update some examples

master
jan 10 months ago
parent 31d97d8df0
commit efac8efa90

@ -49,3 +49,6 @@ pip install git+https://mpxd.net/code/jan/masque.git@release
- de-embedding
- boolean ops
* DOCS DOCS DOCS
* Tests tests tests
* check renderpather
* pather and renderpather examples

@ -3,28 +3,33 @@
import numpy
import masque
import masque.file.klamath
from masque.file import gdsii
from masque import shapes
def main():
pat = masque.Pattern(name='ellip_grating')
for rmin in numpy.arange(10, 15, 0.5):
pat.shapes.append(shapes.Arc(
layer = (0, 0)
pat.shapes[layer].extend([
shapes.Arc(
radii=(rmin, rmin),
width=0.1,
angles=(-numpy.pi/4, numpy.pi/4),
layer=(0, 0),
))
)
for rmin in numpy.arange(10, 15, 0.5)]
)
pat.labels.append(masque.Label(string='grating centerline', offset=(1, 0), layer=(1, 2)))
pat.label(string='grating centerline', offset=(1, 0), layer=(1, 2))
pat.scale_by(1000)
pat.visualize()
pat2 = pat.copy()
pat2.name = 'grating2'
masque.file.klamath.writefile((pat, pat2), 'out.gds.gz', 1e-9, 1e-3)
lib = {
'ellip_grating': pat,
'grating2': pat.copy(),
}
gdsii.writefile(lib, 'out.gds.gz', meters_per_unit=1e-9, logical_units_per_unit=1e-3)
if __name__ == '__main__':

@ -33,7 +33,9 @@ pyplot.show(block=False)
# Create the layout from the contours
#
pat = Pattern()
pat.shapes = [Polygon(vertices=vv) for vv in contours if len(vv) < 1_000]
pat.shapes[(0, 0)].extend([
Polygon(vertices=vv) for vv in contours if len(vv) < 1_000
])
lib = {}
lib['my_mask_name'] = pat

@ -16,8 +16,9 @@ def main():
cell_name = 'ellip_grating'
pat = masque.Pattern()
layer = (0, 0)
for rmin in numpy.arange(10, 15, 0.5):
layer = (0, 0)
pat.shapes[layer].append(Arc(
radii=(rmin, rmin),
width=0.1,

@ -32,9 +32,10 @@ def hole(
Returns:
Pattern containing a circle.
"""
pat = Pattern(shapes=[
Circle(radius=radius, offset=(0, 0), layer=layer),
])
pat = Pattern()
pat.shapes[layer].append(
Circle(radius=radius, offset=(0, 0))
)
return pat
@ -58,8 +59,9 @@ def triangle(
(numpy.cos( - pi / 6), numpy.sin( - pi / 6)),
]) * radius
pat = Pattern(shapes=[
Polygon(offset=(0, 0), layer=layer, vertices=vertices),
pat = Pattern()
pat.shapes[layer].extend([
Polygon(offset=(0, 0), vertices=vertices),
])
return pat
@ -84,16 +86,18 @@ def smile(
pat = Pattern()
# Add all the shapes we want
pat.shapes += [
Circle(radius=radius, offset=(0, 0), layer=layer), # Outer circle
Circle(radius=radius / 10, offset=(radius / 3, radius / 3), layer=secondary_layer),
Circle(radius=radius / 10, offset=(-radius / 3, radius / 3), layer=secondary_layer),
pat.shapes[layer] += [
Circle(radius=radius, offset=(0, 0)), # Outer circle
]
pat.shapes[secondary_layer] += [
Circle(radius=radius / 10, offset=(radius / 3, radius / 3)),
Circle(radius=radius / 10, offset=(-radius / 3, radius / 3)),
Arc(
radii=(radius * 2 / 3, radius * 2 / 3), # Underlying ellipse radii
angles=(7 / 6 * pi, 11 / 6 * pi), # Angles limiting the arc
width=radius / 10,
offset=(0, 0),
layer=secondary_layer,
),
]

@ -82,18 +82,18 @@ def perturbed_l3(
# Build L3 cavity, using references to the provided hole pattern
pat = Pattern()
pat.refs += [
Ref(hole, scale=r, offset=(lattice_constant * x,
lattice_constant * y))
pat.refs[hole] += [
Ref(scale=r, offset=(lattice_constant * x,
lattice_constant * y))
for x, y, r in xyr]
# Add rectangular undercut aids
min_xy, max_xy = pat.get_bounds_nonempty(hole_lib)
trench_dx = max_xy[0] - min_xy[0]
pat.shapes += [
Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width, layer=trench_layer),
Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width, layer=trench_layer),
pat.shapes[trench_layer] += [
Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width),
Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width),
]
# Ports are at outer extents of the device (with y=0)
@ -131,9 +131,9 @@ def waveguide(
# Build the pattern
pat = Pattern()
pat.refs += [
Ref(hole, offset=(lattice_constant * x,
lattice_constant * y))
pat.refs[hole] += [
Ref(offset=(lattice_constant * x,
lattice_constant * y))
for x, y in xy]
# Ports are at outer edges, with y=0
@ -170,9 +170,9 @@ def bend(
# Build the pattern
pat= Pattern()
pat.refs += [
Ref(hole, offset=(lattice_constant * x,
lattice_constant * y))
pat.refs[hole] += [
Ref(offset=(lattice_constant * x,
lattice_constant * y))
for x, y in xy]
# Figure out port locations.
@ -209,9 +209,9 @@ def y_splitter(
# Build pattern
pat = Pattern()
pat.refs += [
Ref(hole, offset=(lattice_constant * x,
lattice_constant * y))
pat.refs[hole] += [
Ref(offset=(lattice_constant * x,
lattice_constant * y))
for x, y in xy]
# Determine port locations
@ -248,30 +248,30 @@ def main(interactive: bool = True) -> None:
# Turn our dict of devices into a Library -- useful for getting abstracts
lib = Library(devices)
abv = lib.abstract_view() # lets us use abv[cell] instead of lib.abstract(cell)
#
# Build a circuit
#
circ = Builder(library=lib)
# Create a builder, and add the circuit to our library as "my_circuit"
circ = Builder(library=lib, name='my_circuit')
# Start by placing a waveguide. Call its ports "in" and "signal".
circ.place(abv['wg10'], offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
circ.place('wg10', offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
# Extend the signal path by attaching the "left" port of a waveguide.
# Since there is only one other port ("right") on the waveguide we
# are attaching (wg10), it automatically inherits the name "signal".
circ.plug(abv['wg10'], {'signal': 'left'})
circ.plug('wg10', {'signal': 'left'})
# Attach a y-splitter to the signal path.
# Since the y-splitter has 3 ports total, we can't auto-inherit the
# port name, so we have to specify what we want to name the unattached
# ports. We can call them "signal1" and "signal2".
circ.plug(abv['ysplit'], {'signal': 'in'}, {'top': 'signal1', 'bot': 'signal2'})
circ.plug('ysplit', {'signal': 'in'}, {'top': 'signal1', 'bot': 'signal2'})
# Add a waveguide to both signal ports, inheriting their names.
circ.plug(abv['wg05'], {'signal1': 'left'})
circ.plug(abv['wg05'], {'signal2': 'left'})
circ.plug('wg05', {'signal1': 'left'})
circ.plug('wg05', {'signal2': 'left'})
# Add a bend to both ports.
# Our bend's ports "left" and "right" refer to the original counterclockwise
@ -280,22 +280,22 @@ def main(interactive: bool = True) -> None:
# to "signal2" to bend counterclockwise.
# We could also use `mirrored=(True, False)` to mirror one of the devices
# and then use same device port on both paths.
circ.plug(abv['bend0'], {'signal1': 'right'})
circ.plug(abv['bend0'], {'signal2': 'left'})
circ.plug('bend0', {'signal1': 'right'})
circ.plug('bend0', {'signal2': 'left'})
# We add some waveguides and a cavity to "signal1".
circ.plug(abv['wg10'], {'signal1': 'left'})
circ.plug(abv['l3cav'], {'signal1': 'input'})
circ.plug(abv['wg10'], {'signal1': 'left'})
circ.plug('wg10', {'signal1': 'left'})
circ.plug('l3cav', {'signal1': 'input'})
circ.plug('wg10', {'signal1': 'left'})
# "signal2" just gets a single of equivalent length
circ.plug(abv['wg28'], {'signal2': 'left'})
circ.plug('wg28', {'signal2': 'left'})
# Now we bend both waveguides back towards each other
circ.plug(abv['bend0'], {'signal1': 'right'})
circ.plug(abv['bend0'], {'signal2': 'left'})
circ.plug(abv['wg05'], {'signal1': 'left'})
circ.plug(abv['wg05'], {'signal2': 'left'})
circ.plug('bend0', {'signal1': 'right'})
circ.plug('bend0', {'signal2': 'left'})
circ.plug('wg05', {'signal1': 'left'})
circ.plug('wg05', {'signal2': 'left'})
# To join the waveguides, we attach a second y-junction.
# We plug "signal1" into the "bot" port, and "signal2" into the "top" port.
@ -303,19 +303,16 @@ def main(interactive: bool = True) -> None:
# This operation would raise an exception if the ports did not line up
# correctly (i.e. they required different rotations or translations of the
# y-junction device).
circ.plug(abv['ysplit'], {'signal1': 'bot', 'signal2': 'top'}, {'in': 'signal_out'})
circ.plug('ysplit', {'signal1': 'bot', 'signal2': 'top'}, {'in': 'signal_out'})
# Finally, add some more waveguide to "signal_out".
circ.plug(abv['wg10'], {'signal_out': 'left'})
circ.plug('wg10', {'signal_out': 'left'})
# We can also add text labels for our circuit's ports.
# They will appear at the uppermost hierarchy level, while the individual
# device ports will appear further down, in their respective cells.
ports_to_data(circ.pattern)
# Add the pattern into our library
lib['my_circuit'] = circ.pattern
# Check if we forgot to include any patterns... ooops!
if dangling := lib.dangling_refs():
print('Warning: The following patterns are referenced, but not present in the'

@ -1,4 +1,4 @@
from typing import Sequence, Callable
from typing import Sequence, Callable, Any
from pprint import pformat
import numpy
@ -38,7 +38,7 @@ def main() -> None:
#
lib['triangle'] = lambda: basic_shapes.triangle(devices.RADIUS)
opts = dict(
opts: dict[str, Any] = dict(
lattice_constant = devices.LATTICE_CONSTANT,
hole = 'triangle',
)
@ -73,9 +73,7 @@ def main() -> None:
circ2.plug('tri_wg10', {'output': 'left'})
# Add the circuit to the device library.
# It has already been generated, so we can use `set_const` as a shorthand for
# `lib['mixed_wg_cav'] = lambda: circ2.pattern`
lib.set_const('mixed_wg_cav', circ2.pattern)
lib['mixed_wg_cav'] = circ2.pattern
#
@ -87,7 +85,7 @@ def main() -> None:
# ... that lets us continue from where we left off.
circ3.plug('tri_bend0', {'input': 'right'})
circ3.plug('tri_bend0', {'input': 'left'}, mirrored=(True, False)) # mirror since no tri y-symmetry
circ3.plug('tri_bend0', {'input': 'left'}, mirrored=True) # mirror since no tri y-symmetry
circ3.plug('tri_bend0', {'input': 'right'})
circ3.plug('bend0', {'output': 'left'})
circ3.plug('bend0', {'output': 'left'})
@ -96,7 +94,7 @@ def main() -> None:
circ3.plug('tri_wg28', {'input': 'right'})
circ3.plug('tri_wg10', {'input': 'right', 'output': 'left'})
lib.set_const('loop_segment', circ3.pattern)
lib['loop_segment'] = circ3.pattern
#
# Write all devices into a GDS file
@ -128,7 +126,6 @@ if __name__ == '__main__':
# name = port_map.get(name, name)
# if name is None:
# continue
# self.pattern.labels += [
# Label(string=name, offset=self.ports[name].offset, layer=layer)]
# self.pattern.label(string=name, offset=self.ports[name].offset, layer=label_layer)
# return self
#

Loading…
Cancel
Save