[utils.curves] add masque.utils.curves with Bezier and Euler curves
This commit is contained in:
parent
6631c5e558
commit
f14528654b
95
masque/utils/curves.py
Normal file
95
masque/utils/curves.py
Normal file
@ -0,0 +1,95 @@
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy import pi
|
||||
|
||||
|
||||
def bezier(
|
||||
nodes: ArrayLike,
|
||||
tt: ArrayLike,
|
||||
weights: ArrayLike | None = None,
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Sample a Bezier curve with the provided control points at the parametrized positions `tt`.
|
||||
|
||||
Using the calculation method from arXiv:1803.06843, Chudy and Woźny.
|
||||
|
||||
Args:
|
||||
nodes: `[[x0, y0], ...]` control points for the Bezier curve
|
||||
tt: Parametrized positions at which to sample the curve (1D array with values in the interval [0, 1])
|
||||
weights: Control point weights; if provided, length should be the same as number of control points.
|
||||
Default 1 for all control points.
|
||||
|
||||
Returns:
|
||||
`[[x0, y0], [x1, y1], ...]` corresponding to `[tt0, tt1, ...]`
|
||||
"""
|
||||
nn = nodes.shape[0]
|
||||
if weights is None:
|
||||
weights = numpy.ones(nn)
|
||||
|
||||
t_half0 = tt <= 0.5
|
||||
umul = tt / (1 - tt)
|
||||
udiv = 1 / umul
|
||||
umul[~t_half0] = 1
|
||||
udiv[t_half0] = 1
|
||||
|
||||
hh = numpy.ones((tt.size, 1))
|
||||
qq = nodes[None, 0] * hh
|
||||
for kk in range(1, nn):
|
||||
hh *= umul * (nn + 1 - kk) * weights[kk]
|
||||
hh /= kk * udiv * weights[kk - 1] + hh
|
||||
qq *= 1.0 - hh
|
||||
qq += hh * nodes[None, kk]
|
||||
return qq
|
||||
|
||||
|
||||
|
||||
def euler_bend(switchover_angle: float) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Generate a 90 degree Euler bend (AKA Clothoid bend or Cornu spiral).
|
||||
|
||||
Args:
|
||||
switchover_angle: After this angle, the bend will transition into a circular arc
|
||||
(and transition back to an Euler spiral on the far side). If this is set to
|
||||
`>= pi / 4`, no circular arc will be added.
|
||||
|
||||
Returns:
|
||||
`[[x0, y0], ...]` for the curve
|
||||
"""
|
||||
# Switchover angle
|
||||
# AKA: Clothoid bend, Cornu spiral
|
||||
theta_max = numpy.sqrt(2 * switchover_angle)
|
||||
|
||||
def gen_curve(theta_max: float):
|
||||
xx = []
|
||||
yy = []
|
||||
for theta in numpy.linspace(0, theta_max, 100):
|
||||
qq = numpy.linspace(0, theta, 1000)
|
||||
xx.append(numpy.trapz( numpy.cos(qq * qq / 2), qq))
|
||||
yy.append(numpy.trapz(-numpy.sin(qq * qq / 2), qq))
|
||||
xy_part = numpy.stack((xx, yy), axis=1)
|
||||
return xy_part
|
||||
|
||||
xy_part = gen_curve(theta_max)
|
||||
xy_parts = [xy_part]
|
||||
|
||||
if switchover_angle < pi / 4:
|
||||
# Build a circular segment to join the two euler portions
|
||||
rmin = 1.0 / theta_max
|
||||
half_angle = pi / 4 - switchover_angle
|
||||
qq = numpy.linspace(half_angle * 2, 0, 10) + switchover_angle
|
||||
xc = rmin * numpy.cos(qq)
|
||||
yc = rmin * numpy.sin(qq) + xy_part[-1, 1]
|
||||
xc += xy_part[-1, 0] - xc[0]
|
||||
yc += xy_part[-1, 1] - yc[0]
|
||||
xy_parts.append(numpy.stack((xc, yc), axis=1))
|
||||
|
||||
endpoint_xy = xy_parts[-1][-1, :]
|
||||
second_curve = xy_part[::-1, ::-1] + endpoint_xy - xy_part[-1, ::-1]
|
||||
|
||||
xy_parts.append(second_curve)
|
||||
xy = numpy.concatenate(xy_parts)
|
||||
|
||||
# Remove any 2x-duplicate points
|
||||
xy = xy[(numpy.roll(xy, 1, axis=0) != xy).any(axis=1)]
|
||||
|
||||
return xy
|
Loading…
x
Reference in New Issue
Block a user