add klamath-based gds read/write

This commit is contained in:
Jan Petykiewicz 2020-09-26 17:35:05 -07:00
parent c6684936cf
commit 7cad46fa46

541
masque/file/klamath.py Normal file
View File

@ -0,0 +1,541 @@
"""
GDSII file format readers and writers using the `klamath` library.
Note that GDSII references follow the same convention as `masque`,
with this order of operations:
1. Mirroring
2. Rotation
3. Scaling
4. Offset and array expansion (no mirroring/rotation/scaling applied to offsets)
Scaling, rotation, and mirroring apply to individual instances, not grid
vectors or offsets.
Notes:
* absolute positioning is not supported
* PLEX is not supported
* ELFLAGS are not supported
* GDS does not support library- or structure-level annotations
* Creation/modification/access times are set to 1900-01-01 for reproducibility.
"""
from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable, Optional
from typing import Sequence, Mapping, BinaryIO
import re
import io
import copy
import base64
import struct
import logging
import pathlib
import gzip
from itertools import chain
import numpy # type: ignore
import klamath
from klamath import records
from .utils import mangle_name, make_dose_table, dose2dtype, dtype2dose
from .. import Pattern, SubPattern, PatternError, Label, Shape
from ..shapes import Polygon, Path
from ..repetition import Grid
from ..utils import rotation_matrix_2d, get_bit, set_bit, vector2, is_scalar, layer_t
from ..utils import remove_colinear_vertices, normalize_mirror, annotations_t
from ..library import Library
logger = logging.getLogger(__name__)
path_cap_map = {
0: Path.Cap.Flush,
1: Path.Cap.Circle,
2: Path.Cap.Square,
4: Path.Cap.SquareCustom,
}
def write(patterns: Union[Pattern, Sequence[Pattern]],
stream: BinaryIO,
meters_per_unit: float,
logical_units_per_unit: float = 1,
library_name: str = 'masque-klamath',
*,
modify_originals: bool = False,
disambiguate_func: Callable[[Iterable[Pattern]], None] = None,
) -> None:
"""
Convert a `Pattern` or list of patterns to a GDSII stream, and then mapping data as follows:
Pattern -> GDSII structure
SubPattern -> GDSII SREF or AREF
Path -> GSDII path
Shape (other than path) -> GDSII boundary/ies
Label -> GDSII text
annnotations -> properties, where possible
For each shape,
layer is chosen to be equal to `shape.layer` if it is an int,
or `shape.layer[0]` if it is a tuple
datatype is chosen to be `shape.layer[1]` if available,
otherwise `0`
It is often a good idea to run `pattern.subpatternize()` prior to calling this function,
especially if calling `.polygonize()` will result in very many vertices.
If you want pattern polygonized with non-default arguments, just call `pattern.polygonize()`
prior to calling this function.
Args:
patterns: A Pattern or list of patterns to convert.
meters_per_unit: Written into the GDSII file, meters per (database) length unit.
All distances are assumed to be an integer multiple of this unit, and are stored as such.
logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a
"logical" unit which is different from the "database" unit, for display purposes.
Default `1`.
library_name: Library name written into the GDSII file.
Default 'masque-klamath'.
modify_originals: If `True`, the original pattern is modified as part of the writing
process. Otherwise, a copy is made and `deepunlock()`-ed.
Default `False`.
disambiguate_func: Function which takes a list of patterns and alters them
to make their names valid and unique. Default is `disambiguate_pattern_names`, which
attempts to adhere to the GDSII standard as well as possible.
WARNING: No additional error checking is performed on the results.
"""
if isinstance(patterns, Pattern):
patterns = [patterns]
if disambiguate_func is None:
disambiguate_func = disambiguate_pattern_names # type: ignore
assert(disambiguate_func is not None) # placate mypy
if not modify_originals:
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)]
patterns = [p.wrap_repeated_shapes() for p in patterns]
# Create library
header = klamath.library.FileHeader(name=library_name.encode('ASCII'),
user_units_per_db_unit=logical_units_per_unit,
meters_per_db_unit=meters_per_unit)
header.write(stream)
# Get a dict of id(pattern) -> pattern
patterns_by_id = {id(pattern): pattern for pattern in patterns}
for pattern in patterns:
for i, p in pattern.referenced_patterns_by_id().items():
patterns_by_id[i] = p
disambiguate_func(patterns_by_id.values())
# Now create a structure for each pattern, and add in any Boundary and SREF elements
for pat in patterns_by_id.values():
elements: List[klamath.elements.Element] = []
elements += _shapes_to_elements(pat.shapes)
elements += _labels_to_texts(pat.labels)
elements += _subpatterns_to_refs(pat.subpatterns)
klamath.library.write_struct(stream, name=pat.name.encode('ASCII'), elements=elements)
records.ENDLIB.write(stream, None)
def writefile(patterns: Union[Sequence[Pattern], Pattern],
filename: Union[str, pathlib.Path],
*args,
**kwargs,
) -> None:
"""
Wrapper for `masque.file.gdsii.write()` that takes a filename or path instead of a stream.
Will automatically compress the file if it has a .gz suffix.
Args:
patterns: `Pattern` or list of patterns to save
filename: Filename to save to.
*args: passed to `masque.file.gdsii.write`
**kwargs: passed to `masque.file.gdsii.write`
"""
path = pathlib.Path(filename)
if path.suffix == '.gz':
open_func: Callable = gzip.open
else:
open_func = open
with io.BufferedWriter(open_func(path, mode='wb')) as stream:
write(patterns, stream, *args, **kwargs)
def readfile(filename: Union[str, pathlib.Path],
*args,
**kwargs,
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
"""
Wrapper for `masque.file.gdsii.read()` that takes a filename or path instead of a stream.
Will automatically decompress files with a .gz suffix.
Args:
filename: Filename to save to.
*args: passed to `masque.file.gdsii.read`
**kwargs: passed to `masque.file.gdsii.read`
"""
path = pathlib.Path(filename)
if path.suffix == '.gz':
open_func: Callable = gzip.open
else:
open_func = open
with io.BufferedReader(open_func(path, mode='rb')) as stream:
results = read(stream)#, *args, **kwargs)
return results
def read(stream: BinaryIO,
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
"""
Read a gdsii file and translate it into a dict of Pattern objects. GDSII structures are
translated into Pattern objects; boundaries are translated into polygons, and srefs and arefs
are translated into SubPattern objects.
Additional library info is returned in a dict, containing:
'name': name of the library
'meters_per_unit': number of meters per database unit (all values are in database units)
'logical_units_per_unit': number of "logical" units displayed by layout tools (typically microns)
per database unit
Args:
stream: Stream to read from.
Returns:
- Dict of pattern_name:Patterns generated from GDSII structures
- Dict of GDSII library info
"""
raw_mode = True # Whether to construct shapes in raw mode (less error checking)
library_info = _read_header(stream)
patterns = []
found_struct = records.BGNSTR.skip_past(stream)
while found_struct:
name = records.STRNAME.skip_and_read(stream)
pat = read_elements(stream, name=name.decode('ASCII'))
patterns.append(pat)
found_struct = records.BGNSTR.skip_past(stream)
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
# according to the subpattern.identifier (which is deleted after use).
patterns_dict = dict(((p.name, p) for p in patterns))
for p in patterns_dict.values():
for sp in p.subpatterns:
sp.pattern = patterns_dict[sp.identifier[0]]
del sp.identifier
return patterns_dict, library_info
def _read_header(stream: BinaryIO) -> Dict[str, Any]:
"""
Read the file header and create the library_info dict.
"""
header = klamath.library.FileHeader.read(stream)
library_info = {'name': header.name.decode('ASCII'),
'meters_per_unit': header.meters_per_db_unit,
'logical_units_per_unit': header.user_units_per_db_unit,
}
return library_info
def read_elements(stream: BinaryIO,
name: str,
raw_mode: bool = True,
) -> Pattern:
"""
Read elements from a GDS structure and build a Pattern from them.
Args:
stream: Seekable stream, positioned at a record boundary.
Will be read until an ENDSTR record is consumed.
name: Name of the resulting Pattern
raw_mode: If True, bypass per-shape consistency checking
Returns:
A pattern containing the elements that were read.
"""
pat = Pattern(name)
elements = klamath.library.read_elements(stream)
for element in elements:
if isinstance(element, klamath.elements.Boundary):
poly = _boundary_to_polygon(element, raw_mode)
pat.shapes.append(poly)
elif isinstance(element, klamath.elements.Path):
path = _gpath_to_mpath(element, raw_mode)
pat.shapes.append(path)
elif isinstance(element, klamath.elements.Text):
label = Label(offset=element.xy.astype(float),
layer=element.layer,
string=element.string.decode('ASCII'),
annotations=_properties_to_annotations(element.properties))
pat.labels.append(label)
elif isinstance(element, klamath.elements.Reference):
pat.subpatterns.append(_ref_to_subpat(element))
return pat
def _mlayer2gds(mlayer: layer_t) -> Tuple[int, int]:
""" Helper to turn a layer tuple-or-int into a layer and datatype"""
if isinstance(mlayer, int):
layer = mlayer
data_type = 0
elif isinstance(mlayer, tuple):
layer = mlayer[0]
if len(mlayer) > 1:
data_type = mlayer[1]
else:
data_type = 0
else:
raise PatternError(f'Invalid layer for gdsii: {mlayer}. Note that gdsii layers cannot be strings.')
return layer, data_type
def _ref_to_subpat(ref: klamath.library.Reference,
) -> SubPattern:
"""
Helper function to create a SubPattern from an SREF or AREF. Sets subpat.pattern to None
and sets the instance .identifier to (struct_name,).
"""
xy = ref.xy.astype(float)
offset = xy[0]
repetition = None
if ref.colrow is not None:
a_count, b_count = ref.colrow
a_vector = (xy[1] - offset) / a_count
b_vector = (xy[2] - offset) / b_count
repetition = Grid(a_vector=a_vector, b_vector=b_vector,
a_count=a_count, b_count=b_count)
subpat = SubPattern(pattern=None,
offset=offset,
rotation=numpy.deg2rad(ref.angle_deg),
scale=ref.mag,
mirrored=(ref.invert_y, False),
annotations=_properties_to_annotations(ref.properties),
repetition=repetition)
subpat.identifier = (ref.struct_name.decode('ASCII'),)
return subpat
def _gpath_to_mpath(gpath: klamath.library.Path, raw_mode: bool) -> Path:
if gpath.path_type in path_cap_map:
cap = path_cap_map[gpath.path_type]
else:
raise PatternError(f'Unrecognized path type: {gpath.path_type}')
mpath = Path(vertices=gpath.xy.astype(float),
layer=gpath.layer,
width=gpath.width,
cap=cap,
offset=numpy.zeros(2),
annotations=_properties_to_annotations(gpath.properties),
raw=raw_mode,
)
if cap == Path.Cap.SquareCustom:
mpath.cap_extensions = gpath.extension
return mpath
def _boundary_to_polygon(boundary: klamath.library.Boundary, raw_mode: bool) -> Polygon:
return Polygon(vertices=boundary.xy[:-1].astype(float),
layer=boundary.layer,
offset=numpy.zeros(2),
annotations=_properties_to_annotations(boundary.properties),
raw=raw_mode,
)
def _subpatterns_to_refs(subpatterns: List[SubPattern]
) -> List[klamath.library.Reference]:
refs = []
for subpat in subpatterns:
if subpat.pattern is None:
continue
encoded_name = subpat.pattern.name.encode('ASCII')
# Note: GDS mirrors first and rotates second
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
rep = subpat.repetition
angle_deg = numpy.rad2deg(subpat.rotation + extra_angle) % 360
properties = _annotations_to_properties(subpat.annotations, 512)
if isinstance(rep, Grid):
xy = numpy.array(subpat.offset) + [
[0, 0],
rep.a_vector * rep.a_count,
rep.b_vector * rep.b_count,
]
aref = klamath.library.Reference(struct_name=encoded_name,
xy=numpy.round(xy).astype(int),
colrow=(numpy.round(rep.a_count), numpy.round(rep.b_count)),
angle_deg=angle_deg,
invert_y=mirror_across_x,
mag=subpat.scale,
properties=properties)
refs.append(aref)
elif rep is None:
ref = klamath.library.Reference(struct_name=encoded_name,
xy=numpy.round([subpat.offset]).astype(int),
colrow=None,
angle_deg=angle_deg,
invert_y=mirror_across_x,
mag=subpat.scale,
properties=properties)
refs.append(ref)
else:
new_srefs = [klamath.library.Reference(struct_name=encoded_name,
xy=numpy.round([subpat.offset + dd]).astype(int),
colrow=None,
angle_deg=angle_deg,
invert_y=mirror_across_x,
mag=subpat.scale,
properties=properties)
for dd in rep.displacements]
refs += new_srefs
return refs
def _properties_to_annotations(properties: Dict[int, bytes]) -> annotations_t:
return {str(k): [v.decode()] for k, v in properties.items()}
def _annotations_to_properties(annotations: annotations_t, max_len: int = 126) -> Dict[int, bytes]:
cum_len = 0
props = {}
for key, vals in annotations.items():
try:
i = int(key)
except:
raise PatternError(f'Annotation key {key} is not convertable to an integer')
if not (0 < i < 126):
raise PatternError(f'Annotation key {key} converts to {i} (must be in the range [1,125])')
val_strings = ' '.join(str(val) for val in vals)
b = val_strings.encode()
if len(b) > 126:
raise PatternError(f'Annotation value {b!r} is longer than 126 characters!')
cum_len += numpy.ceil(len(b) / 2) * 2 + 2
if cum_len > max_len:
raise PatternError(f'Sum of annotation data will be longer than {max_len} bytes! Generated bytes were {b!r}')
props[i] = b
return props
def _shapes_to_elements(shapes: List[Shape],
polygonize_paths: bool = False
) -> List[klamath.elements.Element]:
elements: List[klamath.elements.Element] = []
# Add a Boundary element for each shape, and Path elements if necessary
for shape in shapes:
layer, data_type = _mlayer2gds(shape.layer)
properties = _annotations_to_properties(shape.annotations, 128)
if isinstance(shape, Path) and not polygonize_paths:
xy = numpy.round(shape.vertices + shape.offset).astype(int)
width = numpy.round(shape.width).astype(int)
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) #reverse lookup
extension: Tuple[int, int]
if shape.cap == Path.Cap.SquareCustom and shape.cap_extensions is not None:
extension = tuple(shape.cap_extensions) # type: ignore
else:
extension = (0, 0)
path = klamath.elements.Path(layer=(layer, data_type),
xy=xy,
path_type=path_type,
width=width,
extension=extension,
properties=properties)
elements.append(path)
else:
for polygon in shape.to_polygons():
xy_open = numpy.round(polygon.vertices + polygon.offset).astype(int)
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
boundary = klamath.elements.Boundary(layer=(layer, data_type),
xy=xy_closed,
properties=properties)
elements.append(boundary)
return elements
def _labels_to_texts(labels: List[Label]) -> List[klamath.elements.Text]:
texts = []
for label in labels:
properties = _annotations_to_properties(label.annotations, 128)
layer, text_type = _mlayer2gds(label.layer)
xy = numpy.round([label.offset]).astype(int)
text = klamath.elements.Text(layer=(layer, text_type),
xy=xy,
string=label.string.encode('ASCII'),
properties=properties,
presentation=0, #TODO maybe set some of these?
angle_deg=0,
invert_y=False,
width=0,
path_type=0,
mag=1)
texts.append(text)
return texts
def disambiguate_pattern_names(patterns: Sequence[Pattern],
max_name_length: int = 32,
suffix_length: int = 6,
dup_warn_filter: Optional[Callable[[str,], bool]] = None,
):
"""
Args:
patterns: List of patterns to disambiguate
max_name_length: Names longer than this will be truncated
suffix_length: Names which get truncated are truncated by this many extra characters. This is to
leave room for a suffix if one is necessary.
dup_warn_filter: (optional) Function for suppressing warnings about cell names changing. Receives
the cell name and returns `False` if the warning should be suppressed and `True` if it should
be displayed. Default displays all warnings.
"""
used_names = []
for pat in set(patterns):
# Shorten names which already exceed max-length
if len(pat.name) > max_name_length:
shortened_name = pat.name[:max_name_length - suffix_length]
logger.warning(f'Pattern name "{pat.name}" is too long ({len(pat.name)}/{max_name_length} chars),\n' +
f' shortening to "{shortened_name}" before generating suffix')
else:
shortened_name = pat.name
# Remove invalid characters
sanitized_name = re.compile('[^A-Za-z0-9_\?\$]').sub('_', shortened_name)
# Add a suffix that makes the name unique
i = 0
suffixed_name = sanitized_name
while suffixed_name in used_names or suffixed_name == '':
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
i += 1
if sanitized_name == '':
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
elif suffixed_name != sanitized_name:
if dup_warn_filter is None or dup_warn_filter(pat.name):
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n' +
f' renaming to "{suffixed_name}"')
# Encode into a byte-string and perform some final checks
encoded_name = suffixed_name.encode('ASCII')
if len(encoded_name) == 0:
# Should never happen since zero-length names are replaced
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"')
if len(encoded_name) > max_name_length:
raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n' +
f' originally "{pat.name}"')
pat.name = suffixed_name
used_names.append(suffixed_name)