add Library functions for finding instances and extracting hierarchy
added child_graph, parent_graph, child_order, find_refs_local and find_refs_global
This commit is contained in:
parent
a54ee5a26c
commit
febaaeff0b
@ -22,12 +22,13 @@ import copy
|
||||
from pprint import pformat
|
||||
from collections import defaultdict
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from graphlib import TopologicalSorter
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
from .error import LibraryError, PatternError
|
||||
from .utils import rotation_matrix_2d, layer_t
|
||||
from .utils import layer_t, apply_transforms
|
||||
from .shapes import Shape, Polygon
|
||||
from .label import Label
|
||||
from .abstract import Abstract
|
||||
@ -474,24 +475,21 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
|
||||
raise LibraryError(f'.dfs() called on pattern with circular reference to "{target}"')
|
||||
|
||||
for ref in pattern.refs[target]:
|
||||
ref_transforms: list[bool] | NDArray[numpy.float64]
|
||||
if transform is not False:
|
||||
sign = numpy.ones(2)
|
||||
if transform[3]:
|
||||
sign[1] = -1
|
||||
xy = numpy.dot(rotation_matrix_2d(transform[2]), ref.offset * sign)
|
||||
ref_transform = transform + (xy[0], xy[1], ref.rotation, ref.mirrored)
|
||||
ref_transform[3] %= 2
|
||||
ref_transforms = apply_transforms(transform, ref.as_transforms())
|
||||
else:
|
||||
ref_transform = False
|
||||
ref_transforms = [False]
|
||||
|
||||
self.dfs(
|
||||
pattern=self[target],
|
||||
visit_before=visit_before,
|
||||
visit_after=visit_after,
|
||||
hierarchy=hierarchy + (target,),
|
||||
transform=ref_transform,
|
||||
memo=memo,
|
||||
)
|
||||
for ref_transform in ref_transforms:
|
||||
self.dfs(
|
||||
pattern=self[target],
|
||||
visit_before=visit_before,
|
||||
visit_after=visit_after,
|
||||
hierarchy=hierarchy + (target,),
|
||||
transform=ref_transform,
|
||||
memo=memo,
|
||||
)
|
||||
|
||||
if visit_after is not None:
|
||||
pattern = visit_after(pattern, hierarchy=hierarchy, memo=memo, transform=transform)
|
||||
@ -510,6 +508,143 @@ class ILibraryView(Mapping[str, 'Pattern'], metaclass=ABCMeta):
|
||||
|
||||
return self
|
||||
|
||||
def child_graph(self) -> dict[str, set[str | None]]:
|
||||
"""
|
||||
Return a mapping from pattern name to a set of all child patterns
|
||||
(patterns it references).
|
||||
|
||||
Returns:
|
||||
Mapping from pattern name to a set of all pattern names it references.
|
||||
"""
|
||||
graph = {name: set(pat.refs.keys()) for name, pat in self.items()}
|
||||
return graph
|
||||
|
||||
def parent_graph(self) -> dict[str, set[str]]:
|
||||
"""
|
||||
Return a mapping from pattern name to a set of all parent patterns
|
||||
(patterns which reference it).
|
||||
|
||||
Returns:
|
||||
Mapping from pattern name to a set of all patterns which reference it.
|
||||
"""
|
||||
igraph: dict[str, set[str]] = {name: set() for name in self}
|
||||
for name, pat in self.items():
|
||||
for child, reflist in pat.refs.items():
|
||||
if reflist and child is not None:
|
||||
igraph[child].add(name)
|
||||
return igraph
|
||||
|
||||
def child_order(self) -> list[str]:
|
||||
"""
|
||||
Return a topologically sorted list of all contained pattern names.
|
||||
Child (referenced) patterns will appear before their parents.
|
||||
|
||||
Return:
|
||||
Topologically sorted list of pattern names.
|
||||
"""
|
||||
return list(TopologicalSorter(self.child_graph()).static_order())
|
||||
|
||||
def find_refs_local(
|
||||
self,
|
||||
name: str,
|
||||
parent_graph: dict[str, set[str]] | None = None,
|
||||
) -> dict[str, list[NDArray[numpy.float64]]]:
|
||||
"""
|
||||
Find the location and orientation of all refs pointing to `name`.
|
||||
Refs with a `repetition` are resolved into multiple instances (locations).
|
||||
|
||||
Args:
|
||||
name: Name of the referenced pattern.
|
||||
parent_graph: Mapping from pattern name to the set of patterns which
|
||||
reference it. Default (`None`) calls `self.parent_graph()`.
|
||||
The provided graph may be for a superset of `self` (i.e. it may
|
||||
contain additional patterns which are not present in self; they
|
||||
will be ignored).
|
||||
|
||||
Returns:
|
||||
Mapping of {parent_name: transform_list}, where transform_list
|
||||
is an Nx4 ndarray with rows
|
||||
`(x_offset, y_offset, rotation_ccw_rad, mirror_across_x)`.
|
||||
"""
|
||||
instances = defaultdict(list)
|
||||
if parent_graph is None:
|
||||
parent_graph = self.parent_graph()
|
||||
for parent in parent_graph[name]:
|
||||
if parent not in self: # parent_graph may be a for a superset of self
|
||||
continue
|
||||
for ref in self[parent].refs[name]:
|
||||
instances[parent].append(ref.as_transforms())
|
||||
|
||||
return instances
|
||||
|
||||
def find_refs_global(
|
||||
self,
|
||||
name: str,
|
||||
order: list[str] | None = None,
|
||||
parent_graph: dict[str, set[str]] | None = None,
|
||||
) -> dict[tuple[str, ...], NDArray[numpy.float64]]:
|
||||
"""
|
||||
Find the absolute (top-level) location and orientation of all refs (including
|
||||
repetitions) pointing to `name`.
|
||||
|
||||
Args:
|
||||
name: Name of the referenced pattern.
|
||||
order: List of pattern names in which children are guaranteed
|
||||
to appear before their parents (i.e. topologically sorted).
|
||||
Default (`None`) calls `self.child_order()`.
|
||||
parent_graph: Passed to `find_refs_local`.
|
||||
Mapping from pattern name to the set of patterns which
|
||||
reference it. Default (`None`) calls `self.parent_graph()`.
|
||||
The provided graph may be for a superset of `self` (i.e. it may
|
||||
contain additional patterns which are not present in self; they
|
||||
will be ignored).
|
||||
|
||||
Returns:
|
||||
Mapping of `{hierarchy: transform_list}`, where `hierarchy` is a tuple of the form
|
||||
`(toplevel_pattern, lvl1_pattern, ..., name)` and `transform_list` is an Nx4 ndarray
|
||||
with rows `(x_offset, y_offset, rotation_ccw_rad, mirror_across_x)`.
|
||||
"""
|
||||
if name not in self:
|
||||
return {}
|
||||
if order is None:
|
||||
order = self.child_order()
|
||||
if parent_graph is None:
|
||||
parent_graph = self.parent_graph()
|
||||
|
||||
self_keys = set(self.keys())
|
||||
|
||||
transforms: dict[str, list[tuple[
|
||||
tuple[str, ...],
|
||||
NDArray[numpy.float64]
|
||||
]]]
|
||||
transforms = defaultdict(list)
|
||||
for parent, vals in self.find_refs_local(name, parent_graph=parent_graph).items():
|
||||
transforms[parent] = [((name,), numpy.concatenate(vals))]
|
||||
|
||||
for next_name in order:
|
||||
if next_name not in transforms:
|
||||
continue
|
||||
if not parent_graph[next_name] & self_keys:
|
||||
continue
|
||||
|
||||
outers = self.find_refs_local(next_name, parent_graph=parent_graph)
|
||||
inners = transforms.pop(next_name)
|
||||
for parent, outer in outers.items():
|
||||
for path, inner in inners:
|
||||
combined = apply_transforms(numpy.concatenate(outer), inner)
|
||||
transforms[parent].append((
|
||||
(next_name,) + path,
|
||||
combined,
|
||||
))
|
||||
result = {}
|
||||
for parent, targets in transforms.items():
|
||||
for path, instances in targets:
|
||||
full_path = (parent,) + path
|
||||
assert full_path not in result
|
||||
result[full_path] = instances
|
||||
return result
|
||||
|
||||
|
||||
|
||||
class ILibrary(ILibraryView, MutableMapping[str, 'Pattern'], metaclass=ABCMeta):
|
||||
"""
|
||||
|
@ -183,6 +183,16 @@ class Ref(
|
||||
self.rotation += pi
|
||||
return self
|
||||
|
||||
def as_transforms(self) -> NDArray[numpy.float64]:
|
||||
xys = self.offset[None, :]
|
||||
if self.repetition is not None:
|
||||
xys = xys + self.repetition.displacements
|
||||
transforms = numpy.empty((xys.shape[0], 4))
|
||||
transforms[:, :2] = xys
|
||||
transforms[:, 2] = self.rotation
|
||||
transforms[:, 3] = self.mirrored
|
||||
return transforms
|
||||
|
||||
def get_bounds_single(
|
||||
self,
|
||||
pattern: 'Pattern',
|
||||
|
@ -24,6 +24,7 @@ from .transform import (
|
||||
rotation_matrix_2d as rotation_matrix_2d,
|
||||
normalize_mirror as normalize_mirror,
|
||||
rotate_offsets_around as rotate_offsets_around,
|
||||
apply_transforms as apply_transforms,
|
||||
)
|
||||
from .comparisons import (
|
||||
annotation2key as annotation2key,
|
||||
|
@ -5,7 +5,7 @@ from collections.abc import Sequence
|
||||
from functools import lru_cache
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy import pi
|
||||
|
||||
|
||||
@ -57,8 +57,62 @@ def rotate_offsets_around(
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Rotates offsets around a pivot point.
|
||||
|
||||
Args:
|
||||
offsets: Nx2 array, rows are (x, y) offsets
|
||||
pivot: (x, y) location to rotate around
|
||||
angle: rotation angle in radians
|
||||
|
||||
Returns:
|
||||
Nx2 ndarray of (x, y) position after the rotation is applied.
|
||||
"""
|
||||
offsets -= pivot
|
||||
offsets[:] = (rotation_matrix_2d(angle) @ offsets.T).T
|
||||
offsets += pivot
|
||||
return offsets
|
||||
|
||||
|
||||
def apply_transforms(
|
||||
outer: ArrayLike,
|
||||
inner: ArrayLike,
|
||||
tensor: bool = False,
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Apply a set of transforms (`outer`) to a second set (`inner`).
|
||||
This is used to find the "absolute" transform for nested `Ref`s.
|
||||
|
||||
The two transforms should be of shape Ox4 and Ix4.
|
||||
Rows should be of the form `(x_offset, y_offset, rotation_ccw_rad, mirror_across_x)`.
|
||||
The output will be of the form (O*I)x4 (if `tensor=False`) or OxIx4 (`tensor=True`).
|
||||
|
||||
Args:
|
||||
outer: Transforms for the container refs. Shape Ox4.
|
||||
inner: Transforms for the contained refs. Shape Ix4.
|
||||
tensor: If `True`, an OxIx4 array is returned, with `result[oo, ii, :]` corresponding
|
||||
to the `oo`th `outer` transform applied to the `ii`th inner transform.
|
||||
If `False` (default), this is concatenated into `(O*I)x4` to allow simple
|
||||
chaining into additional `apply_transforms()` calls.
|
||||
|
||||
Returns:
|
||||
OxIx4 or (O*I)x4 array. Final dimension is
|
||||
`(total_x, total_y, total_rotation_ccw_rad, net_mirrored_x)`.
|
||||
"""
|
||||
outer = numpy.atleast_2d(outer).astype(float, copy=False)
|
||||
inner = numpy.atleast_2d(inner).astype(float, copy=False)
|
||||
|
||||
# If mirrored, flip y's
|
||||
xy_mir = numpy.tile(inner[:, :2], (outer.shape[0], 1, 1)) # dims are outer, inner, xyrm
|
||||
xy_mir[outer[:, 3].astype(bool), :, 1] *= -1
|
||||
|
||||
rot_mats = [rotation_matrix_2d(angle) for angle in outer[:, 2]]
|
||||
xy = numpy.einsum('ort,oit->oir', rot_mats, xy_mir)
|
||||
|
||||
tot = numpy.empty((outer.shape[0], inner.shape[0], 4))
|
||||
tot[:, :, :2] = outer[:, None, :2] + xy
|
||||
tot[:, :, 2:] = outer[:, None, 2:] + inner[None, :, 2:] # sum rotations and mirrored
|
||||
tot[:, :, 2] %= 2 * pi # clamp rot
|
||||
tot[:, :, 3] %= 2 # clamp mirrored
|
||||
|
||||
if tensor:
|
||||
return tot
|
||||
return numpy.concatenate(tot)
|
||||
|
Loading…
Reference in New Issue
Block a user