start work on tutorial
This commit is contained in:
		
							parent
							
								
									7aa850a239
								
							
						
					
					
						commit
						9b3b30b141
					
				
							
								
								
									
										0
									
								
								examples/tutorial/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								examples/tutorial/README.md
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										77
									
								
								examples/tutorial/basic.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										77
									
								
								examples/tutorial/basic.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,77 @@
 | 
				
			|||||||
 | 
					from typing import Tuple, Sequence
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import numpy        # type: ignore
 | 
				
			||||||
 | 
					from numpy import pi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from masque import layer_t, Pattern, SubPattern, Label
 | 
				
			||||||
 | 
					from masque.shapes import Circle, Arc
 | 
				
			||||||
 | 
					from masque.builder import Device, Port
 | 
				
			||||||
 | 
					from masque.library import Library, DeviceLibrary
 | 
				
			||||||
 | 
					import masque.file.gdsii
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import pcgen
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def hole(radius: float,
 | 
				
			||||||
 | 
					         layer: layer_t = (1, 0),
 | 
				
			||||||
 | 
					         ) -> Pattern:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Generate a pattern containing a single circular hole.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        layer: Layer to draw the circle on.
 | 
				
			||||||
 | 
					        radius: Circle radius.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        Pattern, named `'hole'`
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    pat = Pattern('hole', shapes=[
 | 
				
			||||||
 | 
					        Circle(radius=radius, offset=(0, 0), layer=layer)
 | 
				
			||||||
 | 
					        ])
 | 
				
			||||||
 | 
					    return pat
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def smile(radius: float,
 | 
				
			||||||
 | 
					          layer: layer_t = (1, 0),
 | 
				
			||||||
 | 
					          secondary_layer: layer_t = (1, 2)
 | 
				
			||||||
 | 
					          ) -> Pattern:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Generate a pattern containing a single smiley face.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        radius: Boundary circle radius.
 | 
				
			||||||
 | 
					        layer: Layer to draw the outer circle on.
 | 
				
			||||||
 | 
					        secondary_layer: Layer to draw eyes and smile on.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        Pattern, named `'smile'`
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    # Make an empty pattern
 | 
				
			||||||
 | 
					    pat = Pattern('smile')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Add all the shapes we want
 | 
				
			||||||
 | 
					    pat.shapes += [
 | 
				
			||||||
 | 
					        Circle(radius=radius, offset=(0, 0), layer=layer),   # Outer circle
 | 
				
			||||||
 | 
					        Circle(radius=radius / 10, offset=(radius / 3, radius / 3), layer=secondary_layer),
 | 
				
			||||||
 | 
					        Circle(radius=radius / 10, offset=(-radius / 3, radius / 3), layer=secondary_layer),
 | 
				
			||||||
 | 
					        Arc(radii=(radius * 2 / 3, radius * 2 / 3), # Underlying ellipse radii
 | 
				
			||||||
 | 
					            angles=(7 / 6 * pi, 11 / 6 * pi),        # Angles limiting the arc
 | 
				
			||||||
 | 
					            width=radius / 10,
 | 
				
			||||||
 | 
					            offset=(0, 0),
 | 
				
			||||||
 | 
					            layer=secondary_layer),
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return pat
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _main() -> None:
 | 
				
			||||||
 | 
					   hole_pat = hole(1000)
 | 
				
			||||||
 | 
					   smile_pat = smile(1000)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   masque.file.gdsii.writefile([hole_pat, smile_pat], 'basic.gds', 1e-9, 1e-3)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   smile_pat.visualize()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    _main()
 | 
				
			||||||
							
								
								
									
										313
									
								
								examples/tutorial/pcgen.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										313
									
								
								examples/tutorial/pcgen.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,313 @@
 | 
				
			|||||||
 | 
					"""
 | 
				
			||||||
 | 
					Routines for creating normalized 2D lattices and common photonic crystal
 | 
				
			||||||
 | 
					 cavity designs.
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					from typing import Sequence, Tuple
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import numpy        # type: ignore
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def triangular_lattice(dims: Tuple[int, int],
 | 
				
			||||||
 | 
					                       asymmetric: bool = False,
 | 
				
			||||||
 | 
					                       origin: str = 'center',
 | 
				
			||||||
 | 
					                       ) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Return an ndarray of `[[x0, y0], [x1, y1], ...]` denoting lattice sites for
 | 
				
			||||||
 | 
					     a triangular lattice in 2D.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        dims: Number of lattice sites in the [x, y] directions.
 | 
				
			||||||
 | 
					        asymmetric: If true, each row will contain the same number of
 | 
				
			||||||
 | 
					            x-coord lattice sites. If false, every other row will be
 | 
				
			||||||
 | 
					            one site shorter (to make the structure symmetric).
 | 
				
			||||||
 | 
					        origin: If 'corner', the least-(x,y) lattice site is placed at (0, 0)
 | 
				
			||||||
 | 
					            If 'center', the center of the lattice (not necessarily a
 | 
				
			||||||
 | 
					            lattice site) is placed at (0, 0).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0], [x1, 1], ...]` denoting lattice sites.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    sx, sy = numpy.meshgrid(numpy.arange(dims[0], dtype=float),
 | 
				
			||||||
 | 
					                            numpy.arange(dims[1], dtype=float), indexing='ij')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    sx[sy % 2 == 1] += 0.5
 | 
				
			||||||
 | 
					    sy *= numpy.sqrt(3) / 2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not asymmetric:
 | 
				
			||||||
 | 
					        which = sx != sx.max()
 | 
				
			||||||
 | 
					        sx = sx[which]
 | 
				
			||||||
 | 
					        sy = sy[which]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    xy = numpy.column_stack((sx.flat, sy.flat))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if origin == 'center':
 | 
				
			||||||
 | 
					        xy -= (xy.max(axis=0) - xy.min(axis=0)) / 2
 | 
				
			||||||
 | 
					    elif origin == 'corner':
 | 
				
			||||||
 | 
					        pass
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        raise Exception(f'Invalid value for `origin`: {origin}')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return xy[xy[:, 0].argsort(), :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def square_lattice(dims: Tuple[int, int]) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Return an ndarray of `[[x0, y0], [x1, y1], ...]` denoting lattice sites for
 | 
				
			||||||
 | 
					     a square lattice in 2D. The lattice will be centered around (0, 0).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        dims: Number of lattice sites in the [x, y] directions.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0], [x1, 1], ...]` denoting lattice sites.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    xs, ys = numpy.meshgrid(range(dims[0]), range(dims[1]), 'xy')
 | 
				
			||||||
 | 
					    xs -= dims[0]/2
 | 
				
			||||||
 | 
					    ys -= dims[1]/2
 | 
				
			||||||
 | 
					    xy = numpy.vstack((xs.flatten(), ys.flatten())).T
 | 
				
			||||||
 | 
					    return xy[xy[:, 0].argsort(), ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# ### Photonic crystal functions ###
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def nanobeam_holes(a_defect: float,
 | 
				
			||||||
 | 
					                   num_defect_holes: int,
 | 
				
			||||||
 | 
					                   num_mirror_holes: int
 | 
				
			||||||
 | 
					                   ) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Returns a list of `[[x0, r0], [x1, r1], ...]` of nanobeam hole positions and radii.
 | 
				
			||||||
 | 
					     Creates a region in which the lattice constant and radius are progressively
 | 
				
			||||||
 | 
					     (linearly) altered over num_defect_holes holes until they reach the value
 | 
				
			||||||
 | 
					     specified by a_defect, then symmetrically returned to a lattice constant and
 | 
				
			||||||
 | 
					     radius of 1, which is repeated num_mirror_holes times on each side.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        a_defect: Minimum lattice constant for the defect, as a fraction of the
 | 
				
			||||||
 | 
					            mirror lattice constant (ie., for no defect, a_defect = 1).
 | 
				
			||||||
 | 
					        num_defect_holes: How many holes form the defect (per-side)
 | 
				
			||||||
 | 
					        num_mirror_holes: How many holes form the mirror (per-side)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        Ndarray `[[x0, r0], [x1, r1], ...]` of nanobeam hole positions and radii.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    a_values = numpy.linspace(a_defect, 1, num_defect_holes, endpoint=False)
 | 
				
			||||||
 | 
					    xs = a_values.cumsum() - (a_values[0] / 2)  # Later mirroring makes center distance 2x as long
 | 
				
			||||||
 | 
					    mirror_xs = numpy.arange(1, num_mirror_holes + 1, dtype=float) + xs[-1]
 | 
				
			||||||
 | 
					    mirror_rs = numpy.ones_like(mirror_xs)
 | 
				
			||||||
 | 
					    return numpy.vstack((numpy.hstack((-mirror_xs[::-1], -xs[::-1], xs, mirror_xs)),
 | 
				
			||||||
 | 
					                         numpy.hstack((mirror_rs[::-1], a_values[::-1], a_values, mirror_rs)))).T
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def waveguide(length: int, num_mirror: int) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Line defect waveguide in a triangular lattice.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        length: waveguide length (number of holes in x direction)
 | 
				
			||||||
 | 
					        num_mirror: Mirror length (number of holes per side; total size is
 | 
				
			||||||
 | 
					            `2 * n + 1` holes.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0], [x1, y1], ...]` for all the holes
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    p = triangular_lattice([length + 2, 2 * num_mirror + 1])
 | 
				
			||||||
 | 
					    p = p[p[:, 1] != 0, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    p = p[numpy.abs(p[:, 0]) <= length / 2]
 | 
				
			||||||
 | 
					    return p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def wgbend(num_mirror: int) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Line defect waveguide bend in a triangular lattice.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        num_mirror: Mirror length (number of holes per side; total size is
 | 
				
			||||||
 | 
					            approximately `2 * n + 1`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0], [x1, y1], ...]` for all the holes
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    p = triangular_lattice([4 * num_mirror + 1, 4 * num_mirror + 1])
 | 
				
			||||||
 | 
					    left_horiz = (p[:, 1] == 0) & (p[:, 0] <= 0)
 | 
				
			||||||
 | 
					    p = p[~left_horiz, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    right_diag = numpy.isclose(p[:, 1], p[:, 0] * numpy.sqrt(3)) & (p[:, 0] >= 0)
 | 
				
			||||||
 | 
					    p = p[~right_diag, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    edge_left = p[:, 0] < -num_mirror
 | 
				
			||||||
 | 
					    edge_bot = p[:, 1] < -num_mirror
 | 
				
			||||||
 | 
					    p = p[~edge_left & ~edge_bot, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    edge_diag_up = p[:, 0] * numpy.sqrt(3) > p[:, 1] + 2 * num_mirror + 0.1
 | 
				
			||||||
 | 
					    edge_diag_dn = p[:, 0] / numpy.sqrt(3) > -p[:, 1] + num_mirror + 1.1
 | 
				
			||||||
 | 
					    p = p[~edge_diag_up & ~edge_diag_dn, :]
 | 
				
			||||||
 | 
					    return p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def y_splitter(num_mirror: int) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Line defect waveguide y-splitter in a triangular lattice.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        num_mirror: Mirror length (number of holes per side; total size is
 | 
				
			||||||
 | 
					            approximately `2 * n + 1` holes.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0], [x1, y1], ...]` for all the holes
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    p = triangular_lattice([4 * num_mirror + 1, 4 * num_mirror + 1])
 | 
				
			||||||
 | 
					    left_horiz = (p[:, 1] == 0) & (p[:, 0] <= 0)
 | 
				
			||||||
 | 
					    p = p[~left_horiz, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # y = +-sqrt(3) * x
 | 
				
			||||||
 | 
					    right_diag_up = numpy.isclose(p[:, 1],  p[:, 0] * numpy.sqrt(3)) & (p[:, 0] >= 0)
 | 
				
			||||||
 | 
					    right_diag_dn = numpy.isclose(p[:, 1], -p[:, 0] * numpy.sqrt(3)) & (p[:, 0] >= 0)
 | 
				
			||||||
 | 
					    p = p[~right_diag_up & ~right_diag_dn, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    edge_left = p[:, 0] < -num_mirror
 | 
				
			||||||
 | 
					    p = p[~edge_left, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    edge_diag_up = p[:, 0] / numpy.sqrt(3) >  p[:, 1] + num_mirror + 1.1
 | 
				
			||||||
 | 
					    edge_diag_dn = p[:, 0] / numpy.sqrt(3) > -p[:, 1] + num_mirror + 1.1
 | 
				
			||||||
 | 
					    p = p[~edge_diag_up & ~edge_diag_dn, :]
 | 
				
			||||||
 | 
					    return p
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def ln_defect(mirror_dims: Tuple[int, int],
 | 
				
			||||||
 | 
					              defect_length: int,
 | 
				
			||||||
 | 
					              ) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    N-hole defect in a triangular lattice.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
 | 
				
			||||||
 | 
					            is 2 * n + 1 in each direction.
 | 
				
			||||||
 | 
					        defect_length: Length of defect. Should be an odd number.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0], [x1, y1], ...]` for all the holes
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if defect_length % 2 != 1:
 | 
				
			||||||
 | 
					        raise Exception('defect_length must be odd!')
 | 
				
			||||||
 | 
					    p = triangular_lattice([2 * d + 1 for d in mirror_dims])
 | 
				
			||||||
 | 
					    half_length = numpy.floor(defect_length / 2)
 | 
				
			||||||
 | 
					    hole_nums = numpy.arange(-half_length, half_length + 1)
 | 
				
			||||||
 | 
					    holes_to_keep = numpy.in1d(p[:, 0], hole_nums, invert=True)
 | 
				
			||||||
 | 
					    return p[numpy.logical_or(holes_to_keep, p[:, 1] != 0), ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def ln_shift_defect(mirror_dims: Tuple[int, int],
 | 
				
			||||||
 | 
					                    defect_length: int,
 | 
				
			||||||
 | 
					                    shifts_a: Sequence[float] = (0.15, 0, 0.075),
 | 
				
			||||||
 | 
					                    shifts_r: Sequence[float] = (1, 1, 1)
 | 
				
			||||||
 | 
					                    ) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    N-hole defect with shifted holes (intended to give the mode a gaussian profile
 | 
				
			||||||
 | 
					     in real- and k-space so as to improve both Q and confinement). Holes along the
 | 
				
			||||||
 | 
					     defect line are shifted and altered according to the shifts_* parameters.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
 | 
				
			||||||
 | 
					            is `2 * n + 1` in each direction.
 | 
				
			||||||
 | 
					        defect_length: Length of defect. Should be an odd number.
 | 
				
			||||||
 | 
					        shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
 | 
				
			||||||
 | 
					        shifts_r: Factor to multiply the radius by. Should match length of shifts_a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0, r0], [x1, y1, r1], ...]` for all the holes
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if not hasattr(shifts_a, "__len__") and shifts_a is not None:
 | 
				
			||||||
 | 
					        shifts_a = [shifts_a]
 | 
				
			||||||
 | 
					    if not hasattr(shifts_r, "__len__") and shifts_r is not None:
 | 
				
			||||||
 | 
					        shifts_r = [shifts_r]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    xy = ln_defect(mirror_dims, defect_length)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Add column for radius
 | 
				
			||||||
 | 
					    xyr = numpy.hstack((xy, numpy.ones((xy.shape[0], 1))))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Shift holes
 | 
				
			||||||
 | 
					    # Expand shifts as necessary
 | 
				
			||||||
 | 
					    n_shifted = max(len(shifts_a), len(shifts_r))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    tmp_a = numpy.array(shifts_a)
 | 
				
			||||||
 | 
					    shifts_a = numpy.ones((n_shifted, ))
 | 
				
			||||||
 | 
					    shifts_a[:len(tmp_a)] = tmp_a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    tmp_r = numpy.array(shifts_r)
 | 
				
			||||||
 | 
					    shifts_r = numpy.ones((n_shifted, ))
 | 
				
			||||||
 | 
					    shifts_r[:len(tmp_r)] = tmp_r
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    x_removed = numpy.floor(defect_length / 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ind in range(n_shifted):
 | 
				
			||||||
 | 
					        for sign in (-1, 1):
 | 
				
			||||||
 | 
					            x_val = sign * (x_removed + ind + 1)
 | 
				
			||||||
 | 
					            which = numpy.logical_and(xyr[:, 0] == x_val, xyr[:, 1] == 0)
 | 
				
			||||||
 | 
					            xyr[which, ] = (x_val + numpy.sign(x_val) * shifts_a[ind], 0, shifts_r[ind])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return xyr
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def r6_defect(mirror_dims: Tuple[int, int]) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    R6 defect in a triangular lattice.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
 | 
				
			||||||
 | 
					            is 2 * n + 1 in each direction.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0], [x1, y1], ...]` specifying hole centers.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    xy = triangular_lattice([2 * d + 1 for d in mirror_dims])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    rem_holes_plus = numpy.array([[1, 0],
 | 
				
			||||||
 | 
					                                  [0.5, +numpy.sqrt(3)/2],
 | 
				
			||||||
 | 
					                                  [0.5, -numpy.sqrt(3)/2]])
 | 
				
			||||||
 | 
					    rem_holes = numpy.vstack((rem_holes_plus, -rem_holes_plus))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for rem_xy in rem_holes:
 | 
				
			||||||
 | 
					        xy = xy[(xy != rem_xy).any(axis=1), ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return xy
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def l3_shift_perturbed_defect(
 | 
				
			||||||
 | 
					    mirror_dims: Tuple[int, int],
 | 
				
			||||||
 | 
					    perturbed_radius: float = 1.1,
 | 
				
			||||||
 | 
					    shifts_a: Sequence[float] = (),
 | 
				
			||||||
 | 
					    shifts_r: Sequence[float] = ()
 | 
				
			||||||
 | 
					    ) -> numpy.ndarray:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    3-hole defect with perturbed hole sizes intended to form an upwards-directed
 | 
				
			||||||
 | 
					     beam. Can also include shifted holes along the defect line, intended
 | 
				
			||||||
 | 
					     to give the mode a more gaussian profile to improve Q.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
 | 
				
			||||||
 | 
					            is 2 * n + 1 in each direction.
 | 
				
			||||||
 | 
					        perturbed_radius: Amount to perturb the radius of the holes used for beam-forming
 | 
				
			||||||
 | 
					        shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
 | 
				
			||||||
 | 
					        shifts_r: Factor to multiply the radius by. Should match length of shifts_a
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `[[x0, y0, r0], [x1, y1, r1], ...]` for all the holes
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    xyr = ln_shift_defect(mirror_dims, 3, shifts_a, shifts_r)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    abs_x, abs_y = (numpy.fabs(xyr[:, i]) for i in (0, 1))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Sorted unique xs and ys
 | 
				
			||||||
 | 
					    # Ignore row y=0 because it might have shifted holes
 | 
				
			||||||
 | 
					    xs = numpy.unique(abs_x[abs_x != 0])
 | 
				
			||||||
 | 
					    ys = numpy.unique(abs_y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # which holes should be perturbed? (xs[[3, 7]], ys[1]) and (xs[[2, 6]], ys[2])
 | 
				
			||||||
 | 
					    perturbed_holes = ((xs[a], ys[b]) for a, b in ((3, 1), (7, 1), (2, 2), (6, 2)))
 | 
				
			||||||
 | 
					    for row in xyr:
 | 
				
			||||||
 | 
					        if numpy.fabs(row) in perturbed_holes:
 | 
				
			||||||
 | 
					            row[2] = perturbed_radius
 | 
				
			||||||
 | 
					    return xyr
 | 
				
			||||||
							
								
								
									
										245
									
								
								examples/tutorial/phc.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										245
									
								
								examples/tutorial/phc.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,245 @@
 | 
				
			|||||||
 | 
					from typing import Tuple, Sequence
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import numpy        # type: ignore
 | 
				
			||||||
 | 
					from numpy import pi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from masque import layer_t, Pattern, SubPattern, Label
 | 
				
			||||||
 | 
					from masque.shapes import Polygon, Circle
 | 
				
			||||||
 | 
					from masque.builder import Device, Port
 | 
				
			||||||
 | 
					from masque.library import Library, DeviceLibrary
 | 
				
			||||||
 | 
					from masque.file.gdsii import writefile
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import pcgen
 | 
				
			||||||
 | 
					import basic
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def perturbed_l3(lattice_constant: float,
 | 
				
			||||||
 | 
					                 hole: Pattern,
 | 
				
			||||||
 | 
					                 trench_dose: float = 1.0,
 | 
				
			||||||
 | 
					                 trench_layer: layer_t = (1, 0),
 | 
				
			||||||
 | 
					                 shifts_a: Sequence[float] = (0.15, 0, 0.075),
 | 
				
			||||||
 | 
					                 shifts_r: Sequence[float] = (1.0, 1.0, 1.0),
 | 
				
			||||||
 | 
					                 xy_size: Tuple[int, int] = (10, 10),
 | 
				
			||||||
 | 
					                 perturbed_radius: float = 1.1,
 | 
				
			||||||
 | 
					                 trench_width: float = 1200,
 | 
				
			||||||
 | 
					                 ) -> Device:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Generate a `Device` representing a perturbed L3 cavity.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        lattice_constant: Distance between nearest neighbor holes
 | 
				
			||||||
 | 
					        hole: `Pattern` object containing a single hole
 | 
				
			||||||
 | 
					        trench_dose: Dose for the trenches. Default 1.0. (Hole dose is 1.0.)
 | 
				
			||||||
 | 
					        trench_layer: Layer for the trenches, default `(1, 0)`.
 | 
				
			||||||
 | 
					        shifts_a: passed to `pcgen.l3_shift`; specifies lattice constant
 | 
				
			||||||
 | 
					            (1 - multiplicative factor) for shifting holes adjacent to
 | 
				
			||||||
 | 
					            the defect (same row). Default `(0.15, 0, 0.075)` for first,
 | 
				
			||||||
 | 
					            second, third holes.
 | 
				
			||||||
 | 
					        shifts_r: passed to `pcgen.l3_shift`; specifies radius for perturbing
 | 
				
			||||||
 | 
					            holes adjacent to the defect (same row). Default 1.0 for all holes.
 | 
				
			||||||
 | 
					            Provided sequence should have same length as `shifts_a`.
 | 
				
			||||||
 | 
					        xy_size: `(x, y)` number of mirror periods in each direction; total size is
 | 
				
			||||||
 | 
					                `2 * n + 1` holes in each direction. Default (10, 10).
 | 
				
			||||||
 | 
					        perturbed_radius: radius of holes perturbed to form an upwards-driected beam
 | 
				
			||||||
 | 
					                (multiplicative factor). Default 1.1.
 | 
				
			||||||
 | 
					        trench width: Width of the undercut trenches. Default 1200.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `Device` object representing the L3 design.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=xy_size,
 | 
				
			||||||
 | 
					                                          perturbed_radius=perturbed_radius,
 | 
				
			||||||
 | 
					                                          shifts_a=shifts_a,
 | 
				
			||||||
 | 
					                                          shifts_r=shifts_r)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    pat = Pattern(f'L3p-a{lattice_constant:g}rp{perturbed_radius:g}')
 | 
				
			||||||
 | 
					    pat.subpatterns += [SubPattern(hole,
 | 
				
			||||||
 | 
					                                   offset=(lattice_constant * x,
 | 
				
			||||||
 | 
					                                           lattice_constant * y),
 | 
				
			||||||
 | 
					                                   scale=r)
 | 
				
			||||||
 | 
					                        for x, y, r in xyr]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    min_xy, max_xy = pat.get_bounds()
 | 
				
			||||||
 | 
					    trench_dx = max_xy[0] - min_xy[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    pat.shapes += [
 | 
				
			||||||
 | 
					        Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
 | 
				
			||||||
 | 
					                     layer=trench_layer, dose=trench_dose),
 | 
				
			||||||
 | 
					        Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
 | 
				
			||||||
 | 
					                     layer=trench_layer, dose=trench_dose),
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    extent = lattice_constant * xy_size[0]
 | 
				
			||||||
 | 
					    ports = {
 | 
				
			||||||
 | 
					        'input': Port((-extent, 0), rotation=0, ptype=1),
 | 
				
			||||||
 | 
					        'output': Port((extent, 0), rotation=pi, ptype=1),
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return Device(pat, ports)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def waveguide(lattice_constant: float,
 | 
				
			||||||
 | 
					              hole: Pattern,
 | 
				
			||||||
 | 
					              length: int,
 | 
				
			||||||
 | 
					              mirror_periods: int,
 | 
				
			||||||
 | 
					              ) -> Device:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Generate a `Device` representing a photonic crystal line-defect waveguide.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        lattice_constant: Distance between nearest neighbor holes
 | 
				
			||||||
 | 
					        hole: `Pattern` object containing a single hole
 | 
				
			||||||
 | 
					        length: Distance (number of mirror periods) between the input and output ports.
 | 
				
			||||||
 | 
					            Ports are placed at lattice sites.
 | 
				
			||||||
 | 
					        mirror_periods: Number of hole rows on each side of the line defect
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `Device` object representing the waveguide.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    xy = pcgen.waveguide(length=length, num_mirror=mirror_periods)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    pat = Pattern(f'_wg-a{lattice_constant:g}l{length}')
 | 
				
			||||||
 | 
					    pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
 | 
				
			||||||
 | 
					                                                 lattice_constant * y))
 | 
				
			||||||
 | 
					                        for x, y in xy]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    extent = lattice_constant * length / 2
 | 
				
			||||||
 | 
					    ports = {
 | 
				
			||||||
 | 
					        'left': Port((-extent, 0), rotation=0, ptype=1),
 | 
				
			||||||
 | 
					        'right': Port((extent, 0), rotation=pi, ptype=1),
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    return Device(pat, ports)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def bend(lattice_constant: float,
 | 
				
			||||||
 | 
					         hole: Pattern,
 | 
				
			||||||
 | 
					         mirror_periods: int,
 | 
				
			||||||
 | 
					         ) -> Device:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Generate a `Device` representing a 60-degree counterclockwise bend in a photonic crystal
 | 
				
			||||||
 | 
					    line-defect waveguide.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        lattice_constant: Distance between nearest neighbor holes
 | 
				
			||||||
 | 
					        hole: `Pattern` object containing a single hole
 | 
				
			||||||
 | 
					        mirror_periods: Minimum number of mirror periods on each side of the line defect.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `Device` object representing the waveguide bend.
 | 
				
			||||||
 | 
					        Ports are named 'left' (input) and 'right' (output).
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    xy = pcgen.wgbend(num_mirror=mirror_periods)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    pat= Pattern(f'_wgbend-a{lattice_constant:g}l{mirror_periods}')
 | 
				
			||||||
 | 
					    pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
 | 
				
			||||||
 | 
					                                                 lattice_constant * y))
 | 
				
			||||||
 | 
					                        for x, y in xy]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    extent = lattice_constant * mirror_periods
 | 
				
			||||||
 | 
					    ports = {
 | 
				
			||||||
 | 
					        'left': Port((-extent, 0), rotation=0, ptype=1),
 | 
				
			||||||
 | 
					        'right': Port((extent / 2,
 | 
				
			||||||
 | 
					                       extent * numpy.sqrt(3) / 2), rotation=pi * 4 / 3, ptype=1),
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    return Device(pat, ports)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def y_splitter(lattice_constant: float,
 | 
				
			||||||
 | 
					               hole: Pattern,
 | 
				
			||||||
 | 
					               mirror_periods: int,
 | 
				
			||||||
 | 
					               ) -> Device:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Generate a `Device` representing a photonic crystal line-defect waveguide y-splitter.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        lattice_constant: Distance between nearest neighbor holes
 | 
				
			||||||
 | 
					        hole: `Pattern` object containing a single hole
 | 
				
			||||||
 | 
					        mirror_periods: Minimum number of mirror periods on each side of the line defect.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `Device` object representing the y-splitter.
 | 
				
			||||||
 | 
					        Ports are named 'in', 'top', and 'bottom'.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    xy = pcgen.y_splitter(num_mirror=mirror_periods)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    pat = Pattern(f'_wgsplit_half-a{lattice_constant:g}l{mirror_periods}')
 | 
				
			||||||
 | 
					    pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
 | 
				
			||||||
 | 
					                                                 lattice_constant * y))
 | 
				
			||||||
 | 
					                        for x, y in xy]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    extent = lattice_constant * mirror_periods
 | 
				
			||||||
 | 
					    ports = {
 | 
				
			||||||
 | 
					        'in': Port((-extent, 0), rotation=0, ptype=1),
 | 
				
			||||||
 | 
					        'top': Port((extent / 2,
 | 
				
			||||||
 | 
					                     extent * numpy.sqrt(3) / 2), rotation=pi * 4 / 3, ptype=1),
 | 
				
			||||||
 | 
					        'bot': Port((extent / 2,
 | 
				
			||||||
 | 
					                    -extent * numpy.sqrt(3) / 2), rotation=pi * 2 / 3, ptype=1),
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    return Device(pat, ports)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def label_ports(device: Device, layer: layer_t = (3, 0)) -> Device:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Place a text label at each port location, specifying the port data.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This can be used to debug port locations or to automatically generate ports
 | 
				
			||||||
 | 
					    when reading in a GDS file.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        device: The device which is to have its ports labeled.
 | 
				
			||||||
 | 
					        layer: The layer on which the labels will be placed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        `device` is returned (and altered in-place)
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    for name, port in device.ports.items():
 | 
				
			||||||
 | 
					        angle_deg = numpy.rad2deg(port.rotation)
 | 
				
			||||||
 | 
					        device.pattern.labels += [
 | 
				
			||||||
 | 
					            Label(string=f'{name} (angle {angle_deg:g})', layer=layer, offset=port.offset)
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					    return device
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main():
 | 
				
			||||||
 | 
					    a = 512
 | 
				
			||||||
 | 
					    radius = a / 2 * 0.75
 | 
				
			||||||
 | 
					    smile = basic.smile(radius)
 | 
				
			||||||
 | 
					    hole = basic.hole(radius)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    wg10 = label_ports(waveguide(lattice_constant=a, hole=hole, length=10, mirror_periods=5))
 | 
				
			||||||
 | 
					    wg05 = label_ports(waveguide(lattice_constant=a, hole=hole, length=5, mirror_periods=5))
 | 
				
			||||||
 | 
					    wg28 = label_ports(waveguide(lattice_constant=a, hole=hole, length=28, mirror_periods=5))
 | 
				
			||||||
 | 
					    bend0 = label_ports(bend(lattice_constant=a, hole=hole, mirror_periods=5))
 | 
				
			||||||
 | 
					    l3cav = label_ports(perturbed_l3(lattice_constant=a, hole=smile, xy_size=(4, 10)))
 | 
				
			||||||
 | 
					    ysplit = label_ports(y_splitter(lattice_constant=a, hole=hole, mirror_periods=5))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dev = Device(name='my_bend', ports={})
 | 
				
			||||||
 | 
					    dev.place(wg10, offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
 | 
				
			||||||
 | 
					    dev.plug(wg10, {'signal': 'left'})
 | 
				
			||||||
 | 
					    dev.plug(ysplit, {'signal': 'in'}, {'top': 'signal1', 'bot': 'signal2'})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dev.plug(wg05, {'signal1': 'left'})
 | 
				
			||||||
 | 
					    dev.plug(wg05, {'signal2': 'left'})
 | 
				
			||||||
 | 
					    dev.plug(bend0, {'signal1': 'right'})
 | 
				
			||||||
 | 
					    dev.plug(bend0, {'signal2': 'left'})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dev.plug(wg10, {'signal1': 'left'})
 | 
				
			||||||
 | 
					    dev.plug(l3cav, {'signal1': 'input'})
 | 
				
			||||||
 | 
					    dev.plug(wg10, {'signal1': 'left'})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dev.plug(wg28, {'signal2': 'left'})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dev.plug(bend0, {'signal1': 'right'})
 | 
				
			||||||
 | 
					    dev.plug(bend0, {'signal2': 'left'})
 | 
				
			||||||
 | 
					    dev.plug(wg05, {'signal1': 'left'})
 | 
				
			||||||
 | 
					    dev.plug(wg05, {'signal2': 'left'})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    dev.plug(ysplit, {'signal1': 'bot', 'signal2': 'top'}, {'in': 'signal_out'})
 | 
				
			||||||
 | 
					    dev.plug(wg10, {'signal_out': 'left'})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    writefile(dev.pattern, 'phc.gds', 1e-9, 1e-3)
 | 
				
			||||||
 | 
					    dev.pattern.visualize()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    main()
 | 
				
			||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user