snapshot 2019-04-19 23:13:13.303952
This commit is contained in:
commit
dade740155
6
.gitignore
vendored
Normal file
6
.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
*.pyc
|
||||
__pycache__
|
||||
*.idea
|
||||
build/
|
||||
dist/
|
||||
*.egg-info/
|
651
LICENSE.md
Normal file
651
LICENSE.md
Normal file
@ -0,0 +1,651 @@
|
||||
GNU Affero General Public License
|
||||
=================================
|
||||
|
||||
_Version 3, 19 November 2007_
|
||||
_Copyright © 2007 Free Software Foundation, Inc. <<http://fsf.org/>>_
|
||||
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
## Preamble
|
||||
|
||||
The GNU Affero General Public License is a free, copyleft license for
|
||||
software and other kinds of works, specifically designed to ensure
|
||||
cooperation with the community in the case of network server software.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
our General Public Licenses are intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
Developers that use our General Public Licenses protect your rights
|
||||
with two steps: **(1)** assert copyright on the software, and **(2)** offer
|
||||
you this License which gives you legal permission to copy, distribute
|
||||
and/or modify the software.
|
||||
|
||||
A secondary benefit of defending all users' freedom is that
|
||||
improvements made in alternate versions of the program, if they
|
||||
receive widespread use, become available for other developers to
|
||||
incorporate. Many developers of free software are heartened and
|
||||
encouraged by the resulting cooperation. However, in the case of
|
||||
software used on network servers, this result may fail to come about.
|
||||
The GNU General Public License permits making a modified version and
|
||||
letting the public access it on a server without ever releasing its
|
||||
source code to the public.
|
||||
|
||||
The GNU Affero General Public License is designed specifically to
|
||||
ensure that, in such cases, the modified source code becomes available
|
||||
to the community. It requires the operator of a network server to
|
||||
provide the source code of the modified version running there to the
|
||||
users of that server. Therefore, public use of a modified version, on
|
||||
a publicly accessible server, gives the public access to the source
|
||||
code of the modified version.
|
||||
|
||||
An older license, called the Affero General Public License and
|
||||
published by Affero, was designed to accomplish similar goals. This is
|
||||
a different license, not a version of the Affero GPL, but Affero has
|
||||
released a new version of the Affero GPL which permits relicensing under
|
||||
this license.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
## TERMS AND CONDITIONS
|
||||
|
||||
### 0. Definitions
|
||||
|
||||
“This License” refers to version 3 of the GNU Affero General Public License.
|
||||
|
||||
“Copyright” also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
“The Program” refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as “you”. “Licensees” and
|
||||
“recipients” may be individuals or organizations.
|
||||
|
||||
To “modify” a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a “modified version” of the
|
||||
earlier work or a work “based on” the earlier work.
|
||||
|
||||
A “covered work” means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To “propagate” a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To “convey” a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays “Appropriate Legal Notices”
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that **(1)** displays an appropriate copyright notice, and **(2)**
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
### 1. Source Code
|
||||
|
||||
The “source code” for a work means the preferred form of the work
|
||||
for making modifications to it. “Object code” means any non-source
|
||||
form of a work.
|
||||
|
||||
A “Standard Interface” means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The “System Libraries” of an executable work include anything, other
|
||||
than the work as a whole, that **(a)** is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and **(b)** serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
“Major Component”, in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The “Corresponding Source” for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
### 2. Basic Permissions
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
### 3. Protecting Users' Legal Rights From Anti-Circumvention Law
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
### 4. Conveying Verbatim Copies
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
### 5. Conveying Modified Source Versions
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
* **a)** The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
* **b)** The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section 7.
|
||||
This requirement modifies the requirement in section 4 to
|
||||
“keep intact all notices”.
|
||||
* **c)** You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
* **d)** If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
“aggregate” if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
### 6. Conveying Non-Source Forms
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
* **a)** Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
* **b)** Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either **(1)** a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or **(2)** access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
* **c)** Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
* **d)** Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
* **e)** Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A “User Product” is either **(1)** a “consumer product”, which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or **(2)** anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, “normally used” refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
“Installation Information” for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
### 7. Additional Terms
|
||||
|
||||
“Additional permissions” are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
* **a)** Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
* **b)** Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
* **c)** Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
* **d)** Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
* **e)** Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
* **f)** Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered “further
|
||||
restrictions” within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
### 8. Termination
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated **(a)**
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and **(b)** permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
### 9. Acceptance Not Required for Having Copies
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
### 10. Automatic Licensing of Downstream Recipients
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An “entity transaction” is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
### 11. Patents
|
||||
|
||||
A “contributor” is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's “contributor version”.
|
||||
|
||||
A contributor's “essential patent claims” are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, “control” includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a “patent license” is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To “grant” such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either **(1)** cause the Corresponding Source to be so
|
||||
available, or **(2)** arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or **(3)** arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. “Knowingly relying” means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is “discriminatory” if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license **(a)** in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or **(b)** primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
### 12. No Surrender of Others' Freedom
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
### 13. Remote Network Interaction; Use with the GNU General Public License
|
||||
|
||||
Notwithstanding any other provision of this License, if you modify the
|
||||
Program, your modified version must prominently offer all users
|
||||
interacting with it remotely through a computer network (if your version
|
||||
supports such interaction) an opportunity to receive the Corresponding
|
||||
Source of your version by providing access to the Corresponding Source
|
||||
from a network server at no charge, through some standard or customary
|
||||
means of facilitating copying of software. This Corresponding Source
|
||||
shall include the Corresponding Source for any work covered by version 3
|
||||
of the GNU General Public License that is incorporated pursuant to the
|
||||
following paragraph.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the work with which it is combined will remain governed by version
|
||||
3 of the GNU General Public License.
|
||||
|
||||
### 14. Revised Versions of this License
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU Affero General Public License from time to time. Such new versions
|
||||
will be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU Affero General
|
||||
Public License “or any later version” applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU Affero General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU Affero General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
### 15. Disclaimer of Warranty
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
### 16. Limitation of Liability
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
### 17. Interpretation of Sections 15 and 16
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
_END OF TERMS AND CONDITIONS_
|
||||
|
||||
## How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the “copyright” line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If your software can interact with users remotely through a computer
|
||||
network, you should also make sure that it provides a way for users to
|
||||
get its source. For example, if your program is a web application, its
|
||||
interface could display a “Source” link that leads users to an archive
|
||||
of the code. There are many ways you could offer source, and different
|
||||
solutions will be better for different programs; see section 13 for the
|
||||
specific requirements.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a “copyright disclaimer” for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU AGPL, see
|
||||
<<http://www.gnu.org/licenses/>>.
|
2
MANIFEST.in
Normal file
2
MANIFEST.in
Normal file
@ -0,0 +1,2 @@
|
||||
include README.md
|
||||
include LICENSE.md
|
43
README.md
Normal file
43
README.md
Normal file
@ -0,0 +1,43 @@
|
||||
# Masque README
|
||||
|
||||
Masque is a Python module for designing lithography masks.
|
||||
|
||||
The general idea is to implement something resembling the GDSII file-format, but
|
||||
with some vectorized element types (eg. circles, not just polygons), better support for
|
||||
E-beam doses, and the ability to output to multiple formats.
|
||||
|
||||
- [Source repository](https://mpxd.net/code/jan/masque)
|
||||
- [PyPi](https://pypi.org/project/masque)
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
Requirements:
|
||||
* python >= 3.5 (written and tested with 3.6)
|
||||
* numpy
|
||||
* matplotlib (optional, used for visualization functions and text)
|
||||
* python-gdsii (optional, used for gdsii i/o)
|
||||
* svgwrite (optional, used for svg output)
|
||||
* freetype (optional, used for text)
|
||||
|
||||
|
||||
Install with pip:
|
||||
```bash
|
||||
pip3 install masque
|
||||
```
|
||||
|
||||
Alternatively, install from git
|
||||
```bash
|
||||
pip3 install git+https://mpxd.net/code/jan/masque.git@release
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
* Mirroring
|
||||
* Polygon de-embedding
|
||||
|
||||
### Maybe
|
||||
|
||||
* Construct from bitmap
|
||||
* Boolean operations on polygons (using pyclipper)
|
||||
* Output to OASIS (using fatamorgana)
|
33
examples/ellip_grating.py
Normal file
33
examples/ellip_grating.py
Normal file
@ -0,0 +1,33 @@
|
||||
# Quick script for testing arcs
|
||||
|
||||
import numpy
|
||||
|
||||
import masque
|
||||
import masque.file.gdsii
|
||||
from masque import shapes
|
||||
|
||||
|
||||
def main():
|
||||
pat = masque.Pattern(name='ellip_grating')
|
||||
for rmin in numpy.arange(10, 15, 0.5):
|
||||
pat.shapes.append(shapes.Arc(
|
||||
radii=(rmin, rmin),
|
||||
width=0.1,
|
||||
angles=(-numpy.pi/4, numpy.pi/4)
|
||||
))
|
||||
|
||||
pat.scale_by(1000)
|
||||
# pat.visualize()
|
||||
pat2 = masque.Pattern(name='p2')
|
||||
pat2.name = 'ellip_grating'
|
||||
|
||||
pat2.subpatterns += [
|
||||
masque.SubPattern(pattern=pat, offset=(20e3, 0)),
|
||||
masque.SubPattern(pattern=pat, offset=(0, 20e3)),
|
||||
]
|
||||
|
||||
masque.file.gdsii.write_dose2dtype((pat, pat2, pat2.copy(), pat2.copy()), 'out.gds', 1e-9, 1e-3)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
36
masque/__init__.py
Normal file
36
masque/__init__.py
Normal file
@ -0,0 +1,36 @@
|
||||
"""
|
||||
masque 2D CAD library
|
||||
|
||||
masque is an attempt to make a relatively small library for designing lithography
|
||||
masks. The general idea is to implement something resembling the GDSII file-format, but
|
||||
with some vectorized element types (eg. circles, not just polygons), better support for
|
||||
E-beam doses, and the ability to output to multiple formats.
|
||||
|
||||
Pattern is a basic object containing a 2D lithography mask, composed of a list of Shape
|
||||
objects and a list of SubPattern objects.
|
||||
|
||||
SubPattern provides basic support for nesting Pattern objects within each other, by adding
|
||||
offset, rotation, scaling, and other such properties to a Pattern reference.
|
||||
|
||||
Note that the methods for these classes try to avoid copying wherever possible, so unless
|
||||
otherwise noted, assume that arguments are stored by-reference.
|
||||
|
||||
|
||||
Dependencies:
|
||||
- numpy
|
||||
- matplotlib [Pattern.visualize(...)]
|
||||
- python-gdsii [masque.file.gdsii]
|
||||
- svgwrite [masque.file.svg]
|
||||
"""
|
||||
|
||||
from .error import PatternError
|
||||
from .shapes import Shape
|
||||
from .label import Label
|
||||
from .subpattern import SubPattern
|
||||
from .repetition import GridRepetition
|
||||
from .pattern import Pattern
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
version = '0.5'
|
9
masque/error.py
Normal file
9
masque/error.py
Normal file
@ -0,0 +1,9 @@
|
||||
class PatternError(Exception):
|
||||
"""
|
||||
Simple Exception for Pattern objects and their contents
|
||||
"""
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def __str__(self):
|
||||
return repr(self.value)
|
3
masque/file/__init__.py
Normal file
3
masque/file/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Functions for reading from and writing to various file formats.
|
||||
"""
|
558
masque/file/gdsii.py
Normal file
558
masque/file/gdsii.py
Normal file
@ -0,0 +1,558 @@
|
||||
"""
|
||||
GDSII file format readers and writers
|
||||
"""
|
||||
# python-gdsii
|
||||
import gdsii.library
|
||||
import gdsii.structure
|
||||
import gdsii.elements
|
||||
|
||||
from typing import List, Any, Dict, Tuple
|
||||
import re
|
||||
import numpy
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
|
||||
from .utils import mangle_name, make_dose_table
|
||||
from .. import Pattern, SubPattern, GridRepetition, PatternError, Label, Shape
|
||||
from ..shapes import Polygon
|
||||
from ..utils import rotation_matrix_2d, get_bit, set_bit, vector2, is_scalar
|
||||
from ..utils import remove_colinear_vertices
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def write(patterns: Pattern or List[Pattern],
|
||||
filename: str,
|
||||
meters_per_unit: float,
|
||||
logical_units_per_unit: float = 1,
|
||||
library_name: str = 'masque-gdsii-write'):
|
||||
"""
|
||||
Write a Pattern or list of patterns to a GDSII file, by first calling
|
||||
.polygonize() to change the shapes into polygons, and then writing patterns
|
||||
as GDSII structures, polygons as boundary elements, and subpatterns as structure
|
||||
references (sref).
|
||||
|
||||
For each shape,
|
||||
layer is chosen to be equal to shape.layer if it is an int,
|
||||
or shape.layer[0] if it is a tuple
|
||||
datatype is chosen to be shape.layer[1] if available,
|
||||
otherwise 0
|
||||
|
||||
Note that this function modifies the Pattern.
|
||||
|
||||
It is often a good idea to run pattern.subpatternize() prior to calling this function,
|
||||
especially if calling .polygonize() will result in very many vertices.
|
||||
|
||||
If you want pattern polygonized with non-default arguments, just call pattern.polygonize()
|
||||
prior to calling this function.
|
||||
|
||||
:param patterns: A Pattern or list of patterns to write to file. Modified by this function.
|
||||
:param filename: Filename to write to.
|
||||
:param meters_per_unit: Written into the GDSII file, meters per (database) length unit.
|
||||
All distances are assumed to be an integer multiple of this unit, and are stored as such.
|
||||
:param logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a
|
||||
"logical" unit which is different from the "database" unit, for display purposes.
|
||||
Default 1.
|
||||
:param library_name: Library name written into the GDSII file.
|
||||
Default 'masque-gdsii-write'.
|
||||
"""
|
||||
# Create library
|
||||
lib = gdsii.library.Library(version=600,
|
||||
name=library_name.encode('ASCII'),
|
||||
logical_unit=logical_units_per_unit,
|
||||
physical_unit=meters_per_unit)
|
||||
|
||||
if isinstance(patterns, Pattern):
|
||||
patterns = [patterns]
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {id(pattern): pattern for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
patterns_by_id.update(pattern.referenced_patterns_by_id())
|
||||
|
||||
_disambiguate_pattern_names(patterns_by_id.values())
|
||||
|
||||
# Now create a structure for each pattern, and add in any Boundary and SREF elements
|
||||
for pat in patterns_by_id.values():
|
||||
structure = gdsii.structure.Structure(name=pat.name)
|
||||
lib.append(structure)
|
||||
|
||||
# Add a Boundary element for each shape
|
||||
structure += _shapes_to_boundaries(pat.shapes)
|
||||
|
||||
structure += _labels_to_texts(pat.labels)
|
||||
|
||||
# Add an SREF / AREF for each subpattern entry
|
||||
structure += _subpatterns_to_refs(pat.subpatterns)
|
||||
|
||||
with open(filename, mode='wb') as stream:
|
||||
lib.save(stream)
|
||||
|
||||
|
||||
def write_dose2dtype(patterns: Pattern or List[Pattern],
|
||||
filename: str,
|
||||
meters_per_unit: float,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> List[float]:
|
||||
"""
|
||||
Write a Pattern or list of patterns to a GDSII file, by first calling
|
||||
.polygonize() to change the shapes into polygons, and then writing patterns
|
||||
as GDSII structures, polygons as boundary elements, and subpatterns as structure
|
||||
references (sref).
|
||||
|
||||
For each shape,
|
||||
layer is chosen to be equal to shape.layer if it is an int,
|
||||
or shape.layer[0] if it is a tuple
|
||||
datatype is chosen arbitrarily, based on calcualted dose for each shape.
|
||||
Shapes with equal calcualted dose will have the same datatype.
|
||||
A list of doses is retured, providing a mapping between datatype
|
||||
(list index) and dose (list entry).
|
||||
|
||||
Note that this function modifies the Pattern(s).
|
||||
|
||||
It is often a good idea to run pattern.subpatternize() prior to calling this function,
|
||||
especially if calling .polygonize() will result in very many vertices.
|
||||
|
||||
If you want pattern polygonized with non-default arguments, just call pattern.polygonize()
|
||||
prior to calling this function.
|
||||
|
||||
:param patterns: A Pattern or list of patterns to write to file. Modified by this function.
|
||||
:param filename: Filename to write to.
|
||||
:param meters_per_unit: Written into the GDSII file, meters per (database) length unit.
|
||||
All distances are assumed to be an integer multiple of this unit, and are stored as such.
|
||||
:param args: passed to masque.file.gdsii.write().
|
||||
:param kwargs: passed to masque.file.gdsii.write().
|
||||
:returns: A list of doses, providing a mapping between datatype (int, list index)
|
||||
and dose (float, list entry).
|
||||
"""
|
||||
patterns, dose_vals = dose2dtype(patterns)
|
||||
write(patterns, filename, meters_per_unit, *args, **kwargs)
|
||||
return dose_vals
|
||||
|
||||
|
||||
def dose2dtype(patterns: Pattern or List[Pattern],
|
||||
) -> Tuple[List[Pattern], List[float]]:
|
||||
"""
|
||||
For each shape in each pattern, set shape.layer to the tuple
|
||||
(base_layer, datatype), where:
|
||||
layer is chosen to be equal to the original shape.layer if it is an int,
|
||||
or shape.layer[0] if it is a tuple
|
||||
datatype is chosen arbitrarily, based on calcualted dose for each shape.
|
||||
Shapes with equal calcualted dose will have the same datatype.
|
||||
A list of doses is retured, providing a mapping between datatype
|
||||
(list index) and dose (list entry).
|
||||
|
||||
Note that this function modifies the input Pattern(s).
|
||||
|
||||
:param patterns: A Pattern or list of patterns to write to file. Modified by this function.
|
||||
:returns: (patterns, dose_list)
|
||||
patterns: modified input patterns
|
||||
dose_list: A list of doses, providing a mapping between datatype (int, list index)
|
||||
and dose (float, list entry).
|
||||
"""
|
||||
if isinstance(patterns, Pattern):
|
||||
patterns = [patterns]
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {id(pattern): pattern for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
patterns_by_id.update(pattern.referenced_patterns_by_id())
|
||||
|
||||
# Get a table of (id(pat), written_dose) for each pattern and subpattern
|
||||
sd_table = make_dose_table(patterns)
|
||||
|
||||
# Figure out all the unique doses necessary to write this pattern
|
||||
# This means going through each row in sd_table and adding the dose values needed to write
|
||||
# that subpattern at that dose level
|
||||
dose_vals = set()
|
||||
for pat_id, pat_dose in sd_table:
|
||||
pat = patterns_by_id[pat_id]
|
||||
[dose_vals.add(shape.dose * pat_dose) for shape in pat.shapes]
|
||||
|
||||
if len(dose_vals) > 256:
|
||||
raise PatternError('Too many dose values: {}, maximum 256 when using dtypes.'.format(len(dose_vals)))
|
||||
|
||||
# Create a new pattern for each non-1-dose entry in the dose table
|
||||
# and update the shapes to reflect their new dose
|
||||
new_pats = {} # (id, dose) -> new_pattern mapping
|
||||
for pat_id, pat_dose in sd_table:
|
||||
if pat_dose == 1:
|
||||
new_pats[(pat_id, pat_dose)] = patterns_by_id[pat_id]
|
||||
continue
|
||||
|
||||
pat = patterns_by_id[pat_id].deepcopy()
|
||||
|
||||
encoded_name = mangle_name(pat, pat_dose).encode('ASCII')
|
||||
if len(encoded_name) == 0:
|
||||
raise PatternError('Zero-length name after mangle+encode, originally "{}"'.format(pat.name))
|
||||
|
||||
for shape in pat.shapes:
|
||||
data_type = dose_vals_list.index(shape.dose * pat_dose)
|
||||
if is_scalar(shape.layer):
|
||||
layer = (shape.layer, data_type)
|
||||
else:
|
||||
layer = (shape.layer[0], data_type)
|
||||
|
||||
new_pats[(pat_id, pat_dose)] = pat
|
||||
|
||||
# Go back through all the dose-specific patterns and fix up their subpattern entries
|
||||
for (pat_id, pat_dose), pat in new_pats.items():
|
||||
for subpat in pat.subpatterns:
|
||||
dose_mult = subpat.dose * pat_dose
|
||||
subpat.pattern = new_pats[(id(subpat.pattern), dose_mult)]
|
||||
|
||||
return patterns, list(dose_vals)
|
||||
|
||||
|
||||
def read_dtype2dose(filename: str) -> (List[Pattern], Dict[str, Any]):
|
||||
"""
|
||||
Alias for read(filename, use_dtype_as_dose=True)
|
||||
"""
|
||||
return read(filename, use_dtype_as_dose=True)
|
||||
|
||||
|
||||
def read(filename: str,
|
||||
use_dtype_as_dose: bool = False,
|
||||
clean_vertices: bool = True,
|
||||
) -> (Dict[str, Pattern], Dict[str, Any]):
|
||||
"""
|
||||
Read a gdsii file and translate it into a dict of Pattern objects. GDSII structures are
|
||||
translated into Pattern objects; boundaries are translated into polygons, and srefs and arefs
|
||||
are translated into SubPattern objects.
|
||||
|
||||
Additional library info is returned in a dict, containing:
|
||||
'name': name of the library
|
||||
'meters_per_unit': number of meters per database unit (all values are in database units)
|
||||
'logical_units_per_unit': number of "logical" units displayed by layout tools (typically microns)
|
||||
per database unit
|
||||
|
||||
:param filename: Filename specifying a GDSII file to read from.
|
||||
:param use_dtype_as_dose: If false, set each polygon's layer to (gds_layer, gds_datatype).
|
||||
If true, set the layer to gds_layer and the dose to gds_datatype.
|
||||
Default False.
|
||||
:param clean_vertices: If true, remove any redundant vertices when loading polygons.
|
||||
The cleaning process removes any polygons with zero area or <3 vertices.
|
||||
Default True.
|
||||
:return: Tuple: (Dict of pattern_name:Patterns generated from GDSII structures, Dict of GDSII library info)
|
||||
"""
|
||||
|
||||
with open(filename, mode='rb') as stream:
|
||||
lib = gdsii.library.Library.load(stream)
|
||||
|
||||
library_info = {'name': lib.name.decode('ASCII'),
|
||||
'meters_per_unit': lib.physical_unit,
|
||||
'logical_units_per_unit': lib.logical_unit,
|
||||
}
|
||||
|
||||
patterns = []
|
||||
for structure in lib:
|
||||
pat = Pattern(name=structure.name.decode('ASCII'))
|
||||
for element in structure:
|
||||
# Switch based on element type:
|
||||
if isinstance(element, gdsii.elements.Boundary):
|
||||
if use_dtype_as_dose:
|
||||
shape = Polygon(vertices=element.xy[:-1],
|
||||
dose=element.data_type,
|
||||
layer=element.layer)
|
||||
else:
|
||||
shape = Polygon(vertices=element.xy[:-1],
|
||||
layer=(element.layer, element.data_type))
|
||||
if clean_vertices:
|
||||
try:
|
||||
shape.clean_vertices()
|
||||
except PatternError:
|
||||
continue
|
||||
|
||||
pat.shapes.append(shape)
|
||||
|
||||
if isinstance(element, gdsii.elements.Path):
|
||||
if element.path_type == 0:
|
||||
extension = 0.0
|
||||
elif element.path_type in (1, 4):
|
||||
raise PatternError('Round-ended and custom paths (types 1 and 4) are not implemented yet')
|
||||
elif element.path_type == 2:
|
||||
extension = element.width / 2
|
||||
else:
|
||||
raise PatternError('Unrecognized path type: {}'.format(element.path_type))
|
||||
|
||||
if element.width == 0:
|
||||
continue
|
||||
|
||||
#TODO add extension
|
||||
v = remove_colinear_vertices(numpy.array(element.xy, dtype=float), closed_path=False)
|
||||
dv = numpy.diff(v, axis=0)
|
||||
dvdir = dv / numpy.sqrt((dv * dv).sum(axis=1))[:, None]
|
||||
v[0] -= dvdir[0] * extension
|
||||
v[-1] += dvdir[-1] * extension
|
||||
perp = dvdir[:, ::-1] * [1, -1] * element.width / 2
|
||||
|
||||
o0 = [v[0] + perp[0]]
|
||||
o1 = [v[0] - perp[0]]
|
||||
|
||||
for i in range(1, dv.shape[0]):
|
||||
towards_perp = numpy.dot(perp[i - 1], dv[i]) > 0 # bends towards previous perp
|
||||
#straight = numpy.dot(perp[i - 1], dv[i]) == 0 # TODO maybe run without cleaning?
|
||||
acute = numpy.dot(dv[i - 1], dv[i]) < 0
|
||||
|
||||
A = numpy.column_stack((dv[i - 1], -dv[i]))
|
||||
ab = numpy.linalg.solve(A, v[i] + perp[i] - v[i - 1] - perp[i - 1])
|
||||
cd = numpy.linalg.solve(A, v[i] - perp[i] - v[i - 1] + perp[i - 1])
|
||||
perpside_intersection = v[i - 1] + ab[0] * dv[i - 1] + perp[i - 1]
|
||||
otherside_intersection = v[i - 1] + cd[0] * dv[i - 1] - perp[i - 1]
|
||||
if towards_perp:
|
||||
o0.append(perpside_intersection)
|
||||
if acute:
|
||||
# Opposite is 180 > angle > 270
|
||||
o1.append(otherside_intersection)
|
||||
else:
|
||||
# Opposite is >270
|
||||
pt0 = v[i] - perp[i - 1] + dvdir[i - 1] * element.width / 2
|
||||
pt1 = v[i] - perp[i] - dvdir[i] * element.width / 2
|
||||
o1 += [pt0, pt1]
|
||||
else:
|
||||
# > 180, opposite is <180
|
||||
o1.append(otherside_intersection)
|
||||
print('oi', otherside_intersection)
|
||||
if acute:
|
||||
# > 270, opposite is <90
|
||||
pt0 = v[i] + perp[i - 1] + dvdir[i - 1] * element.width / 2
|
||||
pt1 = v[i] + perp[i] - dvdir[i] * element.width / 2
|
||||
o0 += [pt0, pt1]
|
||||
else:
|
||||
# 180 > angle >270
|
||||
o0.append(perpside_intersection)
|
||||
o0.append(v[-1] + perp[-1])
|
||||
o1.append(v[-1] - perp[-1])
|
||||
verts = numpy.vstack((o0, o1[::-1]))
|
||||
|
||||
if use_dtype_as_dose:
|
||||
shape = Polygon(vertices=verts,
|
||||
dose=element.data_type,
|
||||
layer=element.layer)
|
||||
else:
|
||||
shape = Polygon(vertices=verts,
|
||||
layer=(element.layer, element.data_type))
|
||||
if clean_vertices:
|
||||
try:
|
||||
shape.clean_vertices()
|
||||
except PatternError as err:
|
||||
print('error cleaning! {}'.format(err))
|
||||
continue
|
||||
|
||||
pat.shapes.append(shape)
|
||||
|
||||
elif isinstance(element, gdsii.elements.Text):
|
||||
label = Label(offset=element.xy,
|
||||
layer=(element.layer, element.text_type),
|
||||
string=element.string.decode('ASCII'))
|
||||
pat.labels.append(label)
|
||||
|
||||
elif isinstance(element, gdsii.elements.SRef):
|
||||
pat.subpatterns.append(_sref_to_subpat(element))
|
||||
|
||||
elif isinstance(element, gdsii.elements.ARef):
|
||||
pat.subpatterns.append(_aref_to_gridrep(element))
|
||||
|
||||
patterns.append(pat)
|
||||
|
||||
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
|
||||
# according to the subpattern.ref_name (which is deleted after use).
|
||||
patterns_dict = dict(((p.name, p) for p in patterns))
|
||||
for p in patterns_dict.values():
|
||||
for sp in p.subpatterns:
|
||||
sp.pattern = patterns_dict[sp.ref_name.decode('ASCII')]
|
||||
del sp.ref_name
|
||||
|
||||
return patterns_dict, library_info
|
||||
|
||||
|
||||
def _mlayer2gds(mlayer):
|
||||
if is_scalar(mlayer):
|
||||
layer = mlayer
|
||||
data_type = 0
|
||||
else:
|
||||
layer = mlayer[0]
|
||||
if len(mlayer) > 1:
|
||||
data_type = mlayer[1]
|
||||
else:
|
||||
data_type = 0
|
||||
return layer, data_type
|
||||
|
||||
|
||||
def _sref_to_subpat(element: gdsii.elements.SRef) -> SubPattern:
|
||||
# Helper function to create a SubPattern from an SREF. Sets subpat.pattern to None
|
||||
# and sets the instance attribute .ref_name to the struct_name.
|
||||
#
|
||||
# BUG: "Absolute" means not affected by parent elements.
|
||||
# That's not currently supported by masque at all, so need to either tag it and
|
||||
# undo the parent transformations, or implement it in masque.
|
||||
subpat = SubPattern(pattern=None, offset=element.xy)
|
||||
subpat.ref_name = element.struct_name
|
||||
if element.strans is not None:
|
||||
if element.mag is not None:
|
||||
subpat.scale = element.mag
|
||||
# Bit 13 means absolute scale
|
||||
if get_bit(element.strans, 15 - 13):
|
||||
#subpat.offset *= subpat.scale
|
||||
raise PatternError('Absolute scale is not implemented yet!')
|
||||
if element.angle is not None:
|
||||
subpat.rotation = element.angle * numpy.pi / 180
|
||||
# Bit 14 means absolute rotation
|
||||
if get_bit(element.strans, 15 - 14):
|
||||
#subpat.offset = numpy.dot(rotation_matrix_2d(subpat.rotation), subpat.offset)
|
||||
raise PatternError('Absolute rotation is not implemented yet!')
|
||||
# Bit 0 means mirror x-axis
|
||||
if get_bit(element.strans, 15 - 0):
|
||||
subpat.mirror(axis=0)
|
||||
return subpat
|
||||
|
||||
|
||||
def _aref_to_gridrep(element: gdsii.elements.ARef) -> GridRepetition:
|
||||
# Helper function to create a GridRepetition from an AREF. Sets gridrep.pattern to None
|
||||
# and sets the instance attribute .ref_name to the struct_name.
|
||||
#
|
||||
# BUG: "Absolute" means not affected by parent elements.
|
||||
# That's not currently supported by masque at all, so need to either tag it and
|
||||
# undo the parent transformations, or implement it in masque.i
|
||||
|
||||
rotation = 0
|
||||
offset = numpy.array(element.xy[0])
|
||||
scale = 1
|
||||
mirror_signs = numpy.ones(2)
|
||||
|
||||
if element.strans is not None:
|
||||
if element.mag is not None:
|
||||
scale = element.mag
|
||||
# Bit 13 means absolute scale
|
||||
if get_bit(element.strans, 15 - 13):
|
||||
raise PatternError('Absolute scale is not implemented yet!')
|
||||
if element.angle is not None:
|
||||
rotation = element.angle * numpy.pi / 180
|
||||
# Bit 14 means absolute rotation
|
||||
if get_bit(element.strans, 15 - 14):
|
||||
raise PatternError('Absolute rotation is not implemented yet!')
|
||||
# Bit 0 means mirror x-axis
|
||||
if get_bit(element.strans, 15 - 0):
|
||||
mirror_signs[0] = -1
|
||||
|
||||
counts = [element.cols, element.rows]
|
||||
vec_a0 = element.xy[1] - offset
|
||||
vec_b0 = element.xy[2] - offset
|
||||
|
||||
a_vector = numpy.dot(rotation_matrix_2d(-rotation), vec_a0 / scale / counts[0]) * mirror_signs
|
||||
b_vector = numpy.dot(rotation_matrix_2d(-rotation), vec_b0 / scale / counts[1]) * mirror_signs
|
||||
|
||||
|
||||
gridrep = GridRepetition(pattern=None,
|
||||
a_vector=a_vector,
|
||||
b_vector=b_vector,
|
||||
a_count=counts[0],
|
||||
b_count=counts[1],
|
||||
offset=offset,
|
||||
rotation=rotation,
|
||||
scale=scale,
|
||||
mirrored=(mirror_signs == -1))
|
||||
gridrep.ref_name = element.struct_name
|
||||
|
||||
return gridrep
|
||||
|
||||
|
||||
def _subpatterns_to_refs(subpatterns: List[SubPattern or GridRepetition]
|
||||
) -> List[gdsii.elements.ARef or gdsii.elements.SRef]:
|
||||
# strans must be set for angle and mag to take effect
|
||||
refs = []
|
||||
for subpat in subpatterns:
|
||||
encoded_name = subpat.pattern.name
|
||||
|
||||
if isinstance(subpat, GridRepetition):
|
||||
mirror_signs = (-1) ** numpy.array(subpat.mirrored)
|
||||
xy = numpy.array(subpat.offset) + [
|
||||
[0, 0],
|
||||
numpy.dot(rotation_matrix_2d(subpat.rotation), subpat.a_vector * mirror_signs) * subpat.scale * subpat.a_count,
|
||||
numpy.dot(rotation_matrix_2d(subpat.rotation), subpat.b_vector * mirror_signs) * subpat.scale * subpat.b_count,
|
||||
]
|
||||
ref = gdsii.elements.ARef(struct_name=encoded_name,
|
||||
xy=numpy.round(xy).astype(int),
|
||||
cols=numpy.round(subpat.a_count).astype(int),
|
||||
rows=numpy.round(subpat.b_count).astype(int))
|
||||
else:
|
||||
ref = gdsii.elements.SRef(struct_name=encoded_name,
|
||||
xy=numpy.round([subpat.offset]).astype(int))
|
||||
|
||||
ref.strans = 0
|
||||
ref.angle = subpat.rotation * 180 / numpy.pi
|
||||
mirror_x, mirror_y = subpat.mirrored
|
||||
if mirror_x and mirror_y:
|
||||
ref.angle += 180
|
||||
elif mirror_x:
|
||||
ref.strans = set_bit(ref.strans, 15 - 0, True)
|
||||
elif mirror_y:
|
||||
ref.angle += 180
|
||||
ref.strans = set_bit(ref.strans, 15 - 0, True)
|
||||
ref.angle %= 360
|
||||
ref.mag = subpat.scale
|
||||
|
||||
refs.append(ref)
|
||||
return refs
|
||||
|
||||
|
||||
def _shapes_to_boundaries(shapes: List[Shape]
|
||||
) -> List[gdsii.elements.Boundary]:
|
||||
# Add a Boundary element for each shape
|
||||
boundaries = []
|
||||
for shape in shapes:
|
||||
layer, data_type = _mlayer2gds(shape.layer)
|
||||
for polygon in shape.to_polygons():
|
||||
xy_open = numpy.round(polygon.vertices + polygon.offset).astype(int)
|
||||
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
|
||||
boundaries.append(gdsii.elements.Boundary(layer=layer,
|
||||
data_type=data_type,
|
||||
xy=xy_closed))
|
||||
return boundaries
|
||||
|
||||
|
||||
def _labels_to_texts(labels: List[Label]) -> List[gdsii.elements.Text]:
|
||||
texts = []
|
||||
for label in labels:
|
||||
layer, text_type = _mlayer2gds(label.layer)
|
||||
xy = numpy.round([label.offset]).astype(int)
|
||||
texts.append(gdsii.elements.Text(layer=layer,
|
||||
text_type=text_type,
|
||||
xy=xy,
|
||||
string=label.string.encode('ASCII')))
|
||||
return texts
|
||||
|
||||
|
||||
def _disambiguate_pattern_names(patterns):
|
||||
used_names = []
|
||||
for pat in patterns:
|
||||
sanitized_name = re.compile('[^A-Za-z0-9_\?\$]').sub('_', pat.name)
|
||||
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
while suffixed_name in used_names or suffixed_name == '':
|
||||
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
|
||||
|
||||
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning('Empty pattern name saved as "{}"'.format(suffixed_name))
|
||||
elif suffixed_name != sanitized_name:
|
||||
logger.warning('Pattern name "{}" appears multiple times; renaming to "{}"'.format(pat.name, suffixed_name))
|
||||
|
||||
encoded_name = suffixed_name.encode('ASCII')
|
||||
if len(encoded_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError('Zero-length name after sanitize+encode, originally "{}"'.format(pat.name))
|
||||
if len(encoded_name) > 32:
|
||||
raise PatternError('Pattern name "{}" length > 32 after encode, originally "{}"'.format(encoded_name, pat.name))
|
||||
|
||||
pat.name = encoded_name
|
||||
used_names.append(suffixed_name)
|
139
masque/file/svg.py
Normal file
139
masque/file/svg.py
Normal file
@ -0,0 +1,139 @@
|
||||
"""
|
||||
SVG file format readers and writers
|
||||
"""
|
||||
|
||||
import svgwrite
|
||||
import numpy
|
||||
|
||||
from .utils import mangle_name
|
||||
from .. import Pattern
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def write(pattern: Pattern,
|
||||
filename: str,
|
||||
custom_attributes: bool=False):
|
||||
"""
|
||||
Write a Pattern to an SVG file, by first calling .polygonize() on it
|
||||
to change the shapes into polygons, and then writing patterns as SVG
|
||||
groups (<g>, inside <defs>), polygons as paths (<path>), and subpatterns
|
||||
as <use> elements.
|
||||
|
||||
Note that this function modifies the Pattern.
|
||||
|
||||
If custom_attributes is True, non-standard pattern_layer and pattern_dose attributes
|
||||
are written to the relevant elements.
|
||||
|
||||
It is often a good idea to run pattern.subpatternize() on pattern prior to
|
||||
calling this function, especially if calling .polygonize() will result in very
|
||||
many vertices.
|
||||
|
||||
If you want pattern polygonized with non-default arguments, just call pattern.polygonize()
|
||||
prior to calling this function.
|
||||
|
||||
:param pattern: Pattern to write to file. Modified by this function.
|
||||
:param filename: Filename to write to.
|
||||
:param custom_attributes: Whether to write non-standard pattern_layer and
|
||||
pattern_dose attributes to the SVG elements.
|
||||
"""
|
||||
|
||||
# Polygonize pattern
|
||||
pattern.polygonize()
|
||||
|
||||
[bounds_min, bounds_max] = pattern.get_bounds()
|
||||
|
||||
viewbox = numpy.hstack((bounds_min - 1, (bounds_max - bounds_min) + 2))
|
||||
viewbox_string = '{:g} {:g} {:g} {:g}'.format(*viewbox)
|
||||
|
||||
# Create file
|
||||
svg = svgwrite.Drawing(filename, profile='full', viewBox=viewbox_string,
|
||||
debug=(not custom_attributes))
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {**(pattern.referenced_patterns_by_id()), id(pattern): pattern}
|
||||
|
||||
# Now create a group for each row in sd_table (ie, each pattern + dose combination)
|
||||
# and add in any Boundary and Use elements
|
||||
for pat in patterns_by_id.values():
|
||||
svg_group = svg.g(id=mangle_name(pat), fill='blue', stroke='red')
|
||||
|
||||
for shape in pat.shapes:
|
||||
for polygon in shape.to_polygons():
|
||||
path_spec = poly2path(polygon.vertices + polygon.offset)
|
||||
|
||||
path = svg.path(d=path_spec)
|
||||
if custom_attributes:
|
||||
path['pattern_layer'] = polygon.layer
|
||||
path['pattern_dose'] = polygon.dose
|
||||
|
||||
svg_group.add(path)
|
||||
|
||||
for subpat in pat.subpatterns:
|
||||
transform = 'scale({:g}) rotate({:g}) translate({:g},{:g})'.format(
|
||||
subpat.scale, subpat.rotation, subpat.offset[0], subpat.offset[1])
|
||||
use = svg.use(href='#' + mangle_name(subpat.pattern), transform=transform)
|
||||
if custom_attributes:
|
||||
use['pattern_dose'] = subpat.dose
|
||||
svg_group.add(use)
|
||||
|
||||
svg.defs.add(svg_group)
|
||||
svg.add(svg.use(href='#' + mangle_name(pattern)))
|
||||
svg.save()
|
||||
|
||||
|
||||
def write_inverted(pattern: Pattern, filename: str):
|
||||
"""
|
||||
Write an inverted Pattern to an SVG file, by first calling .polygonize() and
|
||||
.flatten() on it to change the shapes into polygons, then drawing a bounding
|
||||
box and drawing the polygons with reverse vertex order inside it, all within
|
||||
one <path> element.
|
||||
|
||||
Note that this function modifies the Pattern.
|
||||
|
||||
If you want pattern polygonized with non-default arguments, just call pattern.polygonize()
|
||||
prior to calling this function.
|
||||
|
||||
:param pattern: Pattern to write to file. Modified by this function.
|
||||
:param filename: Filename to write to.
|
||||
"""
|
||||
# Polygonize and flatten pattern
|
||||
pattern.polygonize().flatten()
|
||||
|
||||
[bounds_min, bounds_max] = pattern.get_bounds()
|
||||
|
||||
viewbox = numpy.hstack((bounds_min - 1, (bounds_max - bounds_min) + 2))
|
||||
viewbox_string = '{:g} {:g} {:g} {:g}'.format(*viewbox)
|
||||
|
||||
# Create file
|
||||
svg = svgwrite.Drawing(filename, profile='full', viewBox=viewbox_string)
|
||||
|
||||
# Draw bounding box
|
||||
slab_edge = [[bounds_min[0] - 1, bounds_max[1] + 1],
|
||||
[bounds_max[0] + 1, bounds_max[1] + 1],
|
||||
[bounds_max[0] + 1, bounds_min[1] - 1],
|
||||
[bounds_min[0] - 1, bounds_min[1] - 1]]
|
||||
path_spec = poly2path(slab_edge)
|
||||
|
||||
# Draw polygons with reversed vertex order
|
||||
for shape in pattern.shapes:
|
||||
for polygon in shape.to_polygons():
|
||||
path_spec += poly2path(polygon.vertices[::-1] + polygon.offset)
|
||||
|
||||
svg.add(svg.path(d=path_spec, fill='blue', stroke='red'))
|
||||
svg.save()
|
||||
|
||||
|
||||
def poly2path(vertices: numpy.ndarray) -> str:
|
||||
"""
|
||||
Create an SVG path string from an Nx2 list of vertices.
|
||||
|
||||
:param vertices: Nx2 array of vertices.
|
||||
:return: SVG path-string.
|
||||
"""
|
||||
commands = 'M{:g},{:g} '.format(vertices[0][0], vertices[0][1])
|
||||
for vertex in vertices[1:]:
|
||||
commands += 'L{:g},{:g}'.format(vertex[0], vertex[1])
|
||||
commands += ' Z '
|
||||
return commands
|
42
masque/file/utils.py
Normal file
42
masque/file/utils.py
Normal file
@ -0,0 +1,42 @@
|
||||
"""
|
||||
Helper functions for file reading and writing
|
||||
"""
|
||||
import re
|
||||
from typing import Set, Tuple, List
|
||||
|
||||
from masque.pattern import Pattern
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def mangle_name(pattern: Pattern, dose_multiplier: float=1.0) -> str:
|
||||
"""
|
||||
Create a name using pattern.name, id(pattern), and the dose multiplier.
|
||||
|
||||
:param pattern: Pattern whose name we want to mangle.
|
||||
:param dose_multiplier: Dose multiplier to mangle with.
|
||||
:return: Mangled name.
|
||||
"""
|
||||
expression = re.compile('[^A-Za-z0-9_\?\$]')
|
||||
full_name = '{}_{}_{}'.format(pattern.name, dose_multiplier, id(pattern))
|
||||
sanitized_name = expression.sub('_', full_name)
|
||||
return sanitized_name
|
||||
|
||||
|
||||
def make_dose_table(patterns: List[Pattern], dose_multiplier: float=1.0) -> Set[Tuple[int, float]]:
|
||||
"""
|
||||
Create a set containing (id(pat), written_dose) for each pattern (including subpatterns)
|
||||
|
||||
:param pattern: Source Patterns.
|
||||
:param dose_multiplier: Multiplier for all written_dose entries.
|
||||
:return: {(id(subpat.pattern), written_dose), ...}
|
||||
"""
|
||||
dose_table = {(id(pattern), dose_multiplier) for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
for subpat in pattern.subpatterns:
|
||||
subpat_dose_entry = (id(subpat.pattern), subpat.dose * dose_multiplier)
|
||||
if subpat_dose_entry not in dose_table:
|
||||
subpat_dose_table = make_dose_table([subpat.pattern], subpat.dose * dose_multiplier)
|
||||
dose_table = dose_table.union(subpat_dose_table)
|
||||
return dose_table
|
129
masque/label.py
Normal file
129
masque/label.py
Normal file
@ -0,0 +1,129 @@
|
||||
from typing import List, Tuple
|
||||
import copy
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from . import PatternError
|
||||
from .utils import is_scalar, vector2, rotation_matrix_2d
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
class Label:
|
||||
"""
|
||||
A circle, which has a position and radius.
|
||||
"""
|
||||
|
||||
# [x_offset, y_offset]
|
||||
_offset = numpy.array([0.0, 0.0]) # type: numpy.ndarray
|
||||
|
||||
# Layer (integer >= 0)
|
||||
_layer = 0 # type: int or Tuple
|
||||
|
||||
# Label string
|
||||
_string = None # type: str
|
||||
|
||||
# ---- Properties
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
"""
|
||||
[x, y] offset
|
||||
|
||||
:return: [x_offset, y_offset]
|
||||
"""
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten()
|
||||
|
||||
# layer property
|
||||
@property
|
||||
def layer(self) -> int or Tuple[int]:
|
||||
"""
|
||||
Layer number (int or tuple of ints)
|
||||
|
||||
:return: Layer
|
||||
"""
|
||||
return self._layer
|
||||
|
||||
@layer.setter
|
||||
def layer(self, val: int or List[int]):
|
||||
self._layer = val
|
||||
|
||||
# string property
|
||||
@property
|
||||
def string(self) -> str:
|
||||
"""
|
||||
Label string (str)
|
||||
|
||||
:return: string
|
||||
"""
|
||||
return self._string
|
||||
|
||||
@string.setter
|
||||
def string(self, val: str):
|
||||
self._string = val
|
||||
|
||||
def __init__(self,
|
||||
string: str,
|
||||
offset: vector2=(0.0, 0.0),
|
||||
layer: int=0):
|
||||
self.string = string
|
||||
self.offset = numpy.array(offset, dtype=float)
|
||||
self.layer = layer
|
||||
|
||||
|
||||
# ---- Non-abstract methods
|
||||
def copy(self) -> 'Label':
|
||||
"""
|
||||
Returns a deep copy of the shape.
|
||||
|
||||
:return: Deep copy of self
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def translate(self, offset: vector2) -> 'Label':
|
||||
"""
|
||||
Translate the shape by the given offset
|
||||
|
||||
:param offset: [x_offset, y,offset]
|
||||
:return: self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'Label':
|
||||
"""
|
||||
Rotate the shape around a point.
|
||||
|
||||
:param pivot: Point (x, y) to rotate around
|
||||
:param rotation: Angle to rotate by (counterclockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
"""
|
||||
Return the bounds of the label.
|
||||
|
||||
Labels are assumed to take up 0 area, i.e.
|
||||
bounds = [self.offset,
|
||||
self.offset]
|
||||
|
||||
:return: Bounds [[xmin, xmax], [ymin, ymax]]
|
||||
"""
|
||||
return numpy.array([self.offset, self.offset])
|
||||
|
||||
|
539
masque/pattern.py
Normal file
539
masque/pattern.py
Normal file
@ -0,0 +1,539 @@
|
||||
"""
|
||||
Base object for containing a lithography mask.
|
||||
"""
|
||||
|
||||
from typing import List, Callable, Tuple, Dict, Union
|
||||
import copy
|
||||
import itertools
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy
|
||||
# .visualize imports matplotlib and matplotlib.collections
|
||||
|
||||
from .subpattern import SubPattern
|
||||
from .repetition import GridRepetition
|
||||
from .shapes import Shape, Polygon
|
||||
from .label import Label
|
||||
from .utils import rotation_matrix_2d, vector2
|
||||
from .error import PatternError
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
class Pattern:
|
||||
"""
|
||||
2D layout consisting of some set of shapes and references to other Pattern objects
|
||||
(via SubPattern). Shapes are assumed to inherit from .shapes.Shape or provide equivalent
|
||||
functions.
|
||||
|
||||
:var shapes: List of all shapes in this Pattern. Elements in this list are assumed to inherit
|
||||
from Shape or provide equivalent functions.
|
||||
:var subpatterns: List of all SubPattern objects in this Pattern. Multiple SubPattern objects
|
||||
may reference the same Pattern object.
|
||||
:var name: An identifier for this object. Not necessarily unique.
|
||||
"""
|
||||
shapes = None # type: List[Shape]
|
||||
labels = None # type: List[Labels]
|
||||
subpatterns = None # type: List[SubPattern or GridRepetition]
|
||||
name = None # type: str
|
||||
|
||||
def __init__(self,
|
||||
shapes: List[Shape]=(),
|
||||
labels: List[Label]=(),
|
||||
subpatterns: List[SubPattern]=(),
|
||||
name: str='',
|
||||
):
|
||||
"""
|
||||
Basic init; arguments get assigned to member variables.
|
||||
Non-list inputs for shapes and subpatterns get converted to lists.
|
||||
|
||||
:param shapes: Initial shapes in the Pattern
|
||||
:param labels: Initial labels in the Pattern
|
||||
:param subpatterns: Initial subpatterns in the Pattern
|
||||
:param name: An identifier for the Pattern
|
||||
"""
|
||||
if isinstance(shapes, list):
|
||||
self.shapes = shapes
|
||||
else:
|
||||
self.shapes = list(shapes)
|
||||
|
||||
if isinstance(labels, list):
|
||||
self.labels = labels
|
||||
else:
|
||||
self.labels = list(labels)
|
||||
|
||||
if isinstance(subpatterns, list):
|
||||
self.subpatterns = subpatterns
|
||||
else:
|
||||
self.subpatterns = list(subpatterns)
|
||||
|
||||
self.name = name
|
||||
|
||||
def append(self, other_pattern: 'Pattern') -> 'Pattern':
|
||||
"""
|
||||
Appends all shapes, labels and subpatterns from other_pattern to self's shapes,
|
||||
labels, and supbatterns.
|
||||
|
||||
:param other_pattern: The Pattern to append
|
||||
:return: self
|
||||
"""
|
||||
self.subpatterns += other_pattern.subpatterns
|
||||
self.shapes += other_pattern.shapes
|
||||
self.labels += other_pattern.labels
|
||||
return self
|
||||
|
||||
def subset(self,
|
||||
shapes_func: Callable[[Shape], bool]=None,
|
||||
labels_func: Callable[[Label], bool]=None,
|
||||
subpatterns_func: Callable[[SubPattern], bool]=None,
|
||||
recursive: bool=False,
|
||||
) -> 'Pattern':
|
||||
"""
|
||||
Returns a Pattern containing only the entities (e.g. shapes) for which the
|
||||
given entity_func returns True.
|
||||
Self is _not_ altered, but shapes, labels, and subpatterns are _not_ copied.
|
||||
|
||||
:param shapes_func: Given a shape, returns a boolean denoting whether the shape is a member
|
||||
of the subset. Default always returns False.
|
||||
:param labels_func: Given a label, returns a boolean denoting whether the label is a member
|
||||
of the subset. Default always returns False.
|
||||
:param subpatterns_func: Given a subpattern, returns a boolean denoting if it is a member
|
||||
of the subset. Default always returns False.
|
||||
:param recursive: If True, also calls .subset() recursively on patterns referenced by this
|
||||
pattern.
|
||||
:return: A Pattern containing all the shapes and subpatterns for which the parameter
|
||||
functions return True
|
||||
"""
|
||||
def do_subset(src):
|
||||
pat = Pattern(name=src.name)
|
||||
if shapes_func is not None:
|
||||
pat.shapes = [s for s in src.shapes if shapes_func(s)]
|
||||
if labels_func is not None:
|
||||
pat.labels = [s for s in src.labels if labels_func(s)]
|
||||
if subpatterns_func is not None:
|
||||
pat.subpatterns = [s for s in src.subpatterns if subpatterns_func(s)]
|
||||
return pat
|
||||
|
||||
if recursive:
|
||||
pat = self.apply(do_subset)
|
||||
else:
|
||||
pat = do_subset(self)
|
||||
return pat
|
||||
|
||||
def apply(self,
|
||||
func: Callable[['Pattern'], 'Pattern'],
|
||||
memo: Dict[int, 'Pattern']=None,
|
||||
) -> 'Pattern':
|
||||
"""
|
||||
Recursively apply func() to this pattern and any pattern it references.
|
||||
func() is expected to take and return a Pattern.
|
||||
func() is first applied to the pattern as a whole, then any referenced patterns.
|
||||
It is only applied to any given pattern once, regardless of how many times it is
|
||||
referenced.
|
||||
|
||||
:param func: Function which accepts a Pattern, and returns a pattern.
|
||||
:param memo: Dictionary used to avoid re-running on multiply-referenced patterns.
|
||||
Stores {id(pattern): func(pattern)} for patterns which have already been processed.
|
||||
Default None (no already-processed patterns).
|
||||
:return: The result of applying func() to this pattern and all subpatterns.
|
||||
:raises: PatternError if called on a pattern containing a circular reference.
|
||||
"""
|
||||
if memo is None:
|
||||
memo = {}
|
||||
|
||||
pat_id = id(self)
|
||||
if pat_id not in memo:
|
||||
memo[pat_id] = None
|
||||
pat = func(self)
|
||||
for subpat in pat.subpatterns:
|
||||
subpat.pattern = subpat.pattern.apply(func, memo)
|
||||
memo[pat_id] = pat
|
||||
elif memo[pat_id] is None:
|
||||
raise PatternError('.apply() called on pattern with circular reference')
|
||||
else:
|
||||
pat = memo[pat_id]
|
||||
return pat
|
||||
|
||||
def polygonize(self,
|
||||
poly_num_points: int=None,
|
||||
poly_max_arclen: float=None
|
||||
) -> 'Pattern':
|
||||
"""
|
||||
Calls .to_polygons(...) on all the shapes in this Pattern and any referenced patterns,
|
||||
replacing them with the returned polygons.
|
||||
Arguments are passed directly to shape.to_polygons(...).
|
||||
|
||||
:param poly_num_points: Number of points to use for each polygon. Can be overridden by
|
||||
poly_max_arclen if that results in more points. Optional, defaults to shapes'
|
||||
internal defaults.
|
||||
:param poly_max_arclen: Maximum arclength which can be approximated by a single line
|
||||
segment. Optional, defaults to shapes' internal defaults.
|
||||
:return: self
|
||||
"""
|
||||
old_shapes = self.shapes
|
||||
self.shapes = list(itertools.chain.from_iterable(
|
||||
(shape.to_polygons(poly_num_points, poly_max_arclen)
|
||||
for shape in old_shapes)))
|
||||
for subpat in self.subpatterns:
|
||||
subpat.pattern.polygonize(poly_num_points, poly_max_arclen)
|
||||
return self
|
||||
|
||||
def manhattanize(self,
|
||||
grid_x: numpy.ndarray,
|
||||
grid_y: numpy.ndarray
|
||||
) -> 'Pattern':
|
||||
"""
|
||||
Calls .polygonize() and .flatten on the pattern, then calls .manhattanize() on all the
|
||||
resulting shapes, replacing them with the returned Manhattan polygons.
|
||||
|
||||
:param grid_x: List of allowed x-coordinates for the Manhattanized polygon edges.
|
||||
:param grid_y: List of allowed y-coordinates for the Manhattanized polygon edges.
|
||||
:return: self
|
||||
"""
|
||||
|
||||
self.polygonize().flatten()
|
||||
old_shapes = self.shapes
|
||||
self.shapes = list(itertools.chain.from_iterable(
|
||||
(shape.manhattanize(grid_x, grid_y) for shape in old_shapes)))
|
||||
return self
|
||||
|
||||
def subpatternize(self,
|
||||
recursive: bool=True,
|
||||
norm_value: int=1e6,
|
||||
exclude_types: Tuple[Shape]=(Polygon,)
|
||||
) -> 'Pattern':
|
||||
"""
|
||||
Iterates through this Pattern and all referenced Patterns. Within each Pattern, it iterates
|
||||
over all shapes, calling .normalized_form(norm_value) on them to retrieve a scale-,
|
||||
offset-, dose-, and rotation-independent form. Each shape whose normalized form appears
|
||||
more than once is removed and re-added using subpattern objects referencing a newly-created
|
||||
Pattern containing only the normalized form of the shape.
|
||||
|
||||
Note that the default norm_value was chosen to give a reasonable precision when converting
|
||||
to GDSII, which uses integer values for pixel coordinates.
|
||||
|
||||
:param recursive: Whether to call recursively on self's subpatterns. Default True.
|
||||
:param norm_value: Passed to shape.normalized_form(norm_value). Default 1e6 (see function
|
||||
note about GDSII)
|
||||
:param exclude_types: Shape types passed in this argument are always left untouched, for
|
||||
speed or convenience. Default: (Shapes.Polygon,)
|
||||
:return: self
|
||||
"""
|
||||
|
||||
if exclude_types is None:
|
||||
exclude_types = ()
|
||||
|
||||
if recursive:
|
||||
for subpat in self.subpatterns:
|
||||
subpat.pattern.subpatternize(recursive=True,
|
||||
norm_value=norm_value,
|
||||
exclude_types=exclude_types)
|
||||
|
||||
# Create a dict which uses the label tuple from .normalized_form() as a key, and which
|
||||
# stores (function_to_create_normalized_shape, [(index_in_shapes, values), ...]), where
|
||||
# values are the (offset, scale, rotation, dose) values as calculated by .normalized_form()
|
||||
shape_table = defaultdict(lambda: [None, list()])
|
||||
for i, shape in enumerate(self.shapes):
|
||||
if not any((isinstance(shape, t) for t in exclude_types)):
|
||||
label, values, func = shape.normalized_form(norm_value)
|
||||
shape_table[label][0] = func
|
||||
shape_table[label][1].append((i, values))
|
||||
|
||||
# Iterate over the normalized shapes in the table. If any normalized shape occurs more than
|
||||
# once, create a Pattern holding a normalized shape object, and add self.subpatterns
|
||||
# entries for each occurrence in self. Also, note down that we should delete the
|
||||
# self.shapes entries for which we made SubPatterns.
|
||||
shapes_to_remove = []
|
||||
for label in shape_table:
|
||||
if len(shape_table[label][1]) > 1:
|
||||
shape = shape_table[label][0]()
|
||||
pat = Pattern(shapes=[shape])
|
||||
|
||||
for i, values in shape_table[label][1]:
|
||||
(offset, scale, rotation, dose) = values
|
||||
subpat = SubPattern(pattern=pat, offset=offset, scale=scale,
|
||||
rotation=rotation, dose=dose)
|
||||
self.subpatterns.append(subpat)
|
||||
shapes_to_remove.append(i)
|
||||
|
||||
# Remove any shapes for which we have created subpatterns.
|
||||
for i in sorted(shapes_to_remove, reverse=True):
|
||||
del self.shapes[i]
|
||||
|
||||
return self
|
||||
|
||||
def as_polygons(self) -> List[numpy.ndarray]:
|
||||
"""
|
||||
Represents the pattern as a list of polygons.
|
||||
|
||||
Deep-copies the pattern, then calls .polygonize() and .flatten() on the copy in order to
|
||||
generate the list of polygons.
|
||||
|
||||
:return: A list of (Ni, 2) numpy.ndarrays specifying vertices of the polygons. Each ndarray
|
||||
is of the form [[x0, y0], [x1, y1],...].
|
||||
"""
|
||||
pat = copy.deepcopy(self).polygonize().flatten()
|
||||
return [shape.vertices + shape.offset for shape in pat.shapes]
|
||||
|
||||
def referenced_patterns_by_id(self) -> Dict[int, 'Pattern']:
|
||||
"""
|
||||
Create a dictionary of {id(pat): pat} for all Pattern objects referenced by this
|
||||
Pattern (operates recursively on all referenced Patterns as well)
|
||||
|
||||
:return: Dictionary of {id(pat): pat} for all referenced Pattern objects
|
||||
"""
|
||||
ids = {}
|
||||
for subpat in self.subpatterns:
|
||||
if id(subpat.pattern) not in ids:
|
||||
ids[id(subpat.pattern)] = subpat.pattern
|
||||
ids.update(subpat.pattern.referenced_patterns_by_id())
|
||||
return ids
|
||||
|
||||
def get_bounds(self) -> Union[numpy.ndarray, None]:
|
||||
"""
|
||||
Return a numpy.ndarray containing [[x_min, y_min], [x_max, y_max]], corresponding to the
|
||||
extent of the Pattern's contents in each dimension.
|
||||
Returns None if the Pattern is empty.
|
||||
|
||||
:return: [[x_min, y_min], [x_max, y_max]] or None
|
||||
"""
|
||||
entries = self.shapes + self.subpatterns + self.labels
|
||||
if not entries:
|
||||
return None
|
||||
|
||||
init_bounds = entries[0].get_bounds()
|
||||
min_bounds = init_bounds[0, :]
|
||||
max_bounds = init_bounds[1, :]
|
||||
for entry in entries[1:]:
|
||||
bounds = entry.get_bounds()
|
||||
min_bounds = numpy.minimum(min_bounds, bounds[0, :])
|
||||
max_bounds = numpy.maximum(max_bounds, bounds[1, :])
|
||||
return numpy.vstack((min_bounds, max_bounds))
|
||||
|
||||
def flatten(self) -> 'Pattern':
|
||||
"""
|
||||
Removes all subpatterns and adds equivalent shapes.
|
||||
|
||||
:return: self
|
||||
"""
|
||||
subpatterns = copy.deepcopy(self.subpatterns)
|
||||
self.subpatterns = []
|
||||
for subpat in subpatterns:
|
||||
subpat.pattern.flatten()
|
||||
p = subpat.as_pattern()
|
||||
self.shapes += p.shapes
|
||||
self.labels += p.labels
|
||||
return self
|
||||
|
||||
def translate_elements(self, offset: vector2) -> 'Pattern':
|
||||
"""
|
||||
Translates all shapes, label, and subpatterns by the given offset.
|
||||
|
||||
:param offset: Offset to translate by
|
||||
:return: self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns + self.labels:
|
||||
entry.translate(offset)
|
||||
return self
|
||||
|
||||
def scale_elements(self, scale: float) -> 'Pattern':
|
||||
""""
|
||||
Scales all shapes and subpatterns by the given value.
|
||||
|
||||
:param scale: value to scale by
|
||||
:return: self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
entry.scale(scale)
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Pattern':
|
||||
"""
|
||||
Scale this Pattern by the given value
|
||||
(all shapes and subpatterns and their offsets are scaled)
|
||||
|
||||
:param c: value to scale by
|
||||
:return: self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
entry.offset *= c
|
||||
entry.scale_by(c)
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'Pattern':
|
||||
"""
|
||||
Rotate the Pattern around the a location.
|
||||
|
||||
:param pivot: Location to rotate around
|
||||
:param rotation: Angle to rotate by (counter-clockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
pivot = numpy.array(pivot)
|
||||
self.translate_elements(-pivot)
|
||||
self.rotate_elements(rotation)
|
||||
self.rotate_element_centers(rotation)
|
||||
self.translate_elements(+pivot)
|
||||
return self
|
||||
|
||||
def rotate_element_centers(self, rotation: float) -> 'Pattern':
|
||||
"""
|
||||
Rotate the offsets of all shapes, labels, and subpatterns around (0, 0)
|
||||
|
||||
:param rotation: Angle to rotate by (counter-clockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns + self.labels:
|
||||
entry.offset = numpy.dot(rotation_matrix_2d(rotation), entry.offset)
|
||||
return self
|
||||
|
||||
def rotate_elements(self, rotation: float) -> 'Pattern':
|
||||
"""
|
||||
Rotate each shape and subpattern around its center (offset)
|
||||
|
||||
:param rotation: Angle to rotate by (counter-clockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
entry.rotate(rotation)
|
||||
return self
|
||||
|
||||
def mirror_element_centers(self, axis: int) -> 'Pattern':
|
||||
"""
|
||||
Mirror the offsets of all shapes, labels, and subpatterns across an axis
|
||||
|
||||
:param axis: Axis to mirror across
|
||||
:return: self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns + self.labels:
|
||||
entry.offset[axis - 1] *= -1
|
||||
return self
|
||||
|
||||
def mirror_elements(self, axis: int) -> 'Pattern':
|
||||
"""
|
||||
Mirror each shape and subpattern across an axis, relative to its
|
||||
center (offset)
|
||||
|
||||
:param axis: Axis to mirror across
|
||||
:return: self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
entry.mirror(axis)
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Pattern':
|
||||
"""
|
||||
Mirror the Pattern across an axis
|
||||
|
||||
:param axis: Axis to mirror across
|
||||
:return: self
|
||||
"""
|
||||
self.mirror_elements(axis)
|
||||
self.mirror_element_centers(axis)
|
||||
return self
|
||||
|
||||
def scale_element_doses(self, factor: float) -> 'Pattern':
|
||||
"""
|
||||
Multiply all shape and subpattern doses by a factor
|
||||
|
||||
:param factor: Factor to multiply doses by
|
||||
:return: self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
entry.dose *= factor
|
||||
return self
|
||||
|
||||
def copy(self) -> 'Pattern':
|
||||
"""
|
||||
Return a copy of the Pattern, deep-copying shapes and copying subpattern entries, but not
|
||||
deep-copying any referenced patterns.
|
||||
|
||||
See also: Pattern.deepcopy()
|
||||
|
||||
:return: A copy of the current Pattern.
|
||||
"""
|
||||
cp = copy.copy(self)
|
||||
cp.shapes = copy.deepcopy(cp.shapes)
|
||||
cp.labels = copy.deepcopy(cp.labels)
|
||||
cp.subpatterns = [copy.copy(subpat) for subpat in cp.subpatterns]
|
||||
return cp
|
||||
|
||||
def deepcopy(self) -> 'Pattern':
|
||||
"""
|
||||
Convenience method for copy.deepcopy(pattern)
|
||||
|
||||
:return: A deep copy of the current Pattern.
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
@staticmethod
|
||||
def load(filename: str) -> 'Pattern':
|
||||
"""
|
||||
Load a Pattern from a file
|
||||
|
||||
:param filename: Filename to load from
|
||||
:return: Loaded Pattern
|
||||
"""
|
||||
with open(filename, 'rb') as f:
|
||||
tmp_dict = pickle.load(f)
|
||||
|
||||
pattern = Pattern()
|
||||
pattern.__dict__.update(tmp_dict)
|
||||
return pattern
|
||||
|
||||
def save(self, filename: str) -> 'Pattern':
|
||||
"""
|
||||
Save the Pattern to a file
|
||||
|
||||
:param filename: Filename to save to
|
||||
:return: self
|
||||
"""
|
||||
with open(filename, 'wb') as f:
|
||||
pickle.dump(self.__dict__, f, protocol=2)
|
||||
return self
|
||||
|
||||
def visualize(self,
|
||||
offset: vector2=(0., 0.),
|
||||
line_color: str='k',
|
||||
fill_color: str='none',
|
||||
overdraw: bool=False):
|
||||
"""
|
||||
Draw a picture of the Pattern and wait for the user to inspect it
|
||||
|
||||
Imports matplotlib.
|
||||
|
||||
:param offset: Coordinates to offset by before drawing
|
||||
:param line_color: Outlines are drawn with this color (passed to matplotlib PolyCollection)
|
||||
:param fill_color: Interiors are drawn with this color (passed to matplotlib PolyCollection)
|
||||
:param overdraw: Whether to create a new figure or draw on a pre-existing one
|
||||
"""
|
||||
# TODO: add text labels to visualize()
|
||||
from matplotlib import pyplot
|
||||
import matplotlib.collections
|
||||
|
||||
offset = numpy.array(offset, dtype=float)
|
||||
|
||||
if not overdraw:
|
||||
figure = pyplot.figure()
|
||||
pyplot.axis('equal')
|
||||
else:
|
||||
figure = pyplot.gcf()
|
||||
|
||||
axes = figure.gca()
|
||||
|
||||
polygons = []
|
||||
for shape in self.shapes:
|
||||
polygons += [offset + s.offset + s.vertices for s in shape.to_polygons()]
|
||||
|
||||
mpl_poly_collection = matplotlib.collections.PolyCollection(polygons,
|
||||
facecolors=fill_color,
|
||||
edgecolors=line_color)
|
||||
axes.add_collection(mpl_poly_collection)
|
||||
pyplot.axis('equal')
|
||||
|
||||
for subpat in self.subpatterns:
|
||||
subpat.as_pattern().visualize(offset=offset, overdraw=True,
|
||||
line_color=line_color, fill_color=fill_color)
|
||||
|
||||
if not overdraw:
|
||||
pyplot.show()
|
291
masque/repetition.py
Normal file
291
masque/repetition.py
Normal file
@ -0,0 +1,291 @@
|
||||
"""
|
||||
Repetitions provides support for efficiently nesting multiple identical
|
||||
instances of a Pattern in the same parent Pattern.
|
||||
"""
|
||||
|
||||
from typing import Union, List
|
||||
import copy
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from .error import PatternError
|
||||
from .utils import is_scalar, rotation_matrix_2d, vector2
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
# TODO need top-level comment about what order rotation/scale/offset/mirror/array are applied
|
||||
|
||||
class GridRepetition:
|
||||
"""
|
||||
GridRepetition provides support for efficiently embedding multiple copies of a Pattern
|
||||
into another Pattern at regularly-spaced offsets.
|
||||
"""
|
||||
|
||||
pattern = None # type: Pattern
|
||||
|
||||
_offset = (0.0, 0.0) # type: numpy.ndarray
|
||||
_rotation = 0.0 # type: float
|
||||
_dose = 1.0 # type: float
|
||||
_scale = 1.0 # type: float
|
||||
_mirrored = None # type: List[bool]
|
||||
|
||||
_a_vector = None # type: numpy.ndarray
|
||||
_b_vector = None # type: numpy.ndarray
|
||||
a_count = None # type: int
|
||||
b_count = 1 # type: int
|
||||
|
||||
def __init__(self,
|
||||
pattern: 'Pattern',
|
||||
a_vector: numpy.ndarray,
|
||||
a_count: int,
|
||||
b_vector: numpy.ndarray = None,
|
||||
b_count: int = 1,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
mirrored: List[bool] = None,
|
||||
dose: float = 1.0,
|
||||
scale: float = 1.0):
|
||||
"""
|
||||
:param a_vector: First lattice vector, of the form [x, y].
|
||||
Specifies center-to-center spacing between adjacent elements.
|
||||
:param a_count: Number of elements in the a_vector direction.
|
||||
:param b_vector: Second lattice vector, of the form [x, y].
|
||||
Specifies center-to-center spacing between adjacent elements.
|
||||
Can be omitted when specifying a 1D array.
|
||||
:param b_count: Number of elements in the b_vector direction.
|
||||
Should be omitted if b_vector was omitted.
|
||||
:raises: InvalidDataError if b_* inputs conflict with each other
|
||||
or a_count < 1.
|
||||
"""
|
||||
if b_vector is None:
|
||||
if b_count > 1:
|
||||
raise PatternError('Repetition has b_count > 1 but no b_vector')
|
||||
else:
|
||||
b_vector = numpy.array([0.0, 0.0])
|
||||
|
||||
if a_count < 1:
|
||||
raise InvalidDataError('Repetition has too-small a_count: '
|
||||
'{}'.format(a_count))
|
||||
if b_count < 1:
|
||||
raise InvalidDataError('Repetition has too-small b_count: '
|
||||
'{}'.format(b_count))
|
||||
self.a_vector = a_vector
|
||||
self.b_vector = b_vector
|
||||
self.a_count = a_count
|
||||
self.b_count = b_count
|
||||
|
||||
self.pattern = pattern
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.dose = dose
|
||||
self.scale = scale
|
||||
if mirrored is None:
|
||||
mirrored = [False, False]
|
||||
self.mirrored = mirrored
|
||||
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten().astype(float)
|
||||
|
||||
# dose property
|
||||
@property
|
||||
def dose(self) -> float:
|
||||
return self._dose
|
||||
|
||||
@dose.setter
|
||||
def dose(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Dose must be a scalar')
|
||||
if not val >= 0:
|
||||
raise PatternError('Dose must be non-negative')
|
||||
self._dose = val
|
||||
|
||||
# scale property
|
||||
@property
|
||||
def scale(self) -> float:
|
||||
return self._scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Scale must be a scalar')
|
||||
if not val > 0:
|
||||
raise PatternError('Scale must be positive')
|
||||
self._scale = val
|
||||
|
||||
# Rotation property [ccw]
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> List[bool]:
|
||||
return self._mirrored
|
||||
|
||||
@mirrored.setter
|
||||
def mirrored(self, val: List[bool]):
|
||||
if is_scalar(val):
|
||||
raise PatternError('Mirrored must be a 2-element list of booleans')
|
||||
self._mirrored = val
|
||||
|
||||
# a_vector property
|
||||
@property
|
||||
def a_vector(self) -> numpy.ndarray:
|
||||
return self._a_vector
|
||||
|
||||
@a_vector.setter
|
||||
def a_vector(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('a_vector must be convertible to size-2 ndarray')
|
||||
self._a_vector = val.flatten()
|
||||
|
||||
# b_vector property
|
||||
@property
|
||||
def b_vector(self) -> numpy.ndarray:
|
||||
return self._b_vector
|
||||
|
||||
@b_vector.setter
|
||||
def b_vector(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('b_vector must be convertible to size-2 ndarray')
|
||||
self._b_vector = val.flatten()
|
||||
|
||||
|
||||
def as_pattern(self) -> 'Pattern':
|
||||
"""
|
||||
Returns a copy of self.pattern which has been scaled, rotated, etc. according to this
|
||||
SubPattern's properties.
|
||||
:return: Copy of self.pattern that has been altered to reflect the SubPattern's properties.
|
||||
"""
|
||||
#xy = numpy.array(element.xy)
|
||||
#origin = xy[0]
|
||||
#col_spacing = (xy[1] - origin) / element.cols
|
||||
#row_spacing = (xy[2] - origin) / element.rows
|
||||
|
||||
patterns = []
|
||||
|
||||
for a in range(self.a_count):
|
||||
for b in range(self.b_count):
|
||||
offset = a * self.a_vector + b * self.b_vector
|
||||
newPat = self.pattern.deepcopy()
|
||||
newPat.translate_elements(offset)
|
||||
patterns.append(newPat)
|
||||
|
||||
combined = patterns[0]
|
||||
for p in patterns[1:]:
|
||||
combined.append(p)
|
||||
|
||||
combined.scale_by(self.scale)
|
||||
[combined.mirror(ax) for ax, do in enumerate(self.mirrored) if do]
|
||||
combined.rotate_around((0.0, 0.0), self.rotation)
|
||||
combined.translate_elements(self.offset)
|
||||
combined.scale_element_doses(self.dose)
|
||||
|
||||
return combined
|
||||
|
||||
def translate(self, offset: vector2) -> 'GridRepetition':
|
||||
"""
|
||||
Translate by the given offset
|
||||
|
||||
:param offset: Translate by this offset
|
||||
:return: self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'GridRepetition':
|
||||
"""
|
||||
Rotate around a point
|
||||
|
||||
:param pivot: Point to rotate around
|
||||
:param rotation: Angle to rotate by (counterclockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.rotate(rotation)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
def rotate(self, rotation: float) -> 'GridRepetition':
|
||||
"""
|
||||
Rotate around (0, 0)
|
||||
|
||||
:param rotation: Angle to rotate by (counterclockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
self.rotation += rotation
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'GridRepetition':
|
||||
"""
|
||||
Mirror the subpattern across an axis.
|
||||
|
||||
:param axis: Axis to mirror across.
|
||||
:return: self
|
||||
"""
|
||||
self.mirrored[axis] = not self.mirrored[axis]
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray or None:
|
||||
"""
|
||||
Return a numpy.ndarray containing [[x_min, y_min], [x_max, y_max]], corresponding to the
|
||||
extent of the SubPattern in each dimension.
|
||||
Returns None if the contained Pattern is empty.
|
||||
|
||||
:return: [[x_min, y_min], [x_max, y_max]] or None
|
||||
"""
|
||||
return self.as_pattern().get_bounds()
|
||||
|
||||
def scale_by(self, c: float) -> 'GridRepetition':
|
||||
"""
|
||||
Scale the subpattern by a factor
|
||||
|
||||
:param c: scaling factor
|
||||
"""
|
||||
self.scale *= c
|
||||
return self
|
||||
|
||||
def copy(self) -> 'GridRepetition':
|
||||
"""
|
||||
Return a shallow copy of the repetition.
|
||||
|
||||
:return: copy.copy(self)
|
||||
"""
|
||||
return copy.copy(self)
|
||||
|
||||
def deepcopy(self) -> 'SubPattern':
|
||||
"""
|
||||
Return a deep copy of the repetition.
|
||||
|
||||
:return: copy.copy(self)
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
12
masque/shapes/__init__.py
Normal file
12
masque/shapes/__init__.py
Normal file
@ -0,0 +1,12 @@
|
||||
"""
|
||||
Shapes for use with the Pattern class, as well as the Shape abstract class from
|
||||
which they are derived.
|
||||
"""
|
||||
|
||||
from .shape import Shape, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
|
||||
from .polygon import Polygon
|
||||
from .circle import Circle
|
||||
from .ellipse import Ellipse
|
||||
from .arc import Arc
|
||||
from .text import Text
|
358
masque/shapes/arc.py
Normal file
358
masque/shapes/arc.py
Normal file
@ -0,0 +1,358 @@
|
||||
from typing import List
|
||||
import math
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, vector2
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
class Arc(Shape):
|
||||
"""
|
||||
An elliptical arc, formed by cutting off an elliptical ring with two rays which exit from its
|
||||
center. It has a position, two radii, a start and stop angle, a rotation, and a width.
|
||||
|
||||
The radii define an ellipse; the ring is formed with radii +/- width/2.
|
||||
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
|
||||
The start and stop angle are measured counterclockwise from the first (x) radius.
|
||||
"""
|
||||
|
||||
_radii = None # type: numpy.ndarray
|
||||
_angles = None # type: numpy.ndarray
|
||||
_width = 1.0 # type: float
|
||||
_rotation = 0.0 # type: float
|
||||
|
||||
# Defaults for to_polygons
|
||||
poly_num_points = DEFAULT_POLY_NUM_POINTS # type: int
|
||||
poly_max_arclen = None # type: float
|
||||
|
||||
# radius properties
|
||||
@property
|
||||
def radii(self) -> numpy.ndarray:
|
||||
"""
|
||||
Return the radii [rx, ry]
|
||||
|
||||
:return: [rx, ry]
|
||||
"""
|
||||
return self._radii
|
||||
|
||||
@radii.setter
|
||||
def radii(self, val: vector2):
|
||||
val = numpy.array(val, dtype=float).flatten()
|
||||
if not val.size == 2:
|
||||
raise PatternError('Radii must have length 2')
|
||||
if not val.min() >= 0:
|
||||
raise PatternError('Radii must be non-negative')
|
||||
self._radii = val
|
||||
|
||||
@property
|
||||
def radius_x(self) -> float:
|
||||
return self._radii[0]
|
||||
|
||||
@radius_x.setter
|
||||
def radius_x(self, val: float):
|
||||
if not val >= 0:
|
||||
raise PatternError('Radius must be non-negative')
|
||||
self._radii[0] = val
|
||||
|
||||
@property
|
||||
def radius_y(self) -> float:
|
||||
return self._radii[1]
|
||||
|
||||
@radius_y.setter
|
||||
def radius_y(self, val: float):
|
||||
if not val >= 0:
|
||||
raise PatternError('Radius must be non-negative')
|
||||
self._radii[1] = val
|
||||
|
||||
# arc start/stop angle properties
|
||||
@property
|
||||
def angles(self) -> vector2:
|
||||
"""
|
||||
Return the start and stop angles [a_start, a_stop].
|
||||
Angles are measured from x-axis after rotation
|
||||
|
||||
:return: [a_start, a_stop]
|
||||
"""
|
||||
return self._angles
|
||||
|
||||
@angles.setter
|
||||
def angles(self, val: vector2):
|
||||
val = numpy.array(val, dtype=float).flatten()
|
||||
if not val.size == 2:
|
||||
raise PatternError('Angles must have length 2')
|
||||
self._angles = val
|
||||
|
||||
@property
|
||||
def start_angle(self) -> float:
|
||||
return self.angles[0]
|
||||
|
||||
@start_angle.setter
|
||||
def start_angle(self, val: float):
|
||||
self.angles = (val, self.angles[1])
|
||||
|
||||
@property
|
||||
def stop_angle(self) -> float:
|
||||
return self.angles[1]
|
||||
|
||||
@stop_angle.setter
|
||||
def stop_angle(self, val: float):
|
||||
self.angles = (self.angles[0], val)
|
||||
|
||||
# Rotation property
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
"""
|
||||
Rotation of radius_x from x_axis, counterclockwise, in radians. Stored mod 2*pi
|
||||
|
||||
:return: rotation counterclockwise in radians
|
||||
"""
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
# Width
|
||||
@property
|
||||
def width(self) -> float:
|
||||
"""
|
||||
Width of the arc (difference between inner and outer radii)
|
||||
|
||||
:return: width
|
||||
"""
|
||||
return self._width
|
||||
|
||||
@width.setter
|
||||
def width(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Width must be a scalar')
|
||||
if not val > 0:
|
||||
raise PatternError('Width must be positive')
|
||||
self._width = val
|
||||
|
||||
def __init__(self,
|
||||
radii: vector2,
|
||||
angles: vector2,
|
||||
width: float,
|
||||
rotation: float=0,
|
||||
poly_num_points: int=DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: float=None,
|
||||
offset: vector2=(0.0, 0.0),
|
||||
layer: int=0,
|
||||
dose: float=1.0):
|
||||
self.offset = offset
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.radii = radii
|
||||
self.angles = angles
|
||||
self.width = width
|
||||
self.rotation = rotation
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
|
||||
def to_polygons(self, poly_num_points: int=None, poly_max_arclen: float=None) -> List[Polygon]:
|
||||
if poly_num_points is None:
|
||||
poly_num_points = self.poly_num_points
|
||||
if poly_max_arclen is None:
|
||||
poly_max_arclen = self.poly_max_arclen
|
||||
|
||||
if (poly_num_points is None) and (poly_max_arclen is None):
|
||||
raise PatternError('Max number of points and arclength left unspecified' +
|
||||
' (default was also overridden)')
|
||||
|
||||
r0, r1 = self.radii
|
||||
|
||||
# Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation)
|
||||
a_ranges = self._angles_to_parameters()
|
||||
|
||||
# Approximate perimeter
|
||||
# Ramanujan, S., "Modular Equations and Approximations to ,"
|
||||
# Quart. J. Pure. Appl. Math., vol. 45 (1913-1914), pp. 350-372
|
||||
a0, a1 = a_ranges[1] # use outer arc
|
||||
h = ((r1 - r0) / (r1 + r0)) ** 2
|
||||
ellipse_perimeter = pi * (r1 + r0) * (1 + 3 * h / (10 + math.sqrt(4 - 3 * h)))
|
||||
perimeter = abs(a0 - a1) / (2 * pi) * ellipse_perimeter # TODO: make this more accurate
|
||||
|
||||
n = []
|
||||
if poly_num_points is not None:
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [perimeter / poly_max_arclen]
|
||||
thetas_inner = numpy.linspace(a_ranges[0][1], a_ranges[0][0], max(n), endpoint=True)
|
||||
thetas_outer = numpy.linspace(a_ranges[1][0], a_ranges[1][1], max(n), endpoint=True)
|
||||
|
||||
sin_th_i, cos_th_i = (numpy.sin(thetas_inner), numpy.cos(thetas_inner))
|
||||
sin_th_o, cos_th_o = (numpy.sin(thetas_outer), numpy.cos(thetas_outer))
|
||||
wh = self.width / 2.0
|
||||
|
||||
xs1 = (r0 + wh) * cos_th_o
|
||||
ys1 = (r1 + wh) * sin_th_o
|
||||
xs2 = (r0 - wh) * cos_th_i
|
||||
ys2 = (r1 - wh) * sin_th_i
|
||||
|
||||
xs = numpy.hstack((xs1, xs2))
|
||||
ys = numpy.hstack((ys1, ys2))
|
||||
xys = numpy.vstack((xs, ys)).T
|
||||
|
||||
poly = Polygon(xys, dose=self.dose, layer=self.layer, offset=self.offset)
|
||||
poly.rotate(self.rotation)
|
||||
return [poly]
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
'''
|
||||
Equation for rotated ellipse is
|
||||
x = x0 + a * cos(t) * cos(rot) - b * sin(t) * sin(phi)
|
||||
y = y0 + a * cos(t) * sin(rot) + b * sin(t) * cos(rot)
|
||||
where t is our parameter.
|
||||
|
||||
Differentiating and solving for 0 slope wrt. t, we find
|
||||
tan(t) = -+ b/a cot(phi)
|
||||
where -+ is for x, y cases, so that's where the extrema are.
|
||||
|
||||
If the extrema are innaccessible due to arc constraints, check the arc endpoints instead.
|
||||
'''
|
||||
a_ranges = self._angles_to_parameters()
|
||||
|
||||
mins = []
|
||||
maxs = []
|
||||
for a, sgn in zip(a_ranges, (-1, +1)):
|
||||
wh = sgn * self.width/2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
|
||||
a0, a1 = a
|
||||
a0_offset = a0 - (a0 % (2 * pi))
|
||||
|
||||
sin_r = numpy.sin(self.rotation)
|
||||
cos_r = numpy.cos(self.rotation)
|
||||
sin_a = numpy.sin(a)
|
||||
cos_a = numpy.cos(a)
|
||||
|
||||
# Cutoff angles
|
||||
xpt = (-self.rotation) % (2 * pi) + a0_offset
|
||||
ypt = (pi/2 - self.rotation) % (2 * pi) + a0_offset
|
||||
xnt = (xpt - pi) % (2 * pi) + a0_offset
|
||||
ynt = (ypt - pi) % (2 * pi) + a0_offset
|
||||
|
||||
# Points along coordinate axes
|
||||
rx2_inv = 1 / (rx * rx)
|
||||
ry2_inv = 1 / (ry * ry)
|
||||
xr = numpy.abs(cos_r * cos_r * rx2_inv + sin_r * sin_r * ry2_inv) ** -0.5
|
||||
yr = numpy.abs(-sin_r * -sin_r * rx2_inv + cos_r * cos_r * ry2_inv) ** -0.5
|
||||
|
||||
# Arc endpoints
|
||||
xn, xp = sorted(rx * cos_r * cos_a - ry * sin_r * sin_a)
|
||||
yn, yp = sorted(rx * sin_r * cos_a + ry * cos_r * sin_a)
|
||||
|
||||
# If our arc subtends a coordinate axis, use the extremum along that axis
|
||||
if a0 < xpt < a1 or a0 < xpt + 2 * pi < a1:
|
||||
xp = xr
|
||||
|
||||
if a0 < xnt < a1 or a0 < xnt + 2 * pi < a1:
|
||||
xn = -xr
|
||||
|
||||
if a0 < ypt < a1 or a0 < ypt + 2 * pi < a1:
|
||||
yp = yr
|
||||
|
||||
if a0 < ynt < a1 or a0 < ynt + 2 * pi < a1:
|
||||
yn = -yr
|
||||
|
||||
mins.append([xn, yn])
|
||||
maxs.append([xp, yp])
|
||||
return numpy.vstack((numpy.min(mins, axis=0) + self.offset,
|
||||
numpy.max(maxs, axis=0) + self.offset))
|
||||
|
||||
def rotate(self, theta: float) -> 'Arc':
|
||||
self.rotation += theta
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Arc':
|
||||
self.offset[axis - 1] *= -1
|
||||
self.rotation *= -1
|
||||
self.angles *= -1
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Arc':
|
||||
self.radii *= c
|
||||
self.width *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
if self.radius_x < self.radius_y:
|
||||
radii = self.radii / self.radius_x
|
||||
scale = self.radius_x
|
||||
rotation = self.rotation
|
||||
angles = self.angles
|
||||
else: # rotate by 90 degrees and swap radii
|
||||
radii = self.radii[::-1] / self.radius_y
|
||||
scale = self.radius_y
|
||||
rotation = self.rotation + pi / 2
|
||||
angles = self.angles - pi / 2
|
||||
|
||||
delta_angle = angles[1] - angles[0]
|
||||
start_angle = angles[0] % (2 * pi)
|
||||
if start_angle >= pi:
|
||||
start_angle -= pi
|
||||
rotation += pi
|
||||
|
||||
angles = (start_angle, start_angle + delta_angle)
|
||||
rotation %= 2 * pi
|
||||
width = self.width
|
||||
|
||||
return (type(self), radii, angles, width, self.layer), \
|
||||
(self.offset, scale/norm_value, rotation, self.dose), \
|
||||
lambda: Arc(radii=radii*norm_value, angles=angles, width=width, layer=self.layer)
|
||||
|
||||
def get_cap_edges(self) -> numpy.ndarray:
|
||||
'''
|
||||
:returns: [[[x0, y0], [x1, y1]], array of 4 points, specifying the two cuts which
|
||||
[[x2, y2], [x3, y3]]], would create this arc from its corresponding ellipse.
|
||||
'''
|
||||
a_ranges = self._angles_to_parameters()
|
||||
|
||||
mins = []
|
||||
maxs = []
|
||||
for a, sgn in zip(a_ranges, (-1, +1)):
|
||||
wh = sgn * self.width/2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
|
||||
sin_r = numpy.sin(self.rotation)
|
||||
cos_r = numpy.cos(self.rotation)
|
||||
sin_a = numpy.sin(a)
|
||||
cos_a = numpy.cos(a)
|
||||
|
||||
# arc endpoints
|
||||
xn, xp = sorted(rx * cos_r * cos_a - ry * sin_r * sin_a)
|
||||
yn, yp = sorted(rx * sin_r * cos_a + ry * cos_r * sin_a)
|
||||
|
||||
mins.append([xn, yn])
|
||||
maxs.append([xp, yp])
|
||||
return numpy.array([mins, maxs]) + self.offset
|
||||
|
||||
def _angles_to_parameters(self) -> numpy.ndarray:
|
||||
'''
|
||||
:return: "Eccentric anomaly" parameter ranges for the inner and outer edges, in the form
|
||||
[[a_min_inner, a_max_inner], [a_min_outer, a_max_outer]]
|
||||
'''
|
||||
a = []
|
||||
for sgn in (-1, +1):
|
||||
wh = sgn * self.width/2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
|
||||
# create paremeter 'a' for parametrized ellipse
|
||||
a0, a1 = (numpy.arctan2(rx*numpy.sin(a), ry*numpy.cos(a)) for a in self.angles)
|
||||
sign = numpy.sign(self.angles[1] - self.angles[0])
|
||||
if sign != numpy.sign(a1 - a0):
|
||||
a1 += sign * 2 * pi
|
||||
|
||||
a.append((a0, a1))
|
||||
return numpy.array(a)
|
99
masque/shapes/circle.py
Normal file
99
masque/shapes/circle.py
Normal file
@ -0,0 +1,99 @@
|
||||
from typing import List
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, vector2
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
class Circle(Shape):
|
||||
"""
|
||||
A circle, which has a position and radius.
|
||||
"""
|
||||
|
||||
_radius = None # type: float
|
||||
|
||||
# Defaults for to_polygons
|
||||
poly_num_points = DEFAULT_POLY_NUM_POINTS # type: int
|
||||
poly_max_arclen = None # type: float
|
||||
|
||||
# radius property
|
||||
@property
|
||||
def radius(self) -> float:
|
||||
"""
|
||||
Circle's radius (float, >= 0)
|
||||
|
||||
:return: radius
|
||||
"""
|
||||
return self._radius
|
||||
|
||||
@radius.setter
|
||||
def radius(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Radius must be a scalar')
|
||||
if not val >= 0:
|
||||
raise PatternError('Radius must be non-negative')
|
||||
self._radius = val
|
||||
|
||||
def __init__(self,
|
||||
radius: float,
|
||||
poly_num_points: int=DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: float=None,
|
||||
offset: vector2=(0.0, 0.0),
|
||||
layer: int=0,
|
||||
dose: float=1.0):
|
||||
self.offset = numpy.array(offset, dtype=float)
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.radius = radius
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
|
||||
def to_polygons(self, poly_num_points: int=None, poly_max_arclen: float=None) -> List[Polygon]:
|
||||
if poly_num_points is None:
|
||||
poly_num_points = self.poly_num_points
|
||||
if poly_max_arclen is None:
|
||||
poly_max_arclen = self.poly_max_arclen
|
||||
|
||||
if (poly_num_points is None) and (poly_max_arclen is None):
|
||||
raise PatternError('Number of points and arclength left '
|
||||
'unspecified (default was also overridden)')
|
||||
|
||||
n = []
|
||||
if poly_num_points is not None:
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [2 * pi * self.radius / poly_max_arclen]
|
||||
thetas = numpy.linspace(2 * pi, 0, max(n), endpoint=False)
|
||||
xs = numpy.cos(thetas) * self.radius
|
||||
ys = numpy.sin(thetas) * self.radius
|
||||
xys = numpy.vstack((xs, ys)).T
|
||||
|
||||
return [Polygon(xys, offset=self.offset, dose=self.dose, layer=self.layer)]
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
return numpy.vstack((self.offset - self.radius,
|
||||
self.offset + self.radius))
|
||||
|
||||
def rotate(self, theta: float) -> 'Circle':
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Circle':
|
||||
self.offset *= -1
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Circle':
|
||||
self.radius *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value) -> normalized_shape_tuple:
|
||||
rotation = 0.0
|
||||
magnitude = self.radius / norm_value
|
||||
return (type(self), self.layer), \
|
||||
(self.offset, magnitude, rotation, self.dose), \
|
||||
lambda: Circle(radius=norm_value, layer=self.layer)
|
||||
|
166
masque/shapes/ellipse.py
Normal file
166
masque/shapes/ellipse.py
Normal file
@ -0,0 +1,166 @@
|
||||
from typing import List
|
||||
import math
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
class Ellipse(Shape):
|
||||
"""
|
||||
An ellipse, which has a position, two radii, and a rotation.
|
||||
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
|
||||
"""
|
||||
|
||||
_radii = None # type: numpy.ndarray
|
||||
_rotation = 0.0 # type: float
|
||||
|
||||
# Defaults for to_polygons
|
||||
poly_num_points = DEFAULT_POLY_NUM_POINTS # type: int
|
||||
poly_max_arclen = None # type: float
|
||||
|
||||
# radius properties
|
||||
@property
|
||||
def radii(self) -> numpy.ndarray:
|
||||
"""
|
||||
Return the radii [rx, ry]
|
||||
|
||||
:return: [rx, ry]
|
||||
"""
|
||||
return self._radii
|
||||
|
||||
@radii.setter
|
||||
def radii(self, val: vector2):
|
||||
val = numpy.array(val).flatten()
|
||||
if not val.size == 2:
|
||||
raise PatternError('Radii must have length 2')
|
||||
if not val.min() >= 0:
|
||||
raise PatternError('Radii must be non-negative')
|
||||
self._radii = val
|
||||
|
||||
@property
|
||||
def radius_x(self) -> float:
|
||||
return self.radii[0]
|
||||
|
||||
@radius_x.setter
|
||||
def radius_x(self, val: float):
|
||||
if not val >= 0:
|
||||
raise PatternError('Radius must be non-negative')
|
||||
self.radii[0] = val
|
||||
|
||||
@property
|
||||
def radius_y(self) -> float:
|
||||
return self.radii[1]
|
||||
|
||||
@radius_y.setter
|
||||
def radius_y(self, val: float):
|
||||
if not val >= 0:
|
||||
raise PatternError('Radius must be non-negative')
|
||||
self.radii[1] = val
|
||||
|
||||
# Rotation property
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
"""
|
||||
Rotation of rx from the x axis. Uses the interval [0, pi) in radians (counterclockwise
|
||||
is positive)
|
||||
|
||||
:return: counterclockwise rotation in radians
|
||||
"""
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % pi
|
||||
|
||||
def __init__(self,
|
||||
radii: vector2,
|
||||
rotation: float=0,
|
||||
poly_num_points: int=DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: float=None,
|
||||
offset: vector2=(0.0, 0.0),
|
||||
layer: int=0,
|
||||
dose: float=1.0):
|
||||
self.offset = offset
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.radii = radii
|
||||
self.rotation = rotation
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
|
||||
def to_polygons(self,
|
||||
poly_num_points: int=None,
|
||||
poly_max_arclen: float=None
|
||||
) -> List[Polygon]:
|
||||
if poly_num_points is None:
|
||||
poly_num_points = self.poly_num_points
|
||||
if poly_max_arclen is None:
|
||||
poly_max_arclen = self.poly_max_arclen
|
||||
|
||||
if (poly_num_points is None) and (poly_max_arclen is None):
|
||||
raise PatternError('Number of points and arclength left unspecified'
|
||||
' (default was also overridden)')
|
||||
|
||||
r0, r1 = self.radii
|
||||
|
||||
# Approximate perimeter
|
||||
# Ramanujan, S., "Modular Equations and Approximations to ,"
|
||||
# Quart. J. Pure. Appl. Math., vol. 45 (1913-1914), pp. 350-372
|
||||
h = ((r1 - r0) / (r1 + r0)) ** 2
|
||||
perimeter = pi * (r1 + r0) * (1 + 3 * h / (10 + math.sqrt(4 - 3 * h)))
|
||||
|
||||
n = []
|
||||
if poly_num_points is not None:
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [perimeter / poly_max_arclen]
|
||||
thetas = numpy.linspace(2 * pi, 0, max(n), endpoint=False)
|
||||
|
||||
sin_th, cos_th = (numpy.sin(thetas), numpy.cos(thetas))
|
||||
xs = r0 * cos_th
|
||||
ys = r1 * sin_th
|
||||
xys = numpy.vstack((xs, ys)).T
|
||||
|
||||
poly = Polygon(xys, dose=self.dose, layer=self.layer, offset=self.offset)
|
||||
poly.rotate(self.rotation)
|
||||
return [poly]
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
rot_radii = numpy.dot(rotation_matrix_2d(self.rotation), self.radii)
|
||||
return numpy.vstack((self.offset - rot_radii[0],
|
||||
self.offset + rot_radii[1]))
|
||||
|
||||
def rotate(self, theta: float) -> 'Ellipse':
|
||||
self.rotation += theta
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Ellipse':
|
||||
self.offset[axis - 1] *= -1
|
||||
self.rotation *= -1
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Ellipse':
|
||||
self.radii *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
if self.radius_x < self.radius_y:
|
||||
radii = self.radii / self.radius_x
|
||||
scale = self.radius_x
|
||||
angle = self.rotation
|
||||
else:
|
||||
radii = self.radii[::-1] / self.radius_y
|
||||
scale = self.radius_y
|
||||
angle = (self.rotation + pi / 2) % pi
|
||||
return (type(self), radii, self.layer), \
|
||||
(self.offset, scale/norm_value, angle, self.dose), \
|
||||
lambda: Ellipse(radii=radii*norm_value, layer=self.layer)
|
||||
|
281
masque/shapes/polygon.py
Normal file
281
masque/shapes/polygon.py
Normal file
@ -0,0 +1,281 @@
|
||||
from typing import List
|
||||
import copy
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from . import Shape, normalized_shape_tuple
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
class Polygon(Shape):
|
||||
"""
|
||||
A polygon, consisting of a bunch of vertices (Nx2 ndarray) along with an offset.
|
||||
|
||||
A normalized_form(...) is available, but can be quite slow with lots of vertices.
|
||||
"""
|
||||
_vertices = None # type: numpy.ndarray
|
||||
|
||||
# vertices property
|
||||
@property
|
||||
def vertices(self) -> numpy.ndarray:
|
||||
"""
|
||||
Vertices of the polygon (Nx2 ndarray: [[x0, y0], [x1, y1], ...]
|
||||
|
||||
:return: vertices
|
||||
"""
|
||||
return self._vertices
|
||||
|
||||
@vertices.setter
|
||||
def vertices(self, val: numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
if len(val.shape) < 2 or val.shape[1] != 2:
|
||||
raise PatternError('Vertices must be an Nx2 array')
|
||||
if val.shape[0] < 3:
|
||||
raise PatternError('Must have at least 3 vertices (Nx2, N>3)')
|
||||
self._vertices = val
|
||||
|
||||
# xs property
|
||||
@property
|
||||
def xs(self) -> numpy.ndarray:
|
||||
"""
|
||||
All x vertices in a 1D ndarray
|
||||
"""
|
||||
return self.vertices[:, 0]
|
||||
|
||||
@xs.setter
|
||||
def xs(self, val: numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float).flatten()
|
||||
if val.size != self.vertices.shape[0]:
|
||||
raise PatternError('Wrong number of vertices')
|
||||
self.vertices[:, 0] = val
|
||||
|
||||
# ys property
|
||||
@property
|
||||
def ys(self) -> numpy.ndarray:
|
||||
"""
|
||||
All y vertices in a 1D ndarray
|
||||
"""
|
||||
return self.vertices[:, 1]
|
||||
|
||||
@ys.setter
|
||||
def ys(self, val: numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float).flatten()
|
||||
if val.size != self.vertices.shape[0]:
|
||||
raise PatternError('Wrong number of vertices')
|
||||
self.vertices[:, 1] = val
|
||||
|
||||
def __init__(self,
|
||||
vertices: numpy.ndarray,
|
||||
offset: vector2=(0.0, 0.0),
|
||||
layer: int=0,
|
||||
dose: float=1.0):
|
||||
self.offset = offset
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.vertices = vertices
|
||||
|
||||
@staticmethod
|
||||
def square(side_length: float,
|
||||
rotation: float=0.0,
|
||||
offset: vector2=(0.0, 0.0),
|
||||
layer: int=0,
|
||||
dose: float=1.0
|
||||
) -> 'Polygon':
|
||||
"""
|
||||
Draw a square given side_length, centered on the origin.
|
||||
|
||||
:param side_length: Length of one side
|
||||
:param rotation: Rotation counterclockwise, in radians
|
||||
:param offset: Offset, default (0, 0)
|
||||
:param layer: Layer, default 0
|
||||
:param dose: Dose, default 1.0
|
||||
:return: A Polygon object containing the requested square
|
||||
"""
|
||||
norm_square = numpy.array([[-1, -1],
|
||||
[-1, +1],
|
||||
[+1, +1],
|
||||
[+1, -1]], dtype=float)
|
||||
vertices = 0.5 * side_length * norm_square
|
||||
poly = Polygon(vertices, offset, layer, dose)
|
||||
poly.rotate(rotation)
|
||||
return poly
|
||||
|
||||
@staticmethod
|
||||
def rectangle(lx: float,
|
||||
ly: float,
|
||||
rotation: float=0,
|
||||
offset: vector2=(0.0, 0.0),
|
||||
layer: int=0,
|
||||
dose: float=1.0
|
||||
) -> 'Polygon':
|
||||
"""
|
||||
Draw a rectangle with side lengths lx and ly, centered on the origin.
|
||||
|
||||
:param lx: Length along x (before rotation)
|
||||
:param ly: Length along y (before rotation)
|
||||
:param rotation: Rotation counterclockwise, in radians
|
||||
:param offset: Offset, default (0, 0)
|
||||
:param layer: Layer, default 0
|
||||
:param dose: Dose, default 1.0
|
||||
:return: A Polygon object containing the requested rectangle
|
||||
"""
|
||||
vertices = 0.5 * numpy.array([[-lx, -ly],
|
||||
[-lx, +ly],
|
||||
[+lx, +ly],
|
||||
[+lx, -ly]], dtype=float)
|
||||
poly = Polygon(vertices, offset, layer, dose)
|
||||
poly.rotate(rotation)
|
||||
return poly
|
||||
|
||||
@staticmethod
|
||||
def rect(xmin: float = None,
|
||||
xctr: float = None,
|
||||
xmax: float = None,
|
||||
lx: float = None,
|
||||
ymin: float = None,
|
||||
yctr: float = None,
|
||||
ymax: float = None,
|
||||
ly: float = None,
|
||||
layer: int = 0,
|
||||
dose: float = 1.0
|
||||
) -> 'Polygon':
|
||||
"""
|
||||
Draw a rectangle by specifying side/center positions.
|
||||
|
||||
Must provide 2 of (xmin, xctr, xmax, lx),
|
||||
and 2 of (ymin, yctr, ymax, ly).
|
||||
|
||||
:param xmin: Minimum x coordinate
|
||||
:param xctr: Center x coordinate
|
||||
:param xmax: Maximum x coordinate
|
||||
:param lx: Length along x direction
|
||||
:param ymin: Minimum y coordinate
|
||||
:param yctr: Center y coordinate
|
||||
:param ymax: Maximum y coordinate
|
||||
:param ly: Length along y direction
|
||||
:param layer: Layer, default 0
|
||||
:param dose: Dose, default 1.0
|
||||
:return: A Polygon object containing the requested rectangle
|
||||
"""
|
||||
if lx is None:
|
||||
if xctr is None:
|
||||
xctr = 0.5 * (xmax + xmin)
|
||||
lx = xmax - xmin
|
||||
elif xmax is None:
|
||||
lx = 2 * (xctr - xmin)
|
||||
elif xmin is None:
|
||||
lx = 2 * (xmax - xctr)
|
||||
else:
|
||||
raise PatternError('Two of xmin, xctr, xmax, lx must be None!')
|
||||
else:
|
||||
if xctr is not None:
|
||||
pass
|
||||
elif xmax is None:
|
||||
xctr = xmin + 0.5 * lx
|
||||
elif xmin is None:
|
||||
xctr = xmax - 0.5 * lx
|
||||
else:
|
||||
raise PatternError('Two of xmin, xctr, xmax, lx must be None!')
|
||||
|
||||
if ly is None:
|
||||
if yctr is None:
|
||||
yctr = 0.5 * (ymax + ymin)
|
||||
ly = ymax - ymin
|
||||
elif ymax is None:
|
||||
ly = 2 * (yctr - ymin)
|
||||
elif ymin is None:
|
||||
ly = 2 * (ymax - yctr)
|
||||
else:
|
||||
raise PatternError('Two of ymin, yctr, ymax, ly must be None!')
|
||||
else:
|
||||
if yctr is not None:
|
||||
pass
|
||||
elif ymax is None:
|
||||
yctr = ymin + 0.5 * ly
|
||||
elif ymin is None:
|
||||
yctr = ymax - 0.5 * ly
|
||||
else:
|
||||
raise PatternError('Two of ymin, yctr, ymax, ly must be None!')
|
||||
|
||||
poly = Polygon.rectangle(lx, ly, offset=(xctr, yctr),
|
||||
layer=layer, dose=dose)
|
||||
return poly
|
||||
|
||||
|
||||
def to_polygons(self,
|
||||
_poly_num_points: int=None,
|
||||
_poly_max_arclen: float=None,
|
||||
) -> List['Polygon']:
|
||||
return [copy.deepcopy(self)]
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
return numpy.vstack((self.offset + numpy.min(self.vertices, axis=0),
|
||||
self.offset + numpy.max(self.vertices, axis=0)))
|
||||
|
||||
def rotate(self, theta: float) -> 'Polygon':
|
||||
self.vertices = numpy.dot(rotation_matrix_2d(theta), self.vertices.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Polygon':
|
||||
self.vertices[:, axis - 1] *= -1
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Polygon':
|
||||
self.vertices *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
# Note: this function is going to be pretty slow for many-vertexed polygons, relative to
|
||||
# other shapes
|
||||
offset = self.vertices.mean(axis=0) + self.offset
|
||||
zeroed_vertices = self.vertices - offset
|
||||
|
||||
scale = zeroed_vertices.std()
|
||||
normed_vertices = zeroed_vertices / scale
|
||||
|
||||
_, _, vertex_axis = numpy.linalg.svd(zeroed_vertices)
|
||||
rotation = numpy.arctan2(vertex_axis[0][1], vertex_axis[0][0]) % (2 * pi)
|
||||
rotated_vertices = numpy.vstack([numpy.dot(rotation_matrix_2d(-rotation), v)
|
||||
for v in normed_vertices])
|
||||
|
||||
# Reorder the vertices so that the one with lowest x, then y, comes first.
|
||||
x_min = rotated_vertices[:, 0].argmin()
|
||||
if not is_scalar(x_min):
|
||||
y_min = rotated_vertices[x_min, 1].argmin()
|
||||
x_min = x_min[y_min]
|
||||
reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
|
||||
|
||||
return (type(self), reordered_vertices.data.tobytes(), self.layer), \
|
||||
(offset, scale/norm_value, rotation, self.dose), \
|
||||
lambda: Polygon(reordered_vertices*norm_value, layer=self.layer)
|
||||
|
||||
def clean_vertices(self) -> 'Polygon':
|
||||
"""
|
||||
Removes duplicate, co-linear and otherwise redundant vertices.
|
||||
|
||||
:returns: self
|
||||
"""
|
||||
self.remove_colinear_vertices()
|
||||
return self
|
||||
|
||||
def remove_duplicate_vertices(self) -> 'Polygon':
|
||||
'''
|
||||
Removes all consecutive duplicate (repeated) vertices.
|
||||
|
||||
:returns: self
|
||||
'''
|
||||
self.vertices = remove_duplicate_vertices(self.vertices, closed_path=True)
|
||||
return self
|
||||
|
||||
def remove_colinear_vertices(self) -> 'Polygon':
|
||||
'''
|
||||
Removes consecutive co-linear vertices.
|
||||
|
||||
:returns: self
|
||||
'''
|
||||
self.vertices = remove_colinear_vertices(self.vertices, closed_path=True)
|
||||
return self
|
386
masque/shapes/shape.py
Normal file
386
masque/shapes/shape.py
Normal file
@ -0,0 +1,386 @@
|
||||
from typing import List, Tuple, Callable
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import copy
|
||||
import numpy
|
||||
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
# Type definitions
|
||||
normalized_shape_tuple = Tuple[Tuple,
|
||||
Tuple[numpy.ndarray, float, float, float],
|
||||
Callable[[], 'Shape']]
|
||||
|
||||
# ## Module-wide defaults
|
||||
# Default number of points per polygon for shapes
|
||||
DEFAULT_POLY_NUM_POINTS = 24
|
||||
|
||||
|
||||
class Shape(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class specifying functions common to all shapes.
|
||||
"""
|
||||
|
||||
# [x_offset, y_offset]
|
||||
_offset = numpy.array([0.0, 0.0]) # type: numpy.ndarray
|
||||
|
||||
# Layer (integer >= 0 or tuple)
|
||||
_layer = 0 # type: int or Tuple
|
||||
|
||||
# Dose
|
||||
_dose = 1.0 # type: float
|
||||
|
||||
# --- Abstract methods
|
||||
@abstractmethod
|
||||
def to_polygons(self, num_vertices: int, max_arclen: float) -> List['Polygon']:
|
||||
"""
|
||||
Returns a list of polygons which approximate the shape.
|
||||
|
||||
:param num_vertices: Number of points to use for each polygon. Can be overridden by
|
||||
max_arclen if that results in more points. Optional, defaults to shapes'
|
||||
internal defaults.
|
||||
:param max_arclen: Maximum arclength which can be approximated by a single line
|
||||
segment. Optional, defaults to shapes' internal defaults.
|
||||
:return: List of polygons equivalent to the shape
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
"""
|
||||
Returns [[x_min, y_min], [x_max, y_max]] which specify a minimal bounding box for the shape.
|
||||
|
||||
:return: [[x_min, y_min], [x_max, y_max]]
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def rotate(self, theta: float) -> 'Shape':
|
||||
"""
|
||||
Rotate the shape around its center (0, 0), ignoring its offset.
|
||||
|
||||
:param theta: Angle to rotate by (counterclockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def mirror(self, axis: int) -> 'Shape':
|
||||
"""
|
||||
Mirror the shape across an axis.
|
||||
|
||||
:param axis: Axis to mirror across.
|
||||
:return: self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def scale_by(self, c: float) -> 'Shape':
|
||||
"""
|
||||
Scale the shape's size (eg. radius, for a circle) by a constant factor.
|
||||
|
||||
:param c: Factor to scale by
|
||||
:return: self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def normalized_form(self, norm_value: int) -> normalized_shape_tuple:
|
||||
"""
|
||||
Writes the shape in a standardized notation, with offset, scale, rotation, and dose
|
||||
information separated out from the remaining values.
|
||||
|
||||
:param norm_value: This value is used to normalize lengths intrinsic to teh shape;
|
||||
eg. for a circle, the returned magnitude value will be (radius / norm_value), and
|
||||
the returned callable will create a Circle(radius=norm_value, ...). This is useful
|
||||
when you find it important for quantities to remain in a certain range, eg. for
|
||||
GDSII where vertex locations are stored as integers.
|
||||
:return: The returned information takes the form of a 3-element tuple,
|
||||
(intrinsic, extrinsic, constructor). These are further broken down as:
|
||||
extrinsic: ([x_offset, y_offset], scale, rotation, dose)
|
||||
intrinsic: A tuple of basic types containing all information about the instance that
|
||||
is not contained in 'extrinsic'. Usually, intrinsic[0] == type(self).
|
||||
constructor: A callable (no arguments) which returns an instance of type(self) with
|
||||
internal state equivalent to 'intrinsic'.
|
||||
"""
|
||||
pass
|
||||
|
||||
# ---- Non-abstract properties
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
"""
|
||||
[x, y] offset
|
||||
|
||||
:return: [x_offset, y_offset]
|
||||
"""
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten()
|
||||
|
||||
# layer property
|
||||
@property
|
||||
def layer(self) -> int or Tuple[int]:
|
||||
"""
|
||||
Layer number (int or tuple of ints)
|
||||
|
||||
:return: Layer
|
||||
"""
|
||||
return self._layer
|
||||
|
||||
@layer.setter
|
||||
def layer(self, val: int or List[int]):
|
||||
self._layer = val
|
||||
|
||||
# dose property
|
||||
@property
|
||||
def dose(self) -> float:
|
||||
"""
|
||||
Dose (float >= 0)
|
||||
|
||||
:return: Dose value
|
||||
"""
|
||||
return self._dose
|
||||
|
||||
@dose.setter
|
||||
def dose(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Dose must be a scalar')
|
||||
if not val >= 0:
|
||||
raise PatternError('Dose must be non-negative')
|
||||
self._dose = val
|
||||
|
||||
# ---- Non-abstract methods
|
||||
def copy(self) -> 'Shape':
|
||||
"""
|
||||
Returns a deep copy of the shape.
|
||||
|
||||
:return: Deep copy of self
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def translate(self, offset: vector2) -> 'Shape':
|
||||
"""
|
||||
Translate the shape by the given offset
|
||||
|
||||
:param offset: [x_offset, y,offset]
|
||||
:return: self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'Shape':
|
||||
"""
|
||||
Rotate the shape around a point.
|
||||
|
||||
:param pivot: Point (x, y) to rotate around
|
||||
:param rotation: Angle to rotate by (counterclockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.rotate(rotation)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
def manhattanize_fast(self, grid_x: numpy.ndarray, grid_y: numpy.ndarray) -> List['Polygon']:
|
||||
"""
|
||||
Returns a list of polygons with grid-aligned ("Manhattan") edges approximating the shape.
|
||||
|
||||
This function works by
|
||||
1) Converting the shape to polygons using .to_polygons()
|
||||
2) Approximating each edge with an equivalent Manhattan edge
|
||||
This process results in a reasonable Manhattan representation of the shape, but is
|
||||
imprecise near non-Manhattan or off-grid corners.
|
||||
|
||||
:param grid_x: List of allowed x-coordinates for the Manhattanized polygon edges.
|
||||
:param grid_y: List of allowed y-coordinates for the Manhattanized polygon edges.
|
||||
:return: List of Polygon objects with grid-aligned edges.
|
||||
"""
|
||||
from . import Polygon
|
||||
|
||||
grid_x = numpy.unique(grid_x)
|
||||
grid_y = numpy.unique(grid_y)
|
||||
|
||||
polygon_contours = []
|
||||
for polygon in self.to_polygons():
|
||||
mins, maxs = polygon.get_bounds()
|
||||
|
||||
vertex_lists = []
|
||||
p_verts = polygon.vertices + polygon.offset
|
||||
for v, v_next in zip(p_verts, numpy.roll(p_verts, -1, axis=0)):
|
||||
dv = v_next - v
|
||||
|
||||
# Find x-index bounds for the line # TODO: fix this and err_xmin/xmax for grids smaller than the line / shape
|
||||
gxi_range = numpy.digitize([v[0], v_next[0]], grid_x)
|
||||
gxi_min = numpy.min(gxi_range - 1).clip(0, len(grid_x) - 1)
|
||||
gxi_max = numpy.max(gxi_range).clip(0, len(grid_x))
|
||||
|
||||
err_xmin = (min(v[0], v_next[0]) - grid_x[gxi_min]) / (grid_x[gxi_min + 1] - grid_x[gxi_min])
|
||||
err_xmax = (max(v[0], v_next[0]) - grid_x[gxi_max - 1]) / (grid_x[gxi_max] - grid_x[gxi_max - 1])
|
||||
|
||||
if err_xmin >= 0.5:
|
||||
gxi_min += 1
|
||||
if err_xmax >= 0.5:
|
||||
gxi_max += 1
|
||||
|
||||
|
||||
if abs(dv[0]) < 1e-20:
|
||||
# Vertical line, don't calculate slope
|
||||
xi = [gxi_min, gxi_max - 1]
|
||||
ys = numpy.array([v[1], v_next[1]])
|
||||
yi = numpy.digitize(ys, grid_y).clip(1, len(grid_y) - 1)
|
||||
err_y = (ys - grid_y[yi]) / (grid_y[yi] - grid_y[yi - 1])
|
||||
yi[err_y < 0.5] -= 1
|
||||
|
||||
segment = numpy.column_stack((grid_x[xi], grid_y[yi]))
|
||||
vertex_lists.append(segment)
|
||||
continue
|
||||
|
||||
m = dv[1]/dv[0]
|
||||
def get_grid_inds(xes):
|
||||
ys = m * (xes - v[0]) + v[1]
|
||||
|
||||
# (inds - 1) is the index of the y-grid line below the edge's intersection with the x-grid
|
||||
inds = numpy.digitize(ys, grid_y).clip(1, len(grid_y) - 1)
|
||||
|
||||
# err is what fraction of the cell upwards we have to go to reach our y
|
||||
# (can be negative at bottom edge due to clip above)
|
||||
err = (ys - grid_y[inds - 1]) / (grid_y[inds] - grid_y[inds - 1])
|
||||
|
||||
# now set inds to the index of the nearest y-grid line
|
||||
inds[err < 0.5] -= 1
|
||||
return inds
|
||||
|
||||
# Find the y indices on all x gridlines
|
||||
xs = grid_x[gxi_min:gxi_max]
|
||||
inds = get_grid_inds(xs)
|
||||
|
||||
# Find y-intersections for x-midpoints
|
||||
xs2 = (xs[:-1] + xs[1:]) / 2
|
||||
inds2 = get_grid_inds(xs2)
|
||||
|
||||
xinds = numpy.round(numpy.arange(gxi_min, gxi_max - 0.99, 1/3)).astype(int)
|
||||
|
||||
# interleave the results
|
||||
yinds = xinds.copy()
|
||||
yinds[0::3] = inds
|
||||
yinds[1::3] = inds2
|
||||
yinds[2::3] = inds2
|
||||
|
||||
vlist = numpy.column_stack((grid_x[xinds], grid_y[yinds]))
|
||||
if dv[0] < 0:
|
||||
vlist = vlist[::-1]
|
||||
|
||||
vertex_lists.append(vlist)
|
||||
polygon_contours.append(numpy.vstack(vertex_lists))
|
||||
|
||||
manhattan_polygons = []
|
||||
for contour in polygon_contours:
|
||||
manhattan_polygons.append(Polygon(
|
||||
vertices=contour,
|
||||
layer=self.layer,
|
||||
dose=self.dose))
|
||||
|
||||
return manhattan_polygons
|
||||
|
||||
|
||||
def manhattanize(self, grid_x: numpy.ndarray, grid_y: numpy.ndarray) -> List['Polygon']:
|
||||
"""
|
||||
Returns a list of polygons with grid-aligned ("Manhattan") edges approximating the shape.
|
||||
|
||||
This function works by
|
||||
1) Converting the shape to polygons using .to_polygons()
|
||||
2) Accurately rasterizing each polygon on a grid,
|
||||
where the edges of each grid cell correspond to the allowed coordinates
|
||||
3) Thresholding the (anti-aliased) rasterized image
|
||||
4) Finding the contours which outline the filled areas in the thresholded image
|
||||
This process results in a fairly accurate Manhattan representation of the shape. Possible
|
||||
caveats include:
|
||||
a) If high accuracy is important, perform any polygonization and clipping operations
|
||||
prior to calling this function. This allows you to specify any arguments you may
|
||||
need for .to_polygons(), and also avoids calling .manhattanize() multiple times for
|
||||
the same grid location (which causes inaccuracies in the final representation).
|
||||
b) If the shape is very large or the grid very fine, memory requirements can be reduced
|
||||
by breaking the shape apart into multiple, smaller shapes.
|
||||
c) Inaccuracies in edge shape can result from Manhattanization of edges which are
|
||||
equidistant from allowed edge location.
|
||||
|
||||
Implementation notes:
|
||||
i) Rasterization is performed using float_raster, giving a high-precision anti-aliased
|
||||
rasterized image.
|
||||
ii) To find the exact polygon edges, the thresholded rasterized image is supersampled
|
||||
prior to calling skimage.measure.find_contours(), which uses marching squares
|
||||
to find the contours. This is done because find_contours() performs interpolation,
|
||||
which has to be undone in order to regain the axis-aligned contours. A targetted
|
||||
rewrite of find_contours() for this specific application, or use of a different
|
||||
boundary tracing method could remove this requirement, but for now this seems to
|
||||
be the most performant approach.
|
||||
|
||||
:param grid_x: List of allowed x-coordinates for the Manhattanized polygon edges.
|
||||
:param grid_y: List of allowed y-coordinates for the Manhattanized polygon edges.
|
||||
:return: List of Polygon objects with grid-aligned edges.
|
||||
"""
|
||||
from . import Polygon
|
||||
import skimage.measure
|
||||
import float_raster
|
||||
|
||||
grid_x = numpy.unique(grid_x)
|
||||
grid_y = numpy.unique(grid_y)
|
||||
|
||||
polygon_contours = []
|
||||
for polygon in self.to_polygons():
|
||||
# Get rid of unused gridlines (anything not within 2 lines of the polygon bounds)
|
||||
mins, maxs = polygon.get_bounds()
|
||||
keep_x = numpy.logical_and(grid_x > mins[0], grid_x < maxs[0])
|
||||
keep_y = numpy.logical_and(grid_y > mins[1], grid_y < maxs[1])
|
||||
for k in (keep_x, keep_y):
|
||||
for s in (1, 2):
|
||||
k[s:] += k[:-s]
|
||||
k[:-s] += k[s:]
|
||||
k = k > 0
|
||||
|
||||
gx = grid_x[keep_x]
|
||||
gy = grid_y[keep_y]
|
||||
|
||||
if len(gx) == 0 or len(gy) == 0:
|
||||
continue
|
||||
|
||||
offset = (numpy.where(keep_x)[0][0],
|
||||
numpy.where(keep_y)[0][0])
|
||||
|
||||
rastered = float_raster.raster((polygon.vertices + polygon.offset).T, gx, gy)
|
||||
binary_rastered = (numpy.abs(rastered) >= 0.5)
|
||||
supersampled = binary_rastered.repeat(2, axis=0).repeat(2, axis=1)
|
||||
|
||||
contours = skimage.measure.find_contours(supersampled, 0.5)
|
||||
polygon_contours.append((offset, contours))
|
||||
|
||||
manhattan_polygons = []
|
||||
for offset_i, contours in polygon_contours:
|
||||
for contour in contours:
|
||||
# /2 deals with supersampling
|
||||
# +.5 deals with the fact that our 0-edge becomes -.5 in the super-sampled contour output
|
||||
snapped_contour = numpy.round((contour + .5) / 2).astype(int)
|
||||
vertices = numpy.hstack((grid_x[snapped_contour[:, None, 0] + offset_i[0]],
|
||||
grid_y[snapped_contour[:, None, 1] + offset_i[1]]))
|
||||
|
||||
manhattan_polygons.append(Polygon(
|
||||
vertices=vertices,
|
||||
layer=self.layer,
|
||||
dose=self.dose))
|
||||
|
||||
return manhattan_polygons
|
||||
|
224
masque/shapes/text.py
Normal file
224
masque/shapes/text.py
Normal file
@ -0,0 +1,224 @@
|
||||
from typing import List, Tuple
|
||||
import numpy
|
||||
from numpy import pi, inf
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, vector2, get_bit
|
||||
|
||||
# Loaded on use:
|
||||
# from freetype import Face
|
||||
# from matplotlib.path import Path
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
class Text(Shape):
|
||||
_string = ''
|
||||
_height = 1.0
|
||||
_rotation = 0.0
|
||||
_mirrored = None
|
||||
font_path = ''
|
||||
|
||||
# vertices property
|
||||
@property
|
||||
def string(self) -> str:
|
||||
return self._string
|
||||
|
||||
@string.setter
|
||||
def string(self, val: str):
|
||||
self._string = val
|
||||
|
||||
# Rotation property
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
# Height property
|
||||
@property
|
||||
def height(self) -> float:
|
||||
return self._height
|
||||
|
||||
@height.setter
|
||||
def height(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Height must be a scalar')
|
||||
self._height = val
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> List[bool]:
|
||||
return self._mirrored
|
||||
|
||||
@mirrored.setter
|
||||
def mirrored(self, val: List[bool]):
|
||||
if is_scalar(val):
|
||||
raise PatternError('Mirrored must be a 2-element list of booleans')
|
||||
self._mirrored = val
|
||||
|
||||
def __init__(self,
|
||||
string: str,
|
||||
height: float,
|
||||
font_path: str,
|
||||
mirrored: List[bool]=None,
|
||||
rotation: float=0.0,
|
||||
offset: vector2=(0.0, 0.0),
|
||||
layer: int=0,
|
||||
dose: float=1.0):
|
||||
self.offset = offset
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.string = string
|
||||
self.height = height
|
||||
self.rotation = rotation
|
||||
self.font_path = font_path
|
||||
if mirrored is None:
|
||||
mirrored = [False, False]
|
||||
self.mirrored = mirrored
|
||||
|
||||
def to_polygons(self,
|
||||
_poly_num_points: int=None,
|
||||
_poly_max_arclen: float=None
|
||||
) -> List[Polygon]:
|
||||
all_polygons = []
|
||||
total_advance = 0
|
||||
for char in self.string:
|
||||
raw_polys, advance = get_char_as_polygons(self.font_path, char)
|
||||
|
||||
# Move these polygons to the right of the previous letter
|
||||
for xys in raw_polys:
|
||||
poly = Polygon(xys, dose=self.dose, layer=self.layer)
|
||||
[poly.mirror(ax) for ax, do in enumerate(self.mirrored) if do]
|
||||
poly.scale_by(self.height)
|
||||
poly.offset = self.offset + [total_advance, 0]
|
||||
poly.rotate_around(self.offset, self.rotation)
|
||||
all_polygons += [poly]
|
||||
|
||||
# Update the list of all polygons and how far to advance
|
||||
total_advance += advance * self.height
|
||||
|
||||
return all_polygons
|
||||
|
||||
def rotate(self, theta: float) -> 'Text':
|
||||
self.rotation += theta
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Text':
|
||||
self.mirrored[axis] = not self.mirrored[axis]
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Text':
|
||||
self.height *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
return (type(self), self.string, self.font_path, self.mirrored, self.layer), \
|
||||
(self.offset, self.height / norm_value, self.rotation, self.dose), \
|
||||
lambda: Text(string=self.string,
|
||||
height=self.height * norm_value,
|
||||
font_path=self.font_path,
|
||||
mirrored=self.mirrored,
|
||||
layer=self.layer)
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
# rotation makes this a huge pain when using slot.advance and glyph.bbox(), so
|
||||
# just convert to polygons instead
|
||||
bounds = [[+inf, +inf], [-inf, -inf]]
|
||||
polys = self.to_polygons()
|
||||
for poly in polys:
|
||||
poly_bounds = poly.get_bounds()
|
||||
bounds[0, :] = numpy.minimum(bounds[0, :], poly_bounds[0, :])
|
||||
bounds[1, :] = numpy.maximum(bounds[1, :], poly_bounds[1, :])
|
||||
|
||||
return bounds
|
||||
|
||||
|
||||
def get_char_as_polygons(font_path: str,
|
||||
char: str,
|
||||
resolution: float=48*64,
|
||||
) -> Tuple[List[List[List[float]]], float]:
|
||||
from freetype import Face
|
||||
from matplotlib.path import Path
|
||||
|
||||
"""
|
||||
Get a list of polygons representing a single character.
|
||||
|
||||
The output is normalized so that the font size is 1 unit.
|
||||
|
||||
:param font_path: File path specifying a font loadable by freetype
|
||||
:param char: Character to convert to polygons
|
||||
:param resolution: Internal resolution setting (used for freetype
|
||||
Face.set_font_size(resolution)). Modify at your own peril!
|
||||
:return: List of polygons [[[x0, y0], [x1, y1], ...], ...] and 'advance' distance (distance
|
||||
from the start of this glyph to the start of the next one)
|
||||
"""
|
||||
if len(char) != 1:
|
||||
raise Exception('get_char_as_polygons called with non-char')
|
||||
|
||||
face = Face(font_path)
|
||||
face.set_char_size(resolution)
|
||||
face.load_char(char)
|
||||
slot = face.glyph
|
||||
outline = slot.outline
|
||||
|
||||
start = 0
|
||||
all_verts, all_codes = [], []
|
||||
for end in outline.contours:
|
||||
points = outline.points[start:end + 1]
|
||||
points.append(points[0])
|
||||
|
||||
tags = outline.tags[start:end + 1]
|
||||
tags.append(tags[0])
|
||||
|
||||
segments = []
|
||||
for j, point in enumerate(points):
|
||||
# If we already have a segment, add this point to it
|
||||
if j > 0:
|
||||
segments[-1].append(point)
|
||||
|
||||
# If not bezier control point, start next segment
|
||||
if get_bit(tags[j], 0) and j < (len(points) - 1):
|
||||
segments.append([point])
|
||||
|
||||
verts = [points[0]]
|
||||
codes = [Path.MOVETO]
|
||||
for segment in segments:
|
||||
if len(segment) == 2:
|
||||
verts.extend(segment[1:])
|
||||
codes.extend([Path.LINETO])
|
||||
elif len(segment) == 3:
|
||||
verts.extend(segment[1:])
|
||||
codes.extend([Path.CURVE3, Path.CURVE3])
|
||||
else:
|
||||
verts.append(segment[1])
|
||||
codes.append(Path.CURVE3)
|
||||
for i in range(1, len(segment) - 2):
|
||||
a, b = segment[i], segment[i + 1]
|
||||
c = ((a[0] + b[0]) / 2.0, (a[1] + b[1]) / 2.0)
|
||||
verts.extend([c, b])
|
||||
codes.extend([Path.CURVE3, Path.CURVE3])
|
||||
verts.append(segment[-1])
|
||||
codes.append(Path.CURVE3)
|
||||
all_verts.extend(verts)
|
||||
all_codes.extend(codes)
|
||||
start = end + 1
|
||||
|
||||
all_verts = numpy.array(all_verts) / resolution
|
||||
|
||||
advance = slot.advance.x / resolution
|
||||
|
||||
if len(all_verts) == 0:
|
||||
polygons = []
|
||||
else:
|
||||
path = Path(all_verts, all_codes)
|
||||
path.should_simplify = False
|
||||
polygons = path.to_polygons()
|
||||
|
||||
return polygons, advance
|
202
masque/subpattern.py
Normal file
202
masque/subpattern.py
Normal file
@ -0,0 +1,202 @@
|
||||
"""
|
||||
SubPattern provides basic support for nesting Pattern objects within each other, by adding
|
||||
offset, rotation, scaling, and other such properties to the reference.
|
||||
"""
|
||||
|
||||
from typing import Union, List
|
||||
import copy
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from .error import PatternError
|
||||
from .utils import is_scalar, rotation_matrix_2d, vector2
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
class SubPattern:
|
||||
"""
|
||||
SubPattern provides basic support for nesting Pattern objects within each other, by adding
|
||||
offset, rotation, scaling, and associated methods.
|
||||
"""
|
||||
|
||||
pattern = None # type: Pattern
|
||||
_offset = (0.0, 0.0) # type: numpy.ndarray
|
||||
_rotation = 0.0 # type: float
|
||||
_dose = 1.0 # type: float
|
||||
_scale = 1.0 # type: float
|
||||
_mirrored = None # type: List[bool]
|
||||
|
||||
def __init__(self,
|
||||
pattern: 'Pattern',
|
||||
offset: vector2=(0.0, 0.0),
|
||||
rotation: float=0.0,
|
||||
mirrored: List[bool]=None,
|
||||
dose: float=1.0,
|
||||
scale: float=1.0):
|
||||
self.pattern = pattern
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.dose = dose
|
||||
self.scale = scale
|
||||
if mirrored is None:
|
||||
mirrored = [False, False]
|
||||
self.mirrored = mirrored
|
||||
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten().astype(float)
|
||||
|
||||
# dose property
|
||||
@property
|
||||
def dose(self) -> float:
|
||||
return self._dose
|
||||
|
||||
@dose.setter
|
||||
def dose(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Dose must be a scalar')
|
||||
if not val >= 0:
|
||||
raise PatternError('Dose must be non-negative')
|
||||
self._dose = val
|
||||
|
||||
# scale property
|
||||
@property
|
||||
def scale(self) -> float:
|
||||
return self._scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Scale must be a scalar')
|
||||
if not val > 0:
|
||||
raise PatternError('Scale must be positive')
|
||||
self._scale = val
|
||||
|
||||
# Rotation property [ccw]
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> List[bool]:
|
||||
return self._mirrored
|
||||
|
||||
@mirrored.setter
|
||||
def mirrored(self, val: List[bool]):
|
||||
if is_scalar(val):
|
||||
raise PatternError('Mirrored must be a 2-element list of booleans')
|
||||
self._mirrored = val
|
||||
|
||||
def as_pattern(self) -> 'Pattern':
|
||||
"""
|
||||
Returns a copy of self.pattern which has been scaled, rotated, etc. according to this
|
||||
SubPattern's properties.
|
||||
:return: Copy of self.pattern that has been altered to reflect the SubPattern's properties.
|
||||
"""
|
||||
pattern = self.pattern.deepcopy()
|
||||
pattern.scale_by(self.scale)
|
||||
[pattern.mirror(ax) for ax, do in enumerate(self.mirrored) if do]
|
||||
pattern.rotate_around((0.0, 0.0), self.rotation)
|
||||
pattern.translate_elements(self.offset)
|
||||
pattern.scale_element_doses(self.dose)
|
||||
return pattern
|
||||
|
||||
def translate(self, offset: vector2) -> 'SubPattern':
|
||||
"""
|
||||
Translate by the given offset
|
||||
|
||||
:param offset: Translate by this offset
|
||||
:return: self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'SubPattern':
|
||||
"""
|
||||
Rotate around a point
|
||||
|
||||
:param pivot: Point to rotate around
|
||||
:param rotation: Angle to rotate by (counterclockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.rotate(rotation)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
def rotate(self, rotation: float) -> 'SubPattern':
|
||||
"""
|
||||
Rotate around (0, 0)
|
||||
|
||||
:param rotation: Angle to rotate by (counterclockwise, radians)
|
||||
:return: self
|
||||
"""
|
||||
self.rotation += rotation
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'SubPattern':
|
||||
"""
|
||||
Mirror the subpattern across an axis.
|
||||
|
||||
:param axis: Axis to mirror across.
|
||||
:return: self
|
||||
"""
|
||||
self.mirrored[axis] = not self.mirrored[axis]
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray or None:
|
||||
"""
|
||||
Return a numpy.ndarray containing [[x_min, y_min], [x_max, y_max]], corresponding to the
|
||||
extent of the SubPattern in each dimension.
|
||||
Returns None if the contained Pattern is empty.
|
||||
|
||||
:return: [[x_min, y_min], [x_max, y_max]] or None
|
||||
"""
|
||||
return self.as_pattern().get_bounds()
|
||||
|
||||
def scale_by(self, c: float) -> 'SubPattern':
|
||||
"""
|
||||
Scale the subpattern by a factor
|
||||
|
||||
:param c: scaling factor
|
||||
"""
|
||||
self.scale *= c
|
||||
return self
|
||||
|
||||
def copy(self) -> 'SubPattern':
|
||||
"""
|
||||
Return a shallow copy of the subpattern.
|
||||
|
||||
:return: copy.copy(self)
|
||||
"""
|
||||
return copy.copy(self)
|
||||
|
||||
def deepcopy(self) -> 'SubPattern':
|
||||
"""
|
||||
Return a deep copy of the subpattern.
|
||||
|
||||
:return: copy.copy(self)
|
||||
"""
|
||||
return copy.deepcopy(self)
|
89
masque/utils.py
Normal file
89
masque/utils.py
Normal file
@ -0,0 +1,89 @@
|
||||
"""
|
||||
Various helper functions
|
||||
"""
|
||||
|
||||
from typing import Any, Union, Tuple
|
||||
|
||||
import numpy
|
||||
|
||||
# Type definitions
|
||||
vector2 = Union[numpy.ndarray, Tuple[float, float]]
|
||||
|
||||
|
||||
def is_scalar(var: Any) -> bool:
|
||||
"""
|
||||
Alias for 'not hasattr(var, "__len__")'
|
||||
|
||||
:param var: Checks if var has a length.
|
||||
"""
|
||||
return not hasattr(var, "__len__")
|
||||
|
||||
|
||||
def get_bit(bit_string: Any, bit_id: int) -> bool:
|
||||
"""
|
||||
Returns true iff bit number 'bit_id' from the right of 'bit_string' is 1
|
||||
|
||||
:param bit_string: Bit string to test
|
||||
:param bit_id: Bit number, 0-indexed from the right (lsb)
|
||||
:return: value of the requested bit (bool)
|
||||
"""
|
||||
return bit_string & (1 << bit_id) != 0
|
||||
|
||||
|
||||
def set_bit(bit_string: Any, bit_id: int, value: bool) -> Any:
|
||||
"""
|
||||
Returns 'bit_string' with bit number 'bit_id' set to 'value'.
|
||||
|
||||
:param bit_string: Bit string to alter
|
||||
:param bit_id: Bit number, 0-indexed from right (lsb)
|
||||
:param value: Boolean value to set bit to
|
||||
:return: Altered 'bit_string'
|
||||
"""
|
||||
mask = (1 << bit_id)
|
||||
bit_string &= ~mask
|
||||
if value:
|
||||
bit_string |= mask
|
||||
return bit_string
|
||||
|
||||
|
||||
def rotation_matrix_2d(theta: float) -> numpy.ndarray:
|
||||
"""
|
||||
2D rotation matrix for rotating counterclockwise around the origin.
|
||||
|
||||
:param theta: Angle to rotate, in radians
|
||||
:return: rotation matrix
|
||||
"""
|
||||
return numpy.array([[numpy.cos(theta), -numpy.sin(theta)],
|
||||
[numpy.sin(theta), +numpy.cos(theta)]])
|
||||
|
||||
|
||||
def remove_duplicate_vertices(vertices: numpy.ndarray, closed_path: bool = True) -> numpy.ndarray:
|
||||
duplicates = (vertices == numpy.roll(vertices, 1, axis=0)).all(axis=1)
|
||||
if not closed_path:
|
||||
duplicates[0] = False
|
||||
return vertices[~duplicates]
|
||||
|
||||
|
||||
def remove_colinear_vertices(vertices: numpy.ndarray, closed_path: bool = True) -> numpy.ndarray:
|
||||
'''
|
||||
Given a list of vertices, remove any superflous vertices (i.e.
|
||||
those which lie along the line formed by their neighbors)
|
||||
|
||||
:param vertices: Nx2 ndarray of vertices
|
||||
:param closed_path: If True, the vertices are assumed to represent an implicitly
|
||||
closed path. If False, the path is assumed to be open. Default True.
|
||||
:return:
|
||||
'''
|
||||
# Check for dx0/dy0 == dx1/dy1
|
||||
|
||||
dv = numpy.roll(vertices, 1, axis=0) - vertices #[y0 - yn1, y1-y0, ...]
|
||||
dxdy = dv * numpy.roll(dv, 1, axis=0)[:, ::-1] # [[dx1*dy0, dx1*dy0], ...]
|
||||
|
||||
dxdy_diff = numpy.abs(numpy.diff(dxdy, axis=1))[:, 0]
|
||||
err_mult = 2 * numpy.abs(dxdy).sum(axis=1) + 1e-40
|
||||
|
||||
slopes_equal = (dxdy_diff / err_mult) < 1e-15
|
||||
if not closed_path:
|
||||
slopes_equal[[0, -1]] = False
|
||||
|
||||
return vertices[~slopes_equal]
|
41
setup.py
Normal file
41
setup.py
Normal file
@ -0,0 +1,41 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
import masque
|
||||
|
||||
with open('README.md', 'r') as f:
|
||||
long_description = f.read()
|
||||
|
||||
setup(name='masque',
|
||||
version=masque.version,
|
||||
description='Lithography mask library',
|
||||
long_description=long_description,
|
||||
long_description_content_type='text/markdown',
|
||||
author='Jan Petykiewicz',
|
||||
author_email='anewusername@gmail.com',
|
||||
url='https://mpxd.net/code/jan/masque',
|
||||
packages=find_packages(),
|
||||
install_requires=[
|
||||
'numpy',
|
||||
],
|
||||
extras_require={
|
||||
'visualization': ['matplotlib'],
|
||||
'gdsii': ['python-gdsii'],
|
||||
'svg': ['svgwrite'],
|
||||
'text': ['freetype-py', 'matplotlib'],
|
||||
},
|
||||
classifiers=[
|
||||
'Programming Language :: Python :: 3',
|
||||
'Development Status :: 4 - Beta',
|
||||
'Intended Audience :: Developers',
|
||||
'Intended Audience :: Information Technology',
|
||||
'Intended Audience :: Manufacturing',
|
||||
'Intended Audience :: Science/Research',
|
||||
'License :: OSI Approved :: GNU Affero General Public License v3',
|
||||
'Operating System :: POSIX :: Linux',
|
||||
'Operating System :: Microsoft :: Windows',
|
||||
'Topic :: Scientific/Engineering :: Electronic Design Automation (EDA)',
|
||||
'Topic :: Scientific/Engineering :: Visualization',
|
||||
],
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user