Add RenderPather tutorial, tutorial README, and some minor doc updates

master
jan 7 months ago
parent ef3bec01ce
commit f12f14e087

@ -1 +1,39 @@
TODO write tutorial readme
masque Tutorial
===============
Contents
--------
- [basic_shapes](basic_shapes.py):
* Draw basic geometry
* Export to GDS
- [devices](devices.py)
* Reference other patterns
* Add ports to a pattern
* Snap ports together to build a circuit
* Check for dangling references
- [library](library.py)
* Create a `LazyLibrary`, which loads / generates patterns only when they are first used
* Explore alternate ways of specifying a pattern for `.plug()` and `.place()`
* Design a pattern which is meant to plug into an existing pattern (via `.interface()`)
- [pather](pather.py)
* Use `Pather` to route individual wires and wire bundles
* Use `BasicTool` to generate paths
* Use `BasicTool` to automatically transition between path types
- [renderpather](rendpather.py)
* Use `RenderPather` and `PathTool` to build a layout similar to the one in [pather](pather.py),
but using `Path` shapes instead of `Polygon`s.
Additionaly, [pcgen](pcgen.py) is a utility module for generating photonic crystal lattices.
Running
-------
Run from inside the examples directory:
```bash
cd examples/tutorial
python3 basic_shapes.py
klayout -e basic_shapes.gds
```

@ -31,7 +31,7 @@ def ports_to_data(pat: Pattern) -> Pattern:
def data_to_ports(lib: Mapping[str, Pattern], name: str, pat: Pattern) -> Pattern:
"""
Scans the Pattern to determine port locations. Same port format as `ports_to_data`
Scan the Pattern to determine port locations. Same port format as `ports_to_data`
"""
return ports2data.data_to_ports(layers=[(3, 0)], library=lib, pattern=pat, name=name)
@ -246,13 +246,14 @@ def main(interactive: bool = True) -> None:
devices['ysplit'] = y_splitter(lattice_constant=a, hole='hole', mirror_periods=5)
devices['l3cav'] = perturbed_l3(lattice_constant=a, hole='smile', hole_lib=shape_lib, xy_size=(4, 10)) # uses smile :)
# Turn our dict of devices into a Library -- useful for getting abstracts
# Turn our dict of devices into a Library.
# This provides some convenience functions in the future!
lib = Library(devices)
#
# Build a circuit
#
# Create a builder, and add the circuit to our library as "my_circuit"
# Create a `Builder`, and add the circuit to our library as "my_circuit".
circ = Builder(library=lib, name='my_circuit')
# Start by placing a waveguide. Call its ports "in" and "signal".
@ -263,6 +264,14 @@ def main(interactive: bool = True) -> None:
# are attaching (wg10), it automatically inherits the name "signal".
circ.plug('wg10', {'signal': 'left'})
# We could have done the following instead:
# circ_pat = Pattern()
# lib['my_circuit'] = circ_pat
# circ_pat.place(lib.abstract('wg10'), ...)
# circ_pat.plug(lib.abstract('wg10'), ...)
# but `Builder` lets us omit some of the repetition of `lib.abstract(...)`, and uses similar
# syntax to `Pather` and `RenderPather`, which add wire/waveguide routing functionality.
# Attach a y-splitter to the signal path.
# Since the y-splitter has 3 ports total, we can't auto-inherit the
# port name, so we have to specify what we want to name the unattached

@ -60,14 +60,17 @@ def main() -> None:
circ2 = Builder(library=lib, ports='tri_l3cav')
# First way to get abstracts is `lib.abstract(name)`
# We can use this syntax directly with `Pattern.plug()` and `Pattern.place()` as well as through `Builder`.
circ2.plug(lib.abstract('wg10'), {'input': 'right'})
# Second way to get abstracts is to use an AbstractView
# This also works directly with `Pattern.plug()` / `Pattern.place()`.
abstracts = lib.abstract_view()
circ2.plug(abstracts['wg10'], {'output': 'left'})
# Third way to specify an abstract works by automatically getting
# it from the library already within the Builder object:
# it from the library already within the Builder object.
# This wouldn't work if we only had a `Pattern` (not a `Builder`).
# Just pass the pattern name!
circ2.plug('tri_wg10', {'input': 'right'})
circ2.plug('tri_wg10', {'output': 'left'})

@ -1,5 +1,5 @@
"""
Manual wire routing tutorial
Manual wire routing tutorial: Pather and BasicTool
"""
from typing import Callable
from numpy import pi
@ -7,6 +7,7 @@ from masque import Pather, RenderPather, Library, Pattern, Port, layer_t, map_la
from masque.builder.tools import BasicTool, PathTool
from masque.file.gdsii import writefile
from basic_shapes import GDS_OPTS
#
# Define some basic wire widths, in nanometers
@ -97,10 +98,25 @@ def make_straight_wire(layer: layer_t, width: float, ptype: str, length: float)
return pat
def map_layer(layer: layer_t) -> layer_t:
"""
Map from a strings to GDS layer numbers
"""
layer_mapping = {
'M1': (10, 0),
'M2': (20, 0),
'V1': (30, 0),
}
return layer_mapping.get(layer, layer)
#
# Now we can start building up our library (collection of static cells) and pathing tools.
#
# If any of the operations below are confusing, you can cross-reference against the `RenderPather`
# tutorial, which handles some things more explicitly (e.g. via placement) and simplifies others
# (e.g. geometry definition).
#
def main() -> None:
# Build some patterns (static cells) using the above functions and store them in a library
library = Library()
@ -181,6 +197,7 @@ def main() -> None:
# Place two pads, and define their ports as 'VCC' and 'GND'
pather.place('pad', offset=(18_000, 30_000), port_map={'wire_port': 'VCC'})
pather.place('pad', offset=(18_000, 60_000), port_map={'wire_port': 'GND'})
# Add some labels to make the pads easier to distinguish
pather.pattern.label(layer='M2', string='VCC', offset=(18e3, 30e3))
pather.pattern.label(layer='M2', string='GND', offset=(18e3, 60e3))
@ -251,56 +268,9 @@ def main() -> None:
# Save the pather's pattern into our library
library['Pather_and_BasicTool'] = pather.pattern
M1_ptool = PathTool(layer='M1', width=M1_WIDTH, ptype='m1wire')
M2_ptool = PathTool(layer='M2', width=M2_WIDTH, ptype='m2wire')
rpather = RenderPather(tools=M2_ptool, library=library).add_port_pair()
rpather.place('pad', offset=(18_000, 30_000), port_map={'wire_port': 'VCC'})
rpather.place('pad', offset=(18_000, 60_000), port_map={'wire_port': 'GND'})
rpather.pattern.label(layer='M2', string='VCC', offset=(18e3, 30e3))
rpather.pattern.label(layer='M2', string='GND', offset=(18e3, 60e3))
rpather.path('VCC', ccw=False, length=6_000)
rpather.path_to('VCC', ccw=None, x=0)
rpather.path('GND', 0, 5_000)
rpather.path_to('GND', None, x=rpather['VCC'].offset[0])
rpather.plug('v1_via', {'GND': 'top'})
rpather.retool(M1_ptool, keys=['GND'])
rpather.mpath(['GND', 'VCC'], ccw=True, xmax=-10_000, spacing=5_000)
rpather.plug('v1_via', {'VCC': 'top'})
rpather.retool(M1_ptool)
rpather.mpath(['GND', 'VCC'], ccw=True, emax=50_000, spacing=1_200)
rpather.mpath(['GND', 'VCC'], ccw=False, emin=1_000, spacing=1_200)
rpather.mpath(['GND', 'VCC'], ccw=False, emin=2_000, spacing=4_500)
rpather.plug('v1_via', {'VCC': 'bottom'})
rpather.retool(M2_ptool)
rpather.mpath(['GND', 'VCC'], None, xmin=-28_000)
via_size = abs(
library['v1_via'].ports['top'].offset[0]
- library['v1_via'].ports['bottom'].offset[0]
)
rpather.path_to('VCC', None, -50_000 + via_size) #, out_ptype='m1wire')
rpather.plug('v1_via', {'VCC': 'top'})
rpather.render()
library['RenderPather_and_PathTool'] = rpather.pattern
# Convert from text-based layers to numeric layers for GDS, and output the file
def map_layer(layer: layer_t) -> layer_t:
layer_mapping = {
'M1': (10, 0),
'M2': (20, 0),
'V1': (30, 0),
}
return layer_mapping.get(layer, layer)
library.map_layers(map_layer)
writefile(library, 'pathers.gds', 1e-9)
writefile(library, 'pather.gds', **GDS_OPTS)
if __name__ == '__main__':

@ -0,0 +1,96 @@
"""
Manual wire routing tutorial: RenderPather an PathTool
"""
from typing import Callable
from masque import RenderPather, Library, Pattern, Port, layer_t, map_layers
from masque.builder.tools import PathTool
from masque.file.gdsii import writefile
from basic_shapes import GDS_OPTS
from pather import M1_WIDTH, V1_WIDTH, M2_WIDTH, map_layer, make_pad, make_via
def main() -> None:
#
# To illustrate the advantages of using `RenderPather`, we use `PathTool` instead
# of `BasicTool`. `PathTool` lacks some sophistication (e.g. no automatic transitions)
# but when used with `RenderPather`, it can consolidate multiple routing steps into
# a single `Path` shape.
#
# We'll try to nearly replicate the layout from the `Pather` tutorial; see `pather.py`
# for more detailed descriptions of the individual pathing steps.
#
# First, we make a library and generate some of the same patterns as in the pather tutorial
library = Library()
library['pad'] = make_pad()
library['v1_via'] = make_via(
layer_top='M2',
layer_via='V1',
layer_bot='M1',
width_top=M2_WIDTH,
width_via=V1_WIDTH,
width_bot=M1_WIDTH,
ptype_bot='m1wire',
ptype_top='m2wire',
)
# `PathTool` is more limited than `BasicTool`. It only generates one type of shape
# (`Path`), so it only needs to know what layer to draw on, what width to draw with,
# and what port type to present.
M1_ptool = PathTool(layer='M1', width=M1_WIDTH, ptype='m1wire')
M2_ptool = PathTool(layer='M2', width=M2_WIDTH, ptype='m2wire')
rpather = RenderPather(tools=M2_ptool, library=library)
# As in the pather tutorial, we make soem pads and labels...
rpather.place('pad', offset=(18_000, 30_000), port_map={'wire_port': 'VCC'})
rpather.place('pad', offset=(18_000, 60_000), port_map={'wire_port': 'GND'})
rpather.pattern.label(layer='M2', string='VCC', offset=(18e3, 30e3))
rpather.pattern.label(layer='M2', string='GND', offset=(18e3, 60e3))
# ...and start routing the signals.
rpather.path('VCC', ccw=False, length=6_000)
rpather.path_to('VCC', ccw=None, x=0)
rpather.path('GND', 0, 5_000)
rpather.path_to('GND', None, x=rpather['VCC'].offset[0])
# `PathTool` doesn't know how to transition betwen metal layers, so we have to
# `plug` the via into the GND wire ourselves.
rpather.plug('v1_via', {'GND': 'top'})
rpather.retool(M1_ptool, keys=['GND'])
rpather.mpath(['GND', 'VCC'], ccw=True, xmax=-10_000, spacing=5_000)
# Same thing on the VCC wire when it goes down to M1.
rpather.plug('v1_via', {'VCC': 'top'})
rpather.retool(M1_ptool)
rpather.mpath(['GND', 'VCC'], ccw=True, emax=50_000, spacing=1_200)
rpather.mpath(['GND', 'VCC'], ccw=False, emin=1_000, spacing=1_200)
rpather.mpath(['GND', 'VCC'], ccw=False, emin=2_000, spacing=4_500)
# And again when VCC goes back up to M2.
rpather.plug('v1_via', {'VCC': 'bottom'})
rpather.retool(M2_ptool)
rpather.mpath(['GND', 'VCC'], None, xmin=-28_000)
# Finally, since PathTool has no conception of transitions, we can't
# just ask it to transition to an 'm1wire' port at the end of the final VCC segment.
# Instead, we have to calculate the via size ourselves, and adjust the final position
# to account for it.
via_size = abs(
library['v1_via'].ports['top'].offset[0]
- library['v1_via'].ports['bottom'].offset[0]
)
rpather.path_to('VCC', None, -50_000 + via_size)
rpather.plug('v1_via', {'VCC': 'top'})
rpather.render()
library['RenderPather_and_PathTool'] = rpather.pattern
# Convert from text-based layers to numeric layers for GDS, and output the file
library.map_layers(map_layer)
writefile(library, 'render_pather.gds', **GDS_OPTS)
if __name__ == '__main__':
main()
Loading…
Cancel
Save