat[0]
|
||||
return vv.shape[0] < oo.shape[0]
|
||||
if len(self.vertex_lists) != len(other.vertex_lists):
|
||||
return len(self.vertex_lists) < len(other.vertex_lists):
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
def pop_as_polygon(self, index: int) -> 'Polygon':
|
||||
"""
|
||||
Remove one polygon from the list, and return it as a `Polygon` object.
|
||||
|
||||
Args:
|
||||
index: which polygon to pop
|
||||
"""
|
||||
verts = self.vertex_lists.pop(index)
|
||||
return Polygon(
|
||||
vertices=verts,
|
||||
offset=self.offset,
|
||||
repetition=self.repetition.copy(),
|
||||
annotations=copy.deepcopy(self.annotations),
|
||||
)
|
||||
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = None, # unused # noqa: ARG002
|
||||
max_arclen: float | None = None, # unused # noqa: ARG002
|
||||
) -> list['Polygon']:
|
||||
return [Polygon(
|
||||
vertices=vv,
|
||||
offset=self.offset,
|
||||
repetition=self.repetition.copy(),
|
||||
annotations=copy.deepcopy(self.annotations),
|
||||
) for vv in self.vertex_lists]
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]: # TODO note shape get_bounds doesn't include repetition
|
||||
mins = [numpy.min(vv, axis=0) for vv self.vertex_lists]
|
||||
maxs = [numpy.max(vv, axis=0) for vv self.vertex_lists]
|
||||
return numpy.vstack((self.offset + numpy.min(self.vertex_lists, axis=0),
|
||||
self.offset + numpy.max(self.vertex_lists, axis=0)))
|
||||
|
||||
def rotate(self, theta: float) -> 'Polygon':
|
||||
if theta != 0:
|
||||
for vv in self.vertex_lists:
|
||||
vv[:] = numpy.dot(rotation_matrix_2d(theta), vv.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> 'Polygon':
|
||||
for vv in self.vertex_lists:
|
||||
vv[:, axis - 1] *= -1
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Polygon':
|
||||
for vv in self.vertex_lists:
|
||||
vv *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
# Note: this function is going to be pretty slow for many-vertexed polygons, relative to
|
||||
# other shapes
|
||||
meanv = numpy.concatenate(self.vertex_lists).mean(axis=0)
|
||||
zeroed_vertices = [vv - meanv for vv in self.vertex_lists]
|
||||
offset = meanv + self.offset
|
||||
|
||||
scale = zeroed_vertices.std()
|
||||
normed_vertices = zeroed_vertices / scale
|
||||
|
||||
_, _, vertex_axis = numpy.linalg.svd(zeroed_vertices)
|
||||
rotation = numpy.arctan2(vertex_axis[0][1], vertex_axis[0][0]) % (2 * pi)
|
||||
rotated_vertices = numpy.vstack([numpy.dot(rotation_matrix_2d(-rotation), v)
|
||||
for v in normed_vertices])
|
||||
|
||||
# Reorder the vertices so that the one with lowest x, then y, comes first.
|
||||
x_min = rotated_vertices[:, 0].argmin()
|
||||
if not is_scalar(x_min):
|
||||
y_min = rotated_vertices[x_min, 1].argmin()
|
||||
x_min = cast(Sequence, x_min)[y_min]
|
||||
reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
|
||||
|
||||
# TODO: normalize mirroring?
|
||||
|
||||
return ((type(self), reordered_vertices.data.tobytes()),
|
||||
(offset, scale / norm_value, rotation, False),
|
||||
lambda: Polygon(reordered_vertices * norm_value))
|
||||
|
||||
def __repr__(self) -> str:
|
||||
centroid = self.offset + numpy.concatenate(self.vertex_lists).mean(axis=0)
|
||||
return f'<PolyCollection centroid {centroid} p{len(self.vertex_lists)}>'
|
Loading…
x
Reference in New Issue
Block a user