Add support for gds paths

lethe/HEAD
Jan Petykiewicz 5 years ago
parent d53c9487ff
commit 783c0c0844

@ -15,8 +15,9 @@ import logging
from .utils import mangle_name, make_dose_table
from .. import Pattern, SubPattern, GridRepetition, PatternError, Label, Shape
from ..shapes import Polygon
from ..shapes import Polygon, Path
from ..utils import rotation_matrix_2d, get_bit, set_bit, vector2, is_scalar
from ..utils import remove_colinear_vertices
__author__ = 'Jan Petykiewicz'
@ -25,6 +26,13 @@ __author__ = 'Jan Petykiewicz'
logger = logging.getLogger(__name__)
path_cap_map = {0: Path.Cap.Flush,
1: Path.Cap.Circle,
2: Path.Cap.Square,
#3: custom?
}
def write(patterns: Pattern or List[Pattern],
filename: str,
meters_per_unit: float,
@ -81,12 +89,8 @@ def write(patterns: Pattern or List[Pattern],
structure = gdsii.structure.Structure(name=pat.name)
lib.append(structure)
# Add a Boundary element for each shape
structure += _shapes_to_boundaries(pat.shapes)
structure += _shapes_to_elements(pat.shapes)
structure += _labels_to_texts(pat.labels)
# Add an SREF / AREF for each subpattern entry
structure += _subpatterns_to_refs(pat.subpatterns)
with open(filename, mode='wb') as stream:
@ -255,13 +259,17 @@ def read(filename: str,
for element in structure:
# Switch based on element type:
if isinstance(element, gdsii.elements.Boundary):
args = {'vertices': element.xy[:-1],
}
if use_dtype_as_dose:
shape = Polygon(vertices=element.xy[:-1],
dose=element.data_type,
layer=element.layer)
args['dose'] = element.data_type
args['layer'] = element.layer
else:
shape = Polygon(vertices=element.xy[:-1],
layer=(element.layer, element.data_type))
args['layer'] = (element.layer, element.data_type)
shape = Polygon(**args)
if clean_vertices:
try:
shape.clean_vertices()
@ -270,6 +278,33 @@ def read(filename: str,
pat.shapes.append(shape)
if isinstance(element, gdsii.elements.Path):
if element.path_type in path_cap_map:
cap = path_cap_map[element.path_type]
else:
raise PatternError('Unrecognized path type: {}'.format(element.path_type))
args = {'vertices': element.xy,
'width': element.width,
'cap': cap,
}
if use_dtype_as_dose:
args['dose'] = element.data_type
args['layer'] = element.layer
else:
args['layer'] = (element.layer, element.data_type)
shape = Path(**args)
if clean_vertices:
try:
shape.clean_vertices()
except PatternError as err:
continue
pat.shapes.append(shape)
elif isinstance(element, gdsii.elements.Text):
label = Label(offset=element.xy,
layer=(element.layer, element.text_type),
@ -425,19 +460,31 @@ def _subpatterns_to_refs(subpatterns: List[SubPattern or GridRepetition]
return refs
def _shapes_to_boundaries(shapes: List[Shape]
) -> List[gdsii.elements.Boundary]:
# Add a Boundary element for each shape
boundaries = []
def _shapes_to_elements(shapes: List[Shape],
polygonize_paths: bool = False
) -> List[gdsii.elements.Boundary]:
elements = []
# Add a Boundary element for each shape, and Path elements if necessary
for shape in shapes:
layer, data_type = _mlayer2gds(shape.layer)
for polygon in shape.to_polygons():
xy_open = numpy.round(polygon.vertices + polygon.offset).astype(int)
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
boundaries.append(gdsii.elements.Boundary(layer=layer,
data_type=data_type,
xy=xy_closed))
return boundaries
if isinstance(shape, Path) and not polygonize_paths:
xy = numpy.round(shape.vertices + shape.offset).astype(int)
width = numpy.round(shape.width).astype(int)
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) #reverse lookup
path = gdsii.elements.Path(layer=layer,
data_type=data_type,
xy=xy)
path.path_type = path_type
path.width = width
elements.append(path)
else:
for polygon in shape.to_polygons():
xy_open = numpy.round(polygon.vertices + polygon.offset).astype(int)
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
elements.append(gdsii.elements.Boundary(layer=layer,
data_type=data_type,
xy=xy_closed))
return elements
def _labels_to_texts(labels: List[Label]) -> List[gdsii.elements.Text]:

@ -10,3 +10,4 @@ from .circle import Circle
from .ellipse import Ellipse
from .arc import Arc
from .text import Text
from .path import Path

@ -0,0 +1,344 @@
from typing import List, Tuple
import copy
from enum import Enum
import numpy
from numpy import pi
from . import Shape, normalized_shape_tuple, Polygon, Circle
from .. import PatternError
from ..utils import is_scalar, rotation_matrix_2d, vector2
from ..utils import remove_colinear_vertices, remove_duplicate_vertices
__author__ = 'Jan Petykiewicz'
class Path(Shape):
"""
A path, consisting of a bunch of vertices (Nx2 ndarray), a width, an end-cap shape,
and an offset.
A normalized_form(...) is available, but can be quite slow with lots of vertices.
"""
_vertices = None # type: numpy.ndarray
_width = None # type: float
_cap = None # type: Path.Cap
class Cap(Enum):
Flush = 0 # Path ends at final vertices
Circle = 1 # Path extends past final vertices with a semicircle of radius width/2
Square = 2 # Path extends past final vertices with a width-by-width/2 rectangle
# width property
@property
def width(self) -> float:
"""
Path width (float, >= 0)
:return: width
"""
return self._width
@width.setter
def width(self, val: float):
if not is_scalar(val):
raise PatternError('Width must be a scalar')
if not val >= 0:
raise PatternError('Width must be non-negative')
self._width = val
# cap property
@property
def cap(self) -> 'Path.Cap':
"""
Path end-cap
:return: Path.Cap enum
"""
return self._cap
@cap.setter
def cap(self, val: 'Path.Cap'):
self._cap = Path.Cap(val)
# vertices property
@property
def vertices(self) -> numpy.ndarray:
"""
Vertices of the path (Nx2 ndarray: [[x0, y0], [x1, y1], ...]
:return: vertices
"""
return self._vertices
@vertices.setter
def vertices(self, val: numpy.ndarray):
val = numpy.array(val, dtype=float)
if len(val.shape) < 2 or val.shape[1] != 2:
raise PatternError('Vertices must be an Nx2 array')
if val.shape[0] < 2:
raise PatternError('Must have at least 2 vertices (Nx2 where N>1)')
self._vertices = val
# xs property
@property
def xs(self) -> numpy.ndarray:
"""
All vertex x coords as a 1D ndarray
"""
return self.vertices[:, 0]
@xs.setter
def xs(self, val: numpy.ndarray):
val = numpy.array(val, dtype=float).flatten()
if val.size != self.vertices.shape[0]:
raise PatternError('Wrong number of vertices')
self.vertices[:, 0] = val
# ys property
@property
def ys(self) -> numpy.ndarray:
"""
All vertex y coords as a 1D ndarray
"""
return self.vertices[:, 1]
@ys.setter
def ys(self, val: numpy.ndarray):
val = numpy.array(val, dtype=float).flatten()
if val.size != self.vertices.shape[0]:
raise PatternError('Wrong number of vertices')
self.vertices[:, 1] = val
def __init__(self,
vertices: numpy.ndarray,
width: float = 0.0,
cap: 'Path.Cap' = Cap.Flush,
offset: vector2=(0.0, 0.0),
rotation: float = 0,
mirrored: Tuple[bool] = (False, False),
layer: int=0,
dose: float=1.0,
) -> 'Path':
self.offset = offset
self.layer = layer
self.dose = dose
self.vertices = vertices
self.width = width
self.cap = cap
self.rotate(rotation)
[self.mirror(a) for a, do in enumerate(mirrored) if do]
@staticmethod
def travel(travel_pairs: Tuple[Tuple[float, float]],
width: float = 0.0,
cap: 'Path.Cap' = Cap.Flush,
offset: vector2=(0.0, 0.0),
rotation: float = 0,
mirrored: Tuple[bool] = (False, False),
layer: int=0,
dose: float=1.0,
) -> 'Path':
"""
Build a path by specifying the turn angles and travel distances
rather than setting the distances directly.
:param travel_pairs: A list of (angle, distance) pairs that define
the path. Angles are counterclockwise, in radians, and are relative
to the previous segment's direction (the initial angle is relative
to the +x axis).
:param width: Path width, default 0
:param cap: End-cap type, default Path.Cap.Flush (no end-cap)
:param offset: Offset, default (0, 0)
:param rotation: Rotation counterclockwise, in radians. Default 0
:param mirrored: Whether to mirror across the x or y axes. For example,
mirrored=(True, False) results in a reflection across the x-axis,
multiplying the path's y-coordinates by -1. Default (False, False)
:param layer: Layer, default 0
:param dose: Dose, default 1.0
:return: The resulting Path object
"""
#TODO: needs testing
direction = numpy.array([1, 0])
verts = [[0, 0]]
for angle, distance in travel_pairs:
direction = numpy.dot(rotation_matrix_2d(angle), direction.T).T
verts.append(verts[-1] + direction * distance)
return Path(vertices=verts, width=width, cap=cap,
offset=offset, rotation=rotation, mirrored=mirrored,
layer=layer, dose=dose)
def to_polygons(self,
poly_num_points: int=None,
poly_max_arclen: float=None,
) -> List['Polygon']:
if self.cap in (Path.Cap.Flush, Path.Cap.Circle):
extension = 0.0
elif self.cap == Path.Cap.Square:
extension = self.width / 2
else:
raise PatternError('Unrecognized path endcap: {}'.format(self.cap))
v = remove_colinear_vertices(self.vertices, closed_path=False)
dv = numpy.diff(v, axis=0)
dvdir = dv / numpy.sqrt((dv * dv).sum(axis=1))[:, None]
if self.width == 0:
verts = numpy.vstack((v, v[::-1]))
return [Polygon(offset=self.offset, vertices=verts, dose=self.dose, layer=self.layer)]
perp = dvdir[:, ::-1] * [[1, -1]] * self.width / 2
# add extension
if extension != 0:
v[0] -= dvdir[0] * extension
v[-1] += dvdir[-1] * extension
dv = numpy.diff(v, axis=0) # recalculate dv; dvdir and perp should stay the same
# Find intersections of expanded sides
As = numpy.stack((dv[:-1], -dv[1:]), axis=2)
bs = v[1:-1] - v[:-2] + perp[1:] - perp[:-1]
ds = v[1:-1] - v[:-2] - perp[1:] + perp[:-1]
rp = numpy.linalg.solve(As, bs)[:, 0, None]
rn = numpy.linalg.solve(As, ds)[:, 0, None]
intersection_p = v[:-2] + rp * dv[:-1] + perp[:-1]
intersection_n = v[:-2] + rn * dv[:-1] - perp[:-1]
towards_perp = (dv[1:] * perp[:-1]).sum(axis=1) > 0 # path bends towards previous perp?
# straight = (dv[1:] * perp[:-1]).sum(axis=1) == 0 # path is straight
acute = (dv[1:] * dv[:-1]).sum(axis=1) < 0 # angle is acute?
# Build vertices
o0 = [v[0] + perp[0]]
o1 = [v[0] - perp[0]]
for i in range(dv.shape[0] - 1):
if towards_perp[i]:
o0.append(intersection_p[i])
if acute[i]:
o1.append(intersection_n[i])
else:
# Opposite is >270
pt0 = v[i + 1] - perp[i + 0] + dvdir[i + 0] * self.width / 2
pt1 = v[i + 1] - perp[i + 1] - dvdir[i + 1] * self.width / 2
o1 += [pt0, pt1]
else:
o1.append(intersection_n[i])
if acute[i]:
# > 270
pt0 = v[i + 1] + perp[i + 0] + dvdir[i + 0] * self.width / 2
pt1 = v[i + 1] + perp[i + 1] - dvdir[i + 1] * self.width / 2
o0 += [pt0, pt1]
else:
o0.append(intersection_p[i])
o0.append(v[-1] + perp[-1])
o1.append(v[-1] - perp[-1])
verts = numpy.vstack((o0, o1[::-1]))
polys = [Polygon(offset=self.offset, vertices=verts, dose=self.dose, layer=self.layer)]
if self.cap == Path.Cap.Circle:
#for vert in v: # not sure if every vertex, or just ends?
for vert in [v[0], v[-1]]:
circ = Circle(offset=vert, radius=self.width / 2, dose=self.dose, layer=self.layer)
polys += circ.to_polygons(poly_num_points=poly_num_points, poly_max_arclen=poly_max_arclen)
return polys
def get_bounds(self) -> numpy.ndarray:
if self.cap == Path.Cap.Circle:
bounds = self.offset + numpy.vstack((numpy.min(self.vertices, axis=0) - self.width / 2,
numpy.max(self.vertices, axis=0) + self.width / 2))
elif self.cap in (Path.Cap.Flush,
Path.Cap.Square):
if self.cap == Path.Cap.Flush:
extension = 0
elif self.cap == Path.Cap.Square:
extension = self.width / 2
v = remove_colinear_vertices(self.vertices, closed_path=False)
dv = numpy.diff(v, axis=0)
dvdir = dv / numpy.sqrt((dv * dv).sum(axis=1))[:, None]
perp = dvdir[:, ::-1] * [[1, -1]] * self.width / 2
v[0] -= dvdir * extension
v[-1] += dvdir * extension
bounds = self.offset + numpy.vstack((numpy.min(v - numpy.abs(perp), axis=0),
numpy.max(v + numpy.abs(perp), axis=0)))
else:
raise PatternError('get_bounds() not implemented for endcaps: {}'.format(self.cap))
return bounds
def rotate(self, theta: float) -> 'Path':
self.vertices = numpy.dot(rotation_matrix_2d(theta), self.vertices.T).T
return self
def mirror(self, axis: int) -> 'Path':
self.vertices[:, axis - 1] *= -1
return self
def scale_by(self, c: float) -> 'Path':
self.vertices *= c
self.width *= c
return self
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
# Note: this function is going to be pretty slow for many-vertexed paths, relative to
# other shapes
offset = self.vertices.mean(axis=0) + self.offset
zeroed_vertices = self.vertices - offset
scale = zeroed_vertices.std()
normed_vertices = zeroed_vertices / scale
_, _, vertex_axis = numpy.linalg.svd(zeroed_vertices)
rotation = numpy.arctan2(vertex_axis[0][1], vertex_axis[0][0]) % (2 * pi)
rotated_vertices = numpy.vstack([numpy.dot(rotation_matrix_2d(-rotation), v)
for v in normed_vertices])
# Reorder the vertices so that the one with lowest x, then y, comes first.
x_min = rotated_vertices[:, 0].argmin()
if not is_scalar(x_min):
y_min = rotated_vertices[x_min, 1].argmin()
x_min = x_min[y_min]
reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
width0 = self.width / norm_value
return (type(self), reordered_vertices.data.tobytes(), width0, self.cap, self.layer), \
(offset, scale/norm_value, rotation, self.dose), \
lambda: Polygon(reordered_vertices*norm_value, width=self.width*norm_value,
cap=self.cap, layer=self.layer)
def clean_vertices(self) -> 'Path':
"""
Removes duplicate, co-linear and otherwise redundant vertices.
:returns: self
"""
self.remove_colinear_vertices()
return self
def remove_duplicate_vertices(self) -> 'Path':
'''
Removes all consecutive duplicate (repeated) vertices.
:returns: self
'''
self.vertices = remove_duplicate_vertices(self.vertices, closed_path=False)
return self
def remove_colinear_vertices(self) -> 'Path':
'''
Removes consecutive co-linear vertices.
:returns: self
'''
self.vertices = remove_colinear_vertices(self.vertices, closed_path=False)
return self
Loading…
Cancel
Save