snapshot 2020-11-01 16:48:03.486536
This commit is contained in:
commit
75e1caec48
29
.flake8
Normal file
29
.flake8
Normal file
@ -0,0 +1,29 @@
|
||||
[flake8]
|
||||
ignore =
|
||||
# E501 line too long
|
||||
E501,
|
||||
# W391 newlines at EOF
|
||||
W391,
|
||||
# E241 multiple spaces after comma
|
||||
E241,
|
||||
# E302 expected 2 newlines
|
||||
E302,
|
||||
# W503 line break before binary operator (to be deprecated)
|
||||
W503,
|
||||
# E265 block comment should start with '# '
|
||||
E265,
|
||||
# E123 closing bracket does not match indentation of opening bracket's line
|
||||
E123,
|
||||
# E124 closing bracket does not match visual indentation
|
||||
E124,
|
||||
# E221 multiple spaces before operator
|
||||
E221,
|
||||
# E201 whitespace after '['
|
||||
E201,
|
||||
# E741 ambiguous variable name 'I'
|
||||
E741,
|
||||
|
||||
|
||||
per-file-ignores =
|
||||
# F401 import without use
|
||||
*/__init__.py: F401,
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -15,5 +15,6 @@ dist/
|
||||
*.gds.gz
|
||||
*.svg
|
||||
*.oas
|
||||
*.oas.gz
|
||||
*.dxf
|
||||
*.dxf.gz
|
||||
|
27
README.md
27
README.md
@ -7,23 +7,26 @@ with some vectorized element types (eg. circles, not just polygons), better supp
|
||||
E-beam doses, and the ability to output to multiple formats.
|
||||
|
||||
- [Source repository](https://mpxd.net/code/jan/masque)
|
||||
- [PyPi](https://pypi.org/project/masque)
|
||||
- [PyPI](https://pypi.org/project/masque)
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
Requirements:
|
||||
* python >= 3.5 (written and tested with 3.6)
|
||||
* python >= 3.7 (written and tested with 3.8)
|
||||
* numpy
|
||||
* matplotlib (optional, used for `visualization` functions and `text`)
|
||||
* python-gdsii (optional, used for `gdsii` i/o)
|
||||
* klamath (optional, used for `gdsii` i/o and library management)
|
||||
* ezdxf (optional, used for `dxf` i/o)
|
||||
* fatamorgana (optional, used for `oasis` i/o)
|
||||
* svgwrite (optional, used for `svg` output)
|
||||
* freetype (optional, used for `text`)
|
||||
|
||||
|
||||
Install with pip:
|
||||
```bash
|
||||
pip3 install 'masque[visualization,gdsii,svg,text]'
|
||||
pip3 install 'masque[visualization,gdsii,oasis,dxf,svg,text,klamath]'
|
||||
```
|
||||
|
||||
Alternatively, install from git
|
||||
@ -31,9 +34,19 @@ Alternatively, install from git
|
||||
pip3 install git+https://mpxd.net/code/jan/masque.git@release
|
||||
```
|
||||
|
||||
## Translation
|
||||
- `Pattern`: OASIS or GDS "Cell", DXF "Block"
|
||||
- `SubPattern`: GDS "AREF/SREF", OASIS "Placement"
|
||||
- `Shape`: OASIS or GDS "Geometry element", DXF "LWPolyline" or "Polyline"
|
||||
- `repetition`: OASIS "repetition". GDS "AREF" is a `SubPattern` combined with a `Grid` repetition.
|
||||
- `Label`: OASIS, GDS, DXF "Text".
|
||||
- `annotation`: OASIS or GDS "property"
|
||||
|
||||
|
||||
## TODO
|
||||
|
||||
* Polygon de-embedding
|
||||
* Construct from bitmap
|
||||
* Boolean operations on polygons (using pyclipper)
|
||||
* Output to OASIS (using fatamorgana)
|
||||
* Better interface for polygon operations (e.g. with `pyclipper`)
|
||||
- de-embedding
|
||||
- boolean ops
|
||||
* Construct polygons from bitmap using `skimage.find_contours`
|
||||
* Deal with shape repetitions for dxf, svg
|
||||
|
@ -3,8 +3,7 @@
|
||||
import numpy
|
||||
|
||||
import masque
|
||||
import masque.file.gdsii
|
||||
import masque.file.dxf
|
||||
import masque.file.klamath
|
||||
from masque import shapes
|
||||
|
||||
|
||||
@ -21,15 +20,11 @@ def main():
|
||||
pat.labels.append(masque.Label(string='grating centerline', offset=(1, 0), layer=(1, 2)))
|
||||
|
||||
pat.scale_by(1000)
|
||||
# pat.visualize()
|
||||
pat.visualize()
|
||||
pat2 = pat.copy()
|
||||
pat2.name = 'grating2'
|
||||
|
||||
masque.file.gdsii.writefile((pat, pat2), 'out.gds.gz', 1e-9, 1e-3)
|
||||
|
||||
masque.file.dxf.writefile(pat, 'out.dxf.gz')
|
||||
dxf, info = masque.file.dxf.readfile('out.dxf.gz')
|
||||
masque.file.dxf.writefile(dxf, 'reout.dxf.gz')
|
||||
masque.file.klamath.writefile((pat, pat2), 'out.gds.gz', 1e-9, 1e-3)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -3,8 +3,11 @@ from numpy import pi
|
||||
|
||||
import masque
|
||||
import masque.file.gdsii
|
||||
import masque.file.klamath
|
||||
import masque.file.dxf
|
||||
from masque import shapes, Pattern, SubPattern, GridRepetition
|
||||
import masque.file.oasis
|
||||
from masque import shapes, Pattern, SubPattern
|
||||
from masque.repetition import Grid
|
||||
|
||||
from pprint import pprint
|
||||
|
||||
@ -15,17 +18,18 @@ def main():
|
||||
pat.shapes.append(shapes.Arc(
|
||||
radii=(rmin, rmin),
|
||||
width=0.1,
|
||||
angles=(0*-numpy.pi/4, numpy.pi/4)
|
||||
angles=(0*-numpy.pi/4, numpy.pi/4),
|
||||
annotations={'1': ['blah']},
|
||||
))
|
||||
|
||||
pat.scale_by(1000)
|
||||
pat.visualize()
|
||||
# pat.visualize()
|
||||
pat2 = pat.copy()
|
||||
pat2.name = 'grating2'
|
||||
|
||||
pat3 = Pattern('sref_test')
|
||||
pat3.subpatterns = [
|
||||
SubPattern(pat, offset=(1e5, 3e5)),
|
||||
SubPattern(pat, offset=(1e5, 3e5), annotations={'4': ['Hello I am the base subpattern']}),
|
||||
SubPattern(pat, offset=(2e5, 3e5), rotation=pi/3),
|
||||
SubPattern(pat, offset=(3e5, 3e5), rotation=pi/2),
|
||||
SubPattern(pat, offset=(4e5, 3e5), rotation=pi),
|
||||
@ -51,45 +55,49 @@ def main():
|
||||
pprint(pat3.subpatterns)
|
||||
pprint(pat.shapes)
|
||||
|
||||
args = {
|
||||
'pattern': pat,
|
||||
'a_vector': [1e4, 0],
|
||||
'b_vector': [0, 1.5e4],
|
||||
'a_count': 3,
|
||||
'b_count': 2,
|
||||
}
|
||||
rep = Grid(a_vector=[1e4, 0],
|
||||
b_vector=[0, 1.5e4],
|
||||
a_count=3,
|
||||
b_count=2,)
|
||||
pat4 = Pattern('aref_test')
|
||||
pat4.subpatterns = [
|
||||
GridRepetition(**args, offset=(1e5, 3e5)),
|
||||
GridRepetition(**args, offset=(2e5, 3e5), rotation=pi/3),
|
||||
GridRepetition(**args, offset=(3e5, 3e5), rotation=pi/2),
|
||||
GridRepetition(**args, offset=(4e5, 3e5), rotation=pi),
|
||||
GridRepetition(**args, offset=(5e5, 3e5), rotation=3*pi/2),
|
||||
GridRepetition(**args, mirrored=(True, False), offset=(1e5, 4e5)),
|
||||
GridRepetition(**args, mirrored=(True, False), offset=(2e5, 4e5), rotation=pi/3),
|
||||
GridRepetition(**args, mirrored=(True, False), offset=(3e5, 4e5), rotation=pi/2),
|
||||
GridRepetition(**args, mirrored=(True, False), offset=(4e5, 4e5), rotation=pi),
|
||||
GridRepetition(**args, mirrored=(True, False), offset=(5e5, 4e5), rotation=3*pi/2),
|
||||
GridRepetition(**args, mirrored=(False, True), offset=(1e5, 5e5)),
|
||||
GridRepetition(**args, mirrored=(False, True), offset=(2e5, 5e5), rotation=pi/3),
|
||||
GridRepetition(**args, mirrored=(False, True), offset=(3e5, 5e5), rotation=pi/2),
|
||||
GridRepetition(**args, mirrored=(False, True), offset=(4e5, 5e5), rotation=pi),
|
||||
GridRepetition(**args, mirrored=(False, True), offset=(5e5, 5e5), rotation=3*pi/2),
|
||||
GridRepetition(**args, mirrored=(True, True), offset=(1e5, 6e5)),
|
||||
GridRepetition(**args, mirrored=(True, True), offset=(2e5, 6e5), rotation=pi/3),
|
||||
GridRepetition(**args, mirrored=(True, True), offset=(3e5, 6e5), rotation=pi/2),
|
||||
GridRepetition(**args, mirrored=(True, True), offset=(4e5, 6e5), rotation=pi),
|
||||
GridRepetition(**args, mirrored=(True, True), offset=(5e5, 6e5), rotation=3*pi/2),
|
||||
SubPattern(pat, repetition=rep, offset=(1e5, 3e5)),
|
||||
SubPattern(pat, repetition=rep, offset=(2e5, 3e5), rotation=pi/3),
|
||||
SubPattern(pat, repetition=rep, offset=(3e5, 3e5), rotation=pi/2),
|
||||
SubPattern(pat, repetition=rep, offset=(4e5, 3e5), rotation=pi),
|
||||
SubPattern(pat, repetition=rep, offset=(5e5, 3e5), rotation=3*pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(1e5, 4e5)),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(2e5, 4e5), rotation=pi/3),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(3e5, 4e5), rotation=pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(4e5, 4e5), rotation=pi),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(5e5, 4e5), rotation=3*pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(1e5, 5e5)),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(2e5, 5e5), rotation=pi/3),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(3e5, 5e5), rotation=pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(4e5, 5e5), rotation=pi),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(5e5, 5e5), rotation=3*pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(1e5, 6e5)),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(2e5, 6e5), rotation=pi/3),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(3e5, 6e5), rotation=pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(4e5, 6e5), rotation=pi),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(5e5, 6e5), rotation=3*pi/2),
|
||||
]
|
||||
|
||||
masque.file.gdsii.writefile((pat, pat2, pat3, pat4), 'rep.gds.gz', 1e-9, 1e-3)
|
||||
folder = 'layouts/'
|
||||
masque.file.klamath.writefile((pat, pat2, pat3, pat4), folder + 'rep.gds.gz', 1e-9, 1e-3)
|
||||
|
||||
cells = list(masque.file.gdsii.readfile('rep.gds.gz')[0].values())
|
||||
masque.file.gdsii.writefile(cells, 'rerep.gds.gz', 1e-9, 1e-3)
|
||||
cells = list(masque.file.klamath.readfile(folder + 'rep.gds.gz')[0].values())
|
||||
masque.file.klamath.writefile(cells, folder + 'rerep.gds.gz', 1e-9, 1e-3)
|
||||
|
||||
masque.file.dxf.writefile(pat4, 'rep.dxf.gz')
|
||||
dxf, info = masque.file.dxf.readfile('rep.dxf.gz')
|
||||
masque.file.dxf.writefile(dxf, 'rerep.dxf.gz')
|
||||
masque.file.dxf.writefile(pat4, folder + 'rep.dxf.gz')
|
||||
dxf, info = masque.file.dxf.readfile(folder + 'rep.dxf.gz')
|
||||
masque.file.dxf.writefile(dxf, folder + 'rerep.dxf.gz')
|
||||
|
||||
layer_map = {'base': (0,0), 'mylabel': (1,2)}
|
||||
masque.file.oasis.writefile((pat, pat2, pat3, pat4), folder + 'rep.oas.gz', 1000, layer_map=layer_map)
|
||||
oas, info = masque.file.oasis.readfile(folder + 'rep.oas.gz')
|
||||
masque.file.oasis.writefile(list(oas.values()), folder + 'rerep.oas.gz', 1000, layer_map=layer_map)
|
||||
print(info)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1 +1 @@
|
||||
1.3
|
||||
2.2
|
||||
|
@ -8,22 +8,13 @@
|
||||
|
||||
`Pattern` is a basic object containing a 2D lithography mask, composed of a list of `Shape`
|
||||
objects, a list of `Label` objects, and a list of references to other `Patterns` (using
|
||||
`SubPattern` and `GridRepetition`).
|
||||
`SubPattern`).
|
||||
|
||||
`SubPattern` provides basic support for nesting `Pattern` objects within each other, by adding
|
||||
offset, rotation, scaling, and other such properties to a Pattern reference.
|
||||
|
||||
`GridRepetition` provides support for nesting regular arrays of `Pattern` objects.
|
||||
offset, rotation, scaling, repetition, and other such properties to a Pattern reference.
|
||||
|
||||
Note that the methods for these classes try to avoid copying wherever possible, so unless
|
||||
otherwise noted, assume that arguments are stored by-reference.
|
||||
|
||||
|
||||
Dependencies:
|
||||
- `numpy`
|
||||
- `matplotlib` [Pattern.visualize(...)]
|
||||
- `python-gdsii` [masque.file.gdsii]
|
||||
- `svgwrite` [masque.file.svg]
|
||||
"""
|
||||
|
||||
import pathlib
|
||||
@ -31,9 +22,10 @@ import pathlib
|
||||
from .error import PatternError, PatternLockedError
|
||||
from .shapes import Shape
|
||||
from .label import Label
|
||||
from .subpattern import SubPattern, subpattern_t
|
||||
from .repetition import GridRepetition
|
||||
from .subpattern import SubPattern
|
||||
from .pattern import Pattern
|
||||
from .utils import layer_t, annotations_t
|
||||
from .library import Library
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
@ -15,3 +15,12 @@ class PatternLockedError(PatternError):
|
||||
"""
|
||||
def __init__(self):
|
||||
PatternError.__init__(self, 'Tried to modify a locked Pattern, subpattern, or shape')
|
||||
|
||||
|
||||
class LibraryError(Exception):
|
||||
"""
|
||||
Exception raised by Library classes
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
"""
|
||||
Functions for reading from and writing to various file formats.
|
||||
"""
|
||||
"""
|
||||
|
||||
|
@ -1,29 +1,27 @@
|
||||
"""
|
||||
DXF file format readers and writers
|
||||
"""
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable, Optional
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable
|
||||
import re
|
||||
import io
|
||||
import copy
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
import ezdxf
|
||||
import numpy # type: ignore
|
||||
import ezdxf # type: ignore
|
||||
|
||||
from .utils import mangle_name, make_dose_table
|
||||
from .. import Pattern, SubPattern, GridRepetition, PatternError, Label, Shape, subpattern_t
|
||||
from .. import Pattern, SubPattern, PatternError, Label, Shape
|
||||
from ..shapes import Polygon, Path
|
||||
from ..utils import rotation_matrix_2d, get_bit, set_bit, vector2, is_scalar, layer_t
|
||||
from ..utils import remove_colinear_vertices, normalize_mirror
|
||||
from ..repetition import Grid
|
||||
from ..utils import rotation_matrix_2d, layer_t
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
logger.warning('DXF support is experimental and only slightly tested!')
|
||||
|
||||
|
||||
@ -32,9 +30,11 @@ DEFAULT_LAYER = 'DEFAULT'
|
||||
|
||||
def write(pattern: Pattern,
|
||||
stream: io.TextIOBase,
|
||||
*,
|
||||
modify_originals: bool = False,
|
||||
dxf_version='AC1024',
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None):
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Write a `Pattern` to a DXF file, by first calling `.polygonize()` to change the shapes
|
||||
into polygons, and then writing patterns as DXF `Block`s, polygons as `LWPolyline`s,
|
||||
@ -54,7 +54,7 @@ def write(pattern: Pattern,
|
||||
If you want pattern polygonized with non-default arguments, just call `pattern.polygonize()`
|
||||
prior to calling this function.
|
||||
|
||||
Only `GridRepetition` objects with manhattan basis vectors are preserved as arrays. Since DXF
|
||||
Only `Grid` repetition objects with manhattan basis vectors are preserved as arrays. Since DXF
|
||||
rotations apply to basis vectors while `masque`'s rotations do not, the basis vectors of an
|
||||
array with rotated instances must be manhattan _after_ having a compensating rotation applied.
|
||||
|
||||
@ -71,6 +71,7 @@ def write(pattern: Pattern,
|
||||
#TODO consider supporting DXF arcs?
|
||||
if disambiguate_func is None:
|
||||
disambiguate_func = disambiguate_pattern_names
|
||||
assert(disambiguate_func is not None)
|
||||
|
||||
if not modify_originals:
|
||||
pattern = pattern.deepcopy().deepunlock()
|
||||
@ -102,7 +103,7 @@ def writefile(pattern: Pattern,
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Wrapper for `dxf.write()` that takes a filename or path instead of a stream.
|
||||
|
||||
@ -121,14 +122,13 @@ def writefile(pattern: Pattern,
|
||||
open_func = open
|
||||
|
||||
with open_func(path, mode='wt') as stream:
|
||||
results = write(pattern, stream, *args, **kwargs)
|
||||
return results
|
||||
write(pattern, stream, *args, **kwargs)
|
||||
|
||||
|
||||
def readfile(filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
) -> Tuple[Pattern, Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `dxf.read()` that takes a filename or path instead of a stream.
|
||||
|
||||
@ -152,7 +152,7 @@ def readfile(filename: Union[str, pathlib.Path],
|
||||
|
||||
def read(stream: io.TextIOBase,
|
||||
clean_vertices: bool = True,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
) -> Tuple[Pattern, Dict[str, Any]]:
|
||||
"""
|
||||
Read a dxf file and translate it into a dict of `Pattern` objects. DXF `Block`s are
|
||||
translated into `Pattern` objects; `LWPolyline`s are translated into polygons, and `Insert`s
|
||||
@ -190,35 +190,36 @@ def read(stream: io.TextIOBase,
|
||||
return pat, library_info
|
||||
|
||||
|
||||
def _read_block(block, clean_vertices):
|
||||
def _read_block(block, clean_vertices: bool) -> Pattern:
|
||||
pat = Pattern(block.name)
|
||||
for element in block:
|
||||
eltype = element.dxftype()
|
||||
if eltype in ('POLYLINE', 'LWPOLYLINE'):
|
||||
if eltype == 'LWPOLYLINE':
|
||||
points = numpy.array(element.lwpoints)
|
||||
points = numpy.array(tuple(element.lwpoints()))
|
||||
else:
|
||||
points = numpy.array(element.points)
|
||||
points = numpy.array(tuple(element.points()))
|
||||
attr = element.dxfattribs()
|
||||
args = {'layer': attr.get('layer', DEFAULT_LAYER),
|
||||
}
|
||||
layer = attr.get('layer', DEFAULT_LAYER)
|
||||
|
||||
if points.shape[1] == 2:
|
||||
shape = Polygon(**args)
|
||||
raise PatternError('Invalid or unimplemented polygon?')
|
||||
#shape = Polygon(layer=layer)
|
||||
elif points.shape[1] > 2:
|
||||
if (points[0, 2] != points[:, 2]).any():
|
||||
raise PatternError('PolyLine has non-constant width (not yet representable in masque!)')
|
||||
elif points.shape[1] == 4 and (points[:, 3] != 0).any():
|
||||
raise PatternError('LWPolyLine has bulge (not yet representable in masque!)')
|
||||
else:
|
||||
width = points[0, 2]
|
||||
if width == 0:
|
||||
width = attr.get('const_width', 0)
|
||||
|
||||
if width == 0 and numpy.array_equal(points[0], points[-1]):
|
||||
shape = Polygon(**args, vertices=points[:-1, :2])
|
||||
else:
|
||||
shape = Path(**args, width=width, vertices=points[:, :2])
|
||||
width = points[0, 2]
|
||||
if width == 0:
|
||||
width = attr.get('const_width', 0)
|
||||
|
||||
shape: Union[Path, Polygon]
|
||||
if width == 0 and numpy.array_equal(points[0], points[-1]):
|
||||
shape = Polygon(layer=layer, vertices=points[:-1, :2])
|
||||
else:
|
||||
shape = Path(layer=layer, width=width, vertices=points[:, :2])
|
||||
|
||||
if clean_vertices:
|
||||
try:
|
||||
@ -233,10 +234,10 @@ def _read_block(block, clean_vertices):
|
||||
'layer': element.dxfattribs().get('layer', DEFAULT_LAYER),
|
||||
}
|
||||
string = element.dxfattribs().get('text', '')
|
||||
height = element.dxfattribs().get('height', 0)
|
||||
if height != 0:
|
||||
logger.warning('Interpreting DXF TEXT as a label despite nonzero height. '
|
||||
'This could be changed in the future by setting a font path in the masque DXF code.')
|
||||
# height = element.dxfattribs().get('height', 0)
|
||||
# if height != 0:
|
||||
# logger.warning('Interpreting DXF TEXT as a label despite nonzero height. '
|
||||
# 'This could be changed in the future by setting a font path in the masque DXF code.')
|
||||
pat.labels.append(Label(string=string, **args))
|
||||
# else:
|
||||
# pat.shapes.append(Text(string=string, height=height, font_path=????))
|
||||
@ -248,7 +249,7 @@ def _read_block(block, clean_vertices):
|
||||
logger.warning('Masque does not support per-axis scaling; using x-scaling only!')
|
||||
scale = abs(xscale)
|
||||
mirrored = (yscale < 0, xscale < 0)
|
||||
rotation = attr.get('rotation', 0) * pi/180
|
||||
rotation = numpy.deg2rad(attr.get('rotation', 0))
|
||||
|
||||
offset = attr.get('insert', (0, 0, 0))[:2]
|
||||
|
||||
@ -262,20 +263,18 @@ def _read_block(block, clean_vertices):
|
||||
}
|
||||
|
||||
if 'column_count' in attr:
|
||||
args['a_vector'] = (attr['column_spacing'], 0)
|
||||
args['b_vector'] = (0, attr['row_spacing'])
|
||||
args['a_count'] = attr['column_count']
|
||||
args['b_count'] = attr['row_count']
|
||||
pat.subpatterns.append(GridRepetition(**args))
|
||||
else:
|
||||
pat.subpatterns.append(SubPattern(**args))
|
||||
args['repetition'] = Grid(a_vector=(attr['column_spacing'], 0),
|
||||
b_vector=(0, attr['row_spacing']),
|
||||
a_count=attr['column_count'],
|
||||
b_count=attr['row_count'])
|
||||
pat.subpatterns.append(SubPattern(**args))
|
||||
else:
|
||||
logger.warning(f'Ignoring DXF element {element.dxftype()} (not implemented).')
|
||||
return pat
|
||||
|
||||
|
||||
def _subpatterns_to_refs(block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.Modelspace],
|
||||
subpatterns: List[subpattern_t]):
|
||||
subpatterns: List[SubPattern]) -> None:
|
||||
for subpat in subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
@ -288,20 +287,23 @@ def _subpatterns_to_refs(block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.M
|
||||
'rotation': rotation,
|
||||
}
|
||||
|
||||
if isinstance(subpat, GridRepetition):
|
||||
a = subpat.a_vector
|
||||
b = subpat.b_vector if subpat.b_vector is not None else numpy.zeros(2)
|
||||
rep = subpat.repetition
|
||||
if rep is None:
|
||||
block.add_blockref(encoded_name, subpat.offset, dxfattribs=attribs)
|
||||
elif isinstance(rep, Grid):
|
||||
a = rep.a_vector
|
||||
b = rep.b_vector if rep.b_vector is not None else numpy.zeros(2)
|
||||
rotated_a = rotation_matrix_2d(-subpat.rotation) @ a
|
||||
rotated_b = rotation_matrix_2d(-subpat.rotation) @ b
|
||||
if rotated_a[1] == 0 and rotated_b[0] == 0:
|
||||
attribs['column_count'] = subpat.a_count
|
||||
attribs['row_count'] = subpat.b_count
|
||||
attribs['column_count'] = rep.a_count
|
||||
attribs['row_count'] = rep.b_count
|
||||
attribs['column_spacing'] = rotated_a[0]
|
||||
attribs['row_spacing'] = rotated_b[1]
|
||||
block.add_blockref(encoded_name, subpat.offset, dxfattribs=attribs)
|
||||
elif rotated_a[0] == 0 and rotated_b[1] == 0:
|
||||
attribs['column_count'] = subpat.b_count
|
||||
attribs['row_count'] = subpat.a_count
|
||||
attribs['column_count'] = rep.b_count
|
||||
attribs['row_count'] = rep.a_count
|
||||
attribs['column_spacing'] = rotated_b[0]
|
||||
attribs['row_spacing'] = rotated_a[1]
|
||||
block.add_blockref(encoded_name, subpat.offset, dxfattribs=attribs)
|
||||
@ -309,11 +311,11 @@ def _subpatterns_to_refs(block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.M
|
||||
#NOTE: We could still do non-manhattan (but still orthogonal) grids by getting
|
||||
# creative with counter-rotated nested patterns, but probably not worth it.
|
||||
# Instead, just break appart the grid into individual elements:
|
||||
for aa in numpy.arange(subpat.a_count):
|
||||
for bb in numpy.arange(subpat.b_count):
|
||||
block.add_blockref(encoded_name, subpat.offset + aa * a + bb * b, dxfattribs=attribs)
|
||||
for dd in rep.displacements:
|
||||
block.add_blockref(encoded_name, subpat.offset + dd, dxfattribs=attribs)
|
||||
else:
|
||||
block.add_blockref(encoded_name, subpat.offset, dxfattribs=attribs)
|
||||
for dd in rep.displacements:
|
||||
block.add_blockref(encoded_name, subpat.offset + dd, dxfattribs=attribs)
|
||||
|
||||
|
||||
def _shapes_to_elements(block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.Modelspace],
|
||||
@ -330,7 +332,7 @@ def _shapes_to_elements(block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.Mo
|
||||
|
||||
|
||||
def _labels_to_texts(block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.Modelspace],
|
||||
labels: List[Label]):
|
||||
labels: List[Label]) -> None:
|
||||
for label in labels:
|
||||
attribs = {'layer': _mlayer2dxf(label.layer)}
|
||||
xy = label.offset
|
||||
@ -347,14 +349,14 @@ def _mlayer2dxf(layer: layer_t) -> str:
|
||||
raise PatternError(f'Unknown layer type: {layer} ({type(layer)})')
|
||||
|
||||
|
||||
def disambiguate_pattern_names(patterns,
|
||||
def disambiguate_pattern_names(patterns: Sequence[Pattern],
|
||||
max_name_length: int = 32,
|
||||
suffix_length: int = 6,
|
||||
dup_warn_filter: Callable[[str,], bool] = None, # If returns False, don't warn about this name
|
||||
):
|
||||
dup_warn_filter: Callable[[str], bool] = None, # If returns False, don't warn about this name
|
||||
) -> None:
|
||||
used_names = []
|
||||
for pat in patterns:
|
||||
sanitized_name = re.compile('[^A-Za-z0-9_\?\$]').sub('_', pat.name)
|
||||
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', pat.name)
|
||||
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
@ -365,17 +367,18 @@ def disambiguate_pattern_names(patterns,
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning('Empty pattern name saved as "{}"'.format(suffixed_name))
|
||||
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
|
||||
elif suffixed_name != sanitized_name:
|
||||
if dup_warn_filter is None or dup_warn_filter(pat.name):
|
||||
logger.warning('Pattern name "{}" ({}) appears multiple times;\n renaming to "{}"'.format(
|
||||
pat.name, sanitized_name, suffixed_name))
|
||||
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n'
|
||||
+ f' renaming to "{suffixed_name}"')
|
||||
|
||||
if len(suffixed_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError('Zero-length name after sanitize,\n originally "{}"'.format(pat.name))
|
||||
raise PatternError(f'Zero-length name after sanitize,\n originally "{pat.name}"')
|
||||
if len(suffixed_name) > max_name_length:
|
||||
raise PatternError('Pattern name "{!r}" length > {} after encode,\n originally "{}"'.format(suffixed_name, max_name_length, pat.name))
|
||||
raise PatternError(f'Pattern name "{suffixed_name!r}" length > {max_name_length} after encode,\n'
|
||||
+ f' originally "{pat.name}"')
|
||||
|
||||
pat.name = suffixed_name
|
||||
used_names.append(suffixed_name)
|
||||
|
@ -10,53 +10,59 @@ Note that GDSII references follow the same convention as `masque`,
|
||||
|
||||
Scaling, rotation, and mirroring apply to individual instances, not grid
|
||||
vectors or offsets.
|
||||
|
||||
Notes:
|
||||
* absolute positioning is not supported
|
||||
* PLEX is not supported
|
||||
* ELFLAGS are not supported
|
||||
* GDS does not support library- or structure-level annotations
|
||||
"""
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable, Optional
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Iterable, Optional
|
||||
from typing import Sequence
|
||||
import re
|
||||
import io
|
||||
import copy
|
||||
import numpy
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
|
||||
import numpy # type: ignore
|
||||
# python-gdsii
|
||||
import gdsii.library
|
||||
import gdsii.structure
|
||||
import gdsii.elements
|
||||
|
||||
from .utils import mangle_name, make_dose_table, dose2dtype, dtype2dose
|
||||
from .. import Pattern, SubPattern, GridRepetition, PatternError, Label, Shape, subpattern_t
|
||||
from .utils import clean_pattern_vertices, is_gzipped
|
||||
from .. import Pattern, SubPattern, PatternError, Label, Shape
|
||||
from ..shapes import Polygon, Path
|
||||
from ..utils import rotation_matrix_2d, get_bit, set_bit, vector2, is_scalar, layer_t
|
||||
from ..utils import remove_colinear_vertices, normalize_mirror
|
||||
|
||||
#TODO absolute positioning
|
||||
from ..repetition import Grid
|
||||
from ..utils import get_bit, set_bit, layer_t, normalize_mirror, annotations_t
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
path_cap_map = {
|
||||
None: Path.Cap.Flush,
|
||||
0: Path.Cap.Flush,
|
||||
1: Path.Cap.Circle,
|
||||
2: Path.Cap.Square,
|
||||
4: Path.Cap.SquareCustom,
|
||||
}
|
||||
None: Path.Cap.Flush,
|
||||
0: Path.Cap.Flush,
|
||||
1: Path.Cap.Circle,
|
||||
2: Path.Cap.Square,
|
||||
4: Path.Cap.SquareCustom,
|
||||
}
|
||||
|
||||
|
||||
def write(patterns: Union[Pattern, List[Pattern]],
|
||||
stream: io.BufferedIOBase,
|
||||
def build(patterns: Union[Pattern, Sequence[Pattern]],
|
||||
meters_per_unit: float,
|
||||
logical_units_per_unit: float = 1,
|
||||
library_name: str = 'masque-gdsii-write',
|
||||
*,
|
||||
modify_originals: bool = False,
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None):
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None,
|
||||
) -> gdsii.library.Library:
|
||||
"""
|
||||
Write a `Pattern` or list of patterns to a GDSII file, by first calling
|
||||
Convert a `Pattern` or list of patterns to a GDSII stream, by first calling
|
||||
`.polygonize()` to change the shapes into polygons, and then writing patterns
|
||||
as GDSII structures, polygons as boundary elements, and subpatterns as structure
|
||||
references (sref).
|
||||
@ -74,8 +80,7 @@ def write(patterns: Union[Pattern, List[Pattern]],
|
||||
prior to calling this function.
|
||||
|
||||
Args:
|
||||
patterns: A Pattern or list of patterns to write to the stream.
|
||||
stream: Stream object to write to.
|
||||
patterns: A Pattern or list of patterns to convert.
|
||||
meters_per_unit: Written into the GDSII file, meters per (database) length unit.
|
||||
All distances are assumed to be an integer multiple of this unit, and are stored as such.
|
||||
logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a
|
||||
@ -90,16 +95,22 @@ def write(patterns: Union[Pattern, List[Pattern]],
|
||||
to make their names valid and unique. Default is `disambiguate_pattern_names`, which
|
||||
attempts to adhere to the GDSII standard as well as possible.
|
||||
WARNING: No additional error checking is performed on the results.
|
||||
|
||||
Returns:
|
||||
`gdsii.library.Library`
|
||||
"""
|
||||
if isinstance(patterns, Pattern):
|
||||
patterns = [patterns]
|
||||
|
||||
if disambiguate_func is None:
|
||||
disambiguate_func = disambiguate_pattern_names
|
||||
disambiguate_func = disambiguate_pattern_names # type: ignore
|
||||
assert(disambiguate_func is not None) # placate mypy
|
||||
|
||||
if not modify_originals:
|
||||
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)]
|
||||
|
||||
patterns = [p.wrap_repeated_shapes() for p in patterns]
|
||||
|
||||
# Create library
|
||||
lib = gdsii.library.Library(version=600,
|
||||
name=library_name.encode('ASCII'),
|
||||
@ -116,32 +127,49 @@ def write(patterns: Union[Pattern, List[Pattern]],
|
||||
|
||||
# Now create a structure for each pattern, and add in any Boundary and SREF elements
|
||||
for pat in patterns_by_id.values():
|
||||
structure = gdsii.structure.Structure(name=pat.name)
|
||||
structure = gdsii.structure.Structure(name=pat.name.encode('ASCII'))
|
||||
lib.append(structure)
|
||||
|
||||
structure += _shapes_to_elements(pat.shapes)
|
||||
structure += _labels_to_texts(pat.labels)
|
||||
structure += _subpatterns_to_refs(pat.subpatterns)
|
||||
|
||||
return lib
|
||||
|
||||
|
||||
def write(patterns: Union[Pattern, Sequence[Pattern]],
|
||||
stream: io.BufferedIOBase,
|
||||
*args,
|
||||
**kwargs):
|
||||
"""
|
||||
Write a `Pattern` or list of patterns to a GDSII file.
|
||||
See `masque.file.gdsii.build()` for details.
|
||||
|
||||
Args:
|
||||
patterns: A Pattern or list of patterns to write to file.
|
||||
stream: Stream to write to.
|
||||
*args: passed to `masque.file.gdsii.build()`
|
||||
**kwargs: passed to `masque.file.gdsii.build()`
|
||||
"""
|
||||
lib = build(patterns, *args, **kwargs)
|
||||
lib.save(stream)
|
||||
return
|
||||
|
||||
|
||||
def writefile(patterns: Union[List[Pattern], Pattern],
|
||||
def writefile(patterns: Union[Sequence[Pattern], Pattern],
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Wrapper for `gdsii.write()` that takes a filename or path instead of a stream.
|
||||
Wrapper for `masque.file.gdsii.write()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically compress the file if it has a .gz suffix.
|
||||
|
||||
Args:
|
||||
patterns: `Pattern` or list of patterns to save
|
||||
filename: Filename to save to.
|
||||
*args: passed to `gdsii.write`
|
||||
**kwargs: passed to `gdsii.write`
|
||||
*args: passed to `masque.file.gdsii.write`
|
||||
**kwargs: passed to `masque.file.gdsii.write`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if path.suffix == '.gz':
|
||||
@ -159,17 +187,17 @@ def readfile(filename: Union[str, pathlib.Path],
|
||||
**kwargs,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `gdsii.read()` that takes a filename or path instead of a stream.
|
||||
Wrapper for `masque.file.gdsii.read()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically decompress files with a .gz suffix.
|
||||
Will automatically decompress gzipped files.
|
||||
|
||||
Args:
|
||||
filename: Filename to save to.
|
||||
*args: passed to `gdsii.read`
|
||||
**kwargs: passed to `gdsii.read`
|
||||
*args: passed to `masque.file.gdsii.read`
|
||||
**kwargs: passed to `masque.file.gdsii.read`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if path.suffix == '.gz':
|
||||
if is_gzipped(path):
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
@ -180,7 +208,6 @@ def readfile(filename: Union[str, pathlib.Path],
|
||||
|
||||
|
||||
def read(stream: io.BufferedIOBase,
|
||||
use_dtype_as_dose: bool = False,
|
||||
clean_vertices: bool = True,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
@ -196,11 +223,6 @@ def read(stream: io.BufferedIOBase,
|
||||
|
||||
Args:
|
||||
stream: Stream to read from.
|
||||
use_dtype_as_dose: If `False`, set each polygon's layer to `(gds_layer, gds_datatype)`.
|
||||
If `True`, set the layer to `gds_layer` and the dose to `gds_datatype`.
|
||||
Default `False`.
|
||||
NOTE: This will be deprecated in the future in favor of
|
||||
`pattern.apply(masque.file.utils.dtype2dose)`.
|
||||
clean_vertices: If `True`, remove any redundant vertices when loading polygons.
|
||||
The cleaning process removes any polygons with zero area or <3 vertices.
|
||||
Default `True`.
|
||||
@ -217,71 +239,32 @@ def read(stream: io.BufferedIOBase,
|
||||
'logical_units_per_unit': lib.logical_unit,
|
||||
}
|
||||
|
||||
raw_mode = True # Whether to construct shapes in raw mode (less error checking)
|
||||
|
||||
patterns = []
|
||||
for structure in lib:
|
||||
pat = Pattern(name=structure.name.decode('ASCII'))
|
||||
for element in structure:
|
||||
# Switch based on element type:
|
||||
if isinstance(element, gdsii.elements.Boundary):
|
||||
args = {'vertices': element.xy[:-1],
|
||||
'layer': (element.layer, element.data_type),
|
||||
}
|
||||
|
||||
poly = Polygon(**args)
|
||||
|
||||
if clean_vertices:
|
||||
try:
|
||||
poly.clean_vertices()
|
||||
except PatternError:
|
||||
continue
|
||||
|
||||
poly = _boundary_to_polygon(element, raw_mode)
|
||||
pat.shapes.append(poly)
|
||||
|
||||
if isinstance(element, gdsii.elements.Path):
|
||||
if element.path_type in path_cap_map:
|
||||
cap = path_cap_map[element.path_type]
|
||||
else:
|
||||
raise PatternError('Unrecognized path type: {}'.format(element.path_type))
|
||||
|
||||
args = {'vertices': element.xy,
|
||||
'layer': (element.layer, element.data_type),
|
||||
'width': element.width if element.width is not None else 0.0,
|
||||
'cap': cap,
|
||||
}
|
||||
|
||||
if cap == Path.Cap.SquareCustom:
|
||||
args['cap_extensions'] = numpy.zeros(2)
|
||||
if element.bgn_extn is not None:
|
||||
args['cap_extensions'][0] = element.bgn_extn
|
||||
if element.end_extn is not None:
|
||||
args['cap_extensions'][1] = element.end_extn
|
||||
|
||||
path = Path(**args)
|
||||
|
||||
if clean_vertices:
|
||||
try:
|
||||
path.clean_vertices()
|
||||
except PatternError as err:
|
||||
continue
|
||||
|
||||
path = _gpath_to_mpath(element, raw_mode)
|
||||
pat.shapes.append(path)
|
||||
|
||||
elif isinstance(element, gdsii.elements.Text):
|
||||
label = Label(offset=element.xy,
|
||||
label = Label(offset=element.xy.astype(float),
|
||||
layer=(element.layer, element.text_type),
|
||||
string=element.string.decode('ASCII'))
|
||||
pat.labels.append(label)
|
||||
|
||||
elif isinstance(element, gdsii.elements.SRef):
|
||||
pat.subpatterns.append(_sref_to_subpat(element))
|
||||
|
||||
elif isinstance(element, gdsii.elements.ARef):
|
||||
pat.subpatterns.append(_aref_to_gridrep(element))
|
||||
|
||||
if use_dose_as_dtype:
|
||||
logger.warning('use_dose_as_dtype will be removed in the future!')
|
||||
pat = dose2dtype(pat)
|
||||
elif isinstance(element, (gdsii.elements.SRef, gdsii.elements.ARef)):
|
||||
pat.subpatterns.append(_ref_to_subpat(element))
|
||||
|
||||
if clean_vertices:
|
||||
clean_pattern_vertices(pat)
|
||||
patterns.append(pat)
|
||||
|
||||
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
|
||||
@ -307,123 +290,166 @@ def _mlayer2gds(mlayer: layer_t) -> Tuple[int, int]:
|
||||
else:
|
||||
data_type = 0
|
||||
else:
|
||||
raise PatternError(f'Invalid layer for gdsii: {layer}. Note that gdsii layers cannot be strings.')
|
||||
raise PatternError(f'Invalid layer for gdsii: {mlayer}. Note that gdsii layers cannot be strings.')
|
||||
return layer, data_type
|
||||
|
||||
|
||||
def _sref_to_subpat(element: gdsii.elements.SRef) -> SubPattern:
|
||||
def _ref_to_subpat(element: Union[gdsii.elements.SRef,
|
||||
gdsii.elements.ARef]
|
||||
) -> SubPattern:
|
||||
"""
|
||||
Helper function to create a SubPattern from an SREF. Sets subpat.pattern to None
|
||||
Helper function to create a SubPattern from an SREF or AREF. Sets subpat.pattern to None
|
||||
and sets the instance .identifier to (struct_name,).
|
||||
|
||||
BUG:
|
||||
"Absolute" means not affected by parent elements.
|
||||
That's not currently supported by masque at all, so need to either tag it and
|
||||
undo the parent transformations, or implement it in masque.
|
||||
NOTE: "Absolute" means not affected by parent elements.
|
||||
That's not currently supported by masque at all (and not planned).
|
||||
"""
|
||||
subpat = SubPattern(pattern=None, offset=element.xy)
|
||||
subpat.identifier = (element.struct_name,)
|
||||
if element.strans is not None:
|
||||
if element.mag is not None:
|
||||
subpat.scale = element.mag
|
||||
# Bit 13 means absolute scale
|
||||
if get_bit(element.strans, 15 - 13):
|
||||
#subpat.offset *= subpat.scale
|
||||
raise PatternError('Absolute scale is not implemented yet!')
|
||||
if element.angle is not None:
|
||||
subpat.rotation = element.angle * numpy.pi / 180
|
||||
# Bit 14 means absolute rotation
|
||||
if get_bit(element.strans, 15 - 14):
|
||||
#subpat.offset = numpy.dot(rotation_matrix_2d(subpat.rotation), subpat.offset)
|
||||
raise PatternError('Absolute rotation is not implemented yet!')
|
||||
# Bit 0 means mirror x-axis
|
||||
if get_bit(element.strans, 15 - 0):
|
||||
subpat.mirrored[0] = 1
|
||||
return subpat
|
||||
|
||||
|
||||
def _aref_to_gridrep(element: gdsii.elements.ARef) -> GridRepetition:
|
||||
"""
|
||||
Helper function to create a GridRepetition from an AREF. Sets gridrep.pattern to None
|
||||
and sets the instance .identifier to (struct_name,).
|
||||
|
||||
BUG:
|
||||
"Absolute" means not affected by parent elements.
|
||||
That's not currently supported by masque at all, so need to either tag it and
|
||||
undo the parent transformations, or implement it in masque.
|
||||
"""
|
||||
rotation = 0
|
||||
offset = numpy.array(element.xy[0])
|
||||
scale = 1
|
||||
rotation = 0.0
|
||||
offset = numpy.array(element.xy[0], dtype=float)
|
||||
scale = 1.0
|
||||
mirror_across_x = False
|
||||
repetition = None
|
||||
|
||||
if element.strans is not None:
|
||||
if element.mag is not None:
|
||||
scale = element.mag
|
||||
# Bit 13 means absolute scale
|
||||
if get_bit(element.strans, 15 - 13):
|
||||
raise PatternError('Absolute scale is not implemented yet!')
|
||||
raise PatternError('Absolute scale is not implemented in masque!')
|
||||
if element.angle is not None:
|
||||
rotation = element.angle * numpy.pi / 180
|
||||
rotation = numpy.deg2rad(element.angle)
|
||||
# Bit 14 means absolute rotation
|
||||
if get_bit(element.strans, 15 - 14):
|
||||
raise PatternError('Absolute rotation is not implemented yet!')
|
||||
raise PatternError('Absolute rotation is not implemented in masque!')
|
||||
# Bit 0 means mirror x-axis
|
||||
if get_bit(element.strans, 15 - 0):
|
||||
mirror_across_x = True
|
||||
|
||||
counts = [element.cols, element.rows]
|
||||
a_vector = (element.xy[1] - offset) / counts[0]
|
||||
b_vector = (element.xy[2] - offset) / counts[1]
|
||||
if isinstance(element, gdsii.elements.ARef):
|
||||
a_count = element.cols
|
||||
b_count = element.rows
|
||||
a_vector = (element.xy[1] - offset) / a_count
|
||||
b_vector = (element.xy[2] - offset) / b_count
|
||||
repetition = Grid(a_vector=a_vector, b_vector=b_vector,
|
||||
a_count=a_count, b_count=b_count)
|
||||
|
||||
gridrep = GridRepetition(pattern=None,
|
||||
a_vector=a_vector,
|
||||
b_vector=b_vector,
|
||||
a_count=counts[0],
|
||||
b_count=counts[1],
|
||||
offset=offset,
|
||||
rotation=rotation,
|
||||
scale=scale,
|
||||
mirrored=(mirror_across_x, False))
|
||||
gridrep.identifier = (element.struct_name,)
|
||||
|
||||
return gridrep
|
||||
subpat = SubPattern(pattern=None,
|
||||
offset=offset,
|
||||
rotation=rotation,
|
||||
scale=scale,
|
||||
mirrored=(mirror_across_x, False),
|
||||
annotations=_properties_to_annotations(element.properties),
|
||||
repetition=repetition)
|
||||
subpat.identifier = (element.struct_name,)
|
||||
return subpat
|
||||
|
||||
|
||||
def _subpatterns_to_refs(subpatterns: List[subpattern_t]
|
||||
def _gpath_to_mpath(element: gdsii.elements.Path, raw_mode: bool) -> Path:
|
||||
if element.path_type in path_cap_map:
|
||||
cap = path_cap_map[element.path_type]
|
||||
else:
|
||||
raise PatternError(f'Unrecognized path type: {element.path_type}')
|
||||
|
||||
args = {'vertices': element.xy.astype(float),
|
||||
'layer': (element.layer, element.data_type),
|
||||
'width': element.width if element.width is not None else 0.0,
|
||||
'cap': cap,
|
||||
'offset': numpy.zeros(2),
|
||||
'annotations': _properties_to_annotations(element.properties),
|
||||
'raw': raw_mode,
|
||||
}
|
||||
|
||||
if cap == Path.Cap.SquareCustom:
|
||||
args['cap_extensions'] = numpy.zeros(2)
|
||||
if element.bgn_extn is not None:
|
||||
args['cap_extensions'][0] = element.bgn_extn
|
||||
if element.end_extn is not None:
|
||||
args['cap_extensions'][1] = element.end_extn
|
||||
|
||||
return Path(**args)
|
||||
|
||||
|
||||
def _boundary_to_polygon(element: gdsii.elements.Boundary, raw_mode: bool) -> Polygon:
|
||||
args = {'vertices': element.xy[:-1].astype(float),
|
||||
'layer': (element.layer, element.data_type),
|
||||
'offset': numpy.zeros(2),
|
||||
'annotations': _properties_to_annotations(element.properties),
|
||||
'raw': raw_mode,
|
||||
}
|
||||
return Polygon(**args)
|
||||
|
||||
|
||||
def _subpatterns_to_refs(subpatterns: List[SubPattern]
|
||||
) -> List[Union[gdsii.elements.ARef, gdsii.elements.SRef]]:
|
||||
refs = []
|
||||
for subpat in subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
encoded_name = subpat.pattern.name
|
||||
encoded_name = subpat.pattern.name.encode('ASCII')
|
||||
|
||||
# Note: GDS mirrors first and rotates second
|
||||
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
|
||||
rep = subpat.repetition
|
||||
|
||||
new_refs: List[Union[gdsii.elements.SRef, gdsii.elements.ARef]]
|
||||
ref: Union[gdsii.elements.SRef, gdsii.elements.ARef]
|
||||
if isinstance(subpat, GridRepetition):
|
||||
if isinstance(rep, Grid):
|
||||
xy = numpy.array(subpat.offset) + [
|
||||
[0, 0],
|
||||
subpat.a_vector * subpat.a_count,
|
||||
subpat.b_vector * subpat.b_count,
|
||||
]
|
||||
[0, 0],
|
||||
rep.a_vector * rep.a_count,
|
||||
rep.b_vector * rep.b_count,
|
||||
]
|
||||
ref = gdsii.elements.ARef(struct_name=encoded_name,
|
||||
xy=numpy.round(xy).astype(int),
|
||||
cols=numpy.round(subpat.a_count).astype(int),
|
||||
rows=numpy.round(subpat.b_count).astype(int))
|
||||
else:
|
||||
xy=numpy.round(xy).astype(int),
|
||||
cols=numpy.round(rep.a_count).astype(int),
|
||||
rows=numpy.round(rep.b_count).astype(int))
|
||||
new_refs = [ref]
|
||||
elif rep is None:
|
||||
ref = gdsii.elements.SRef(struct_name=encoded_name,
|
||||
xy=numpy.round([subpat.offset]).astype(int))
|
||||
new_refs = [ref]
|
||||
else:
|
||||
new_refs = [gdsii.elements.SRef(struct_name=encoded_name,
|
||||
xy=numpy.round([subpat.offset + dd]).astype(int))
|
||||
for dd in rep.displacements]
|
||||
|
||||
ref.angle = ((subpat.rotation + extra_angle) * 180 / numpy.pi) % 360
|
||||
# strans must be non-None for angle and mag to take effect
|
||||
ref.strans = set_bit(0, 15 - 0, mirror_across_x)
|
||||
ref.mag = subpat.scale
|
||||
for ref in new_refs:
|
||||
ref.angle = numpy.rad2deg(subpat.rotation + extra_angle) % 360
|
||||
# strans must be non-None for angle and mag to take effect
|
||||
ref.strans = set_bit(0, 15 - 0, mirror_across_x)
|
||||
ref.mag = subpat.scale
|
||||
ref.properties = _annotations_to_properties(subpat.annotations, 512)
|
||||
|
||||
refs.append(ref)
|
||||
refs += new_refs
|
||||
return refs
|
||||
|
||||
|
||||
def _properties_to_annotations(properties: List[Tuple[int, bytes]]) -> annotations_t:
|
||||
return {str(k): [v.decode()] for k, v in properties}
|
||||
|
||||
|
||||
def _annotations_to_properties(annotations: annotations_t, max_len: int = 126) -> List[Tuple[int, bytes]]:
|
||||
cum_len = 0
|
||||
props = []
|
||||
for key, vals in annotations.items():
|
||||
try:
|
||||
i = int(key)
|
||||
except ValueError:
|
||||
raise PatternError(f'Annotation key {key} is not convertable to an integer')
|
||||
if not (0 < i < 126):
|
||||
raise PatternError(f'Annotation key {key} converts to {i} (must be in the range [1,125])')
|
||||
|
||||
val_strings = ' '.join(str(val) for val in vals)
|
||||
b = val_strings.encode()
|
||||
if len(b) > 126:
|
||||
raise PatternError(f'Annotation value {b!r} is longer than 126 characters!')
|
||||
cum_len += numpy.ceil(len(b) / 2) * 2 + 2
|
||||
if cum_len > max_len:
|
||||
raise PatternError(f'Sum of annotation data will be longer than {max_len} bytes! Generated bytes were {b!r}')
|
||||
props.append((i, b))
|
||||
return props
|
||||
|
||||
|
||||
def _shapes_to_elements(shapes: List[Shape],
|
||||
polygonize_paths: bool = False
|
||||
) -> List[Union[gdsii.elements.Boundary, gdsii.elements.Path]]:
|
||||
@ -431,54 +457,74 @@ def _shapes_to_elements(shapes: List[Shape],
|
||||
# Add a Boundary element for each shape, and Path elements if necessary
|
||||
for shape in shapes:
|
||||
layer, data_type = _mlayer2gds(shape.layer)
|
||||
properties = _annotations_to_properties(shape.annotations, 128)
|
||||
if isinstance(shape, Path) and not polygonize_paths:
|
||||
xy = numpy.round(shape.vertices + shape.offset).astype(int)
|
||||
width = numpy.round(shape.width).astype(int)
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) #reverse lookup
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
|
||||
path = gdsii.elements.Path(layer=layer,
|
||||
data_type=data_type,
|
||||
xy=xy)
|
||||
path.path_type = path_type
|
||||
path.width = width
|
||||
path.properties = properties
|
||||
elements.append(path)
|
||||
else:
|
||||
for polygon in shape.to_polygons():
|
||||
xy_open = numpy.round(polygon.vertices + polygon.offset).astype(int)
|
||||
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
|
||||
elements.append(gdsii.elements.Boundary(layer=layer,
|
||||
data_type=data_type,
|
||||
xy=xy_closed))
|
||||
boundary = gdsii.elements.Boundary(layer=layer,
|
||||
data_type=data_type,
|
||||
xy=xy_closed)
|
||||
boundary.properties = properties
|
||||
elements.append(boundary)
|
||||
return elements
|
||||
|
||||
|
||||
def _labels_to_texts(labels: List[Label]) -> List[gdsii.elements.Text]:
|
||||
texts = []
|
||||
for label in labels:
|
||||
properties = _annotations_to_properties(label.annotations, 128)
|
||||
layer, text_type = _mlayer2gds(label.layer)
|
||||
xy = numpy.round([label.offset]).astype(int)
|
||||
texts.append(gdsii.elements.Text(layer=layer,
|
||||
text_type=text_type,
|
||||
xy=xy,
|
||||
string=label.string.encode('ASCII')))
|
||||
text = gdsii.elements.Text(layer=layer,
|
||||
text_type=text_type,
|
||||
xy=xy,
|
||||
string=label.string.encode('ASCII'))
|
||||
text.properties = properties
|
||||
texts.append(text)
|
||||
return texts
|
||||
|
||||
|
||||
def disambiguate_pattern_names(patterns,
|
||||
def disambiguate_pattern_names(patterns: Sequence[Pattern],
|
||||
max_name_length: int = 32,
|
||||
suffix_length: int = 6,
|
||||
dup_warn_filter: Callable[[str,], bool] = None, # If returns False, don't warn about this name
|
||||
dup_warn_filter: Optional[Callable[[str], bool]] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
patterns: List of patterns to disambiguate
|
||||
max_name_length: Names longer than this will be truncated
|
||||
suffix_length: Names which get truncated are truncated by this many extra characters. This is to
|
||||
leave room for a suffix if one is necessary.
|
||||
dup_warn_filter: (optional) Function for suppressing warnings about cell names changing. Receives
|
||||
the cell name and returns `False` if the warning should be suppressed and `True` if it should
|
||||
be displayed. Default displays all warnings.
|
||||
"""
|
||||
used_names = []
|
||||
for pat in patterns:
|
||||
for pat in set(patterns):
|
||||
# Shorten names which already exceed max-length
|
||||
if len(pat.name) > max_name_length:
|
||||
shortened_name = pat.name[:max_name_length - suffix_length]
|
||||
logger.warning('Pattern name "{}" is too long ({}/{} chars),\n'.format(pat.name, len(pat.name), max_name_length) +
|
||||
' shortening to "{}" before generating suffix'.format(shortened_name))
|
||||
logger.warning(f'Pattern name "{pat.name}" is too long ({len(pat.name)}/{max_name_length} chars),\n'
|
||||
+ f' shortening to "{shortened_name}" before generating suffix')
|
||||
else:
|
||||
shortened_name = pat.name
|
||||
|
||||
sanitized_name = re.compile('[^A-Za-z0-9_\?\$]').sub('_', shortened_name)
|
||||
# Remove invalid characters
|
||||
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', shortened_name)
|
||||
|
||||
# Add a suffix that makes the name unique
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
while suffixed_name in used_names or suffixed_name == '':
|
||||
@ -488,18 +534,20 @@ def disambiguate_pattern_names(patterns,
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning('Empty pattern name saved as "{}"'.format(suffixed_name))
|
||||
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
|
||||
elif suffixed_name != sanitized_name:
|
||||
if dup_warn_filter is None or dup_warn_filter(pat.name):
|
||||
logger.warning('Pattern name "{}" ({}) appears multiple times;\n renaming to "{}"'.format(
|
||||
pat.name, sanitized_name, suffixed_name))
|
||||
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n'
|
||||
+ f' renaming to "{suffixed_name}"')
|
||||
|
||||
# Encode into a byte-string and perform some final checks
|
||||
encoded_name = suffixed_name.encode('ASCII')
|
||||
if len(encoded_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError('Zero-length name after sanitize+encode,\n originally "{}"'.format(pat.name))
|
||||
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"')
|
||||
if len(encoded_name) > max_name_length:
|
||||
raise PatternError('Pattern name "{!r}" length > {} after encode,\n originally "{}"'.format(encoded_name, max_name_length, pat.name))
|
||||
raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n'
|
||||
+ f' originally "{pat.name}"')
|
||||
|
||||
pat.name = encoded_name
|
||||
pat.name = suffixed_name
|
||||
used_names.append(suffixed_name)
|
||||
|
638
masque/file/klamath.py
Normal file
638
masque/file/klamath.py
Normal file
@ -0,0 +1,638 @@
|
||||
"""
|
||||
GDSII file format readers and writers using the `klamath` library.
|
||||
|
||||
Note that GDSII references follow the same convention as `masque`,
|
||||
with this order of operations:
|
||||
1. Mirroring
|
||||
2. Rotation
|
||||
3. Scaling
|
||||
4. Offset and array expansion (no mirroring/rotation/scaling applied to offsets)
|
||||
|
||||
Scaling, rotation, and mirroring apply to individual instances, not grid
|
||||
vectors or offsets.
|
||||
|
||||
Notes:
|
||||
* absolute positioning is not supported
|
||||
* PLEX is not supported
|
||||
* ELFLAGS are not supported
|
||||
* GDS does not support library- or structure-level annotations
|
||||
* Creation/modification/access times are set to 1900-01-01 for reproducibility.
|
||||
"""
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Iterable, Optional
|
||||
from typing import Sequence, BinaryIO
|
||||
import re
|
||||
import io
|
||||
import mmap
|
||||
import copy
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
|
||||
import numpy # type: ignore
|
||||
import klamath
|
||||
from klamath import records
|
||||
|
||||
from .utils import is_gzipped
|
||||
from .. import Pattern, SubPattern, PatternError, Label, Shape
|
||||
from ..shapes import Polygon, Path
|
||||
from ..repetition import Grid
|
||||
from ..utils import layer_t, normalize_mirror, annotations_t
|
||||
from ..library import Library
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
path_cap_map = {
|
||||
0: Path.Cap.Flush,
|
||||
1: Path.Cap.Circle,
|
||||
2: Path.Cap.Square,
|
||||
4: Path.Cap.SquareCustom,
|
||||
}
|
||||
|
||||
|
||||
def write(patterns: Union[Pattern, Sequence[Pattern]],
|
||||
stream: BinaryIO,
|
||||
meters_per_unit: float,
|
||||
logical_units_per_unit: float = 1,
|
||||
library_name: str = 'masque-klamath',
|
||||
*,
|
||||
modify_originals: bool = False,
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Convert a `Pattern` or list of patterns to a GDSII stream, and then mapping data as follows:
|
||||
Pattern -> GDSII structure
|
||||
SubPattern -> GDSII SREF or AREF
|
||||
Path -> GSDII path
|
||||
Shape (other than path) -> GDSII boundary/ies
|
||||
Label -> GDSII text
|
||||
annnotations -> properties, where possible
|
||||
|
||||
For each shape,
|
||||
layer is chosen to be equal to `shape.layer` if it is an int,
|
||||
or `shape.layer[0]` if it is a tuple
|
||||
datatype is chosen to be `shape.layer[1]` if available,
|
||||
otherwise `0`
|
||||
|
||||
It is often a good idea to run `pattern.subpatternize()` prior to calling this function,
|
||||
especially if calling `.polygonize()` will result in very many vertices.
|
||||
|
||||
If you want pattern polygonized with non-default arguments, just call `pattern.polygonize()`
|
||||
prior to calling this function.
|
||||
|
||||
Args:
|
||||
patterns: A Pattern or list of patterns to convert.
|
||||
meters_per_unit: Written into the GDSII file, meters per (database) length unit.
|
||||
All distances are assumed to be an integer multiple of this unit, and are stored as such.
|
||||
logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a
|
||||
"logical" unit which is different from the "database" unit, for display purposes.
|
||||
Default `1`.
|
||||
library_name: Library name written into the GDSII file.
|
||||
Default 'masque-klamath'.
|
||||
modify_originals: If `True`, the original pattern is modified as part of the writing
|
||||
process. Otherwise, a copy is made and `deepunlock()`-ed.
|
||||
Default `False`.
|
||||
disambiguate_func: Function which takes a list of patterns and alters them
|
||||
to make their names valid and unique. Default is `disambiguate_pattern_names`, which
|
||||
attempts to adhere to the GDSII standard as well as possible.
|
||||
WARNING: No additional error checking is performed on the results.
|
||||
"""
|
||||
if isinstance(patterns, Pattern):
|
||||
patterns = [patterns]
|
||||
|
||||
if disambiguate_func is None:
|
||||
disambiguate_func = disambiguate_pattern_names # type: ignore
|
||||
assert(disambiguate_func is not None) # placate mypy
|
||||
|
||||
if not modify_originals:
|
||||
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)]
|
||||
|
||||
patterns = [p.wrap_repeated_shapes() for p in patterns]
|
||||
|
||||
# Create library
|
||||
header = klamath.library.FileHeader(name=library_name.encode('ASCII'),
|
||||
user_units_per_db_unit=logical_units_per_unit,
|
||||
meters_per_db_unit=meters_per_unit)
|
||||
header.write(stream)
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {id(pattern): pattern for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
for i, p in pattern.referenced_patterns_by_id().items():
|
||||
patterns_by_id[i] = p
|
||||
|
||||
disambiguate_func(patterns_by_id.values())
|
||||
|
||||
# Now create a structure for each pattern, and add in any Boundary and SREF elements
|
||||
for pat in patterns_by_id.values():
|
||||
elements: List[klamath.elements.Element] = []
|
||||
elements += _shapes_to_elements(pat.shapes)
|
||||
elements += _labels_to_texts(pat.labels)
|
||||
elements += _subpatterns_to_refs(pat.subpatterns)
|
||||
|
||||
klamath.library.write_struct(stream, name=pat.name.encode('ASCII'), elements=elements)
|
||||
records.ENDLIB.write(stream, None)
|
||||
|
||||
|
||||
def writefile(patterns: Union[Sequence[Pattern], Pattern],
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
Wrapper for `write()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically compress the file if it has a .gz suffix.
|
||||
|
||||
Args:
|
||||
patterns: `Pattern` or list of patterns to save
|
||||
filename: Filename to save to.
|
||||
*args: passed to `write()`
|
||||
**kwargs: passed to `write()`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if path.suffix == '.gz':
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
with io.BufferedWriter(open_func(path, mode='wb')) as stream:
|
||||
write(patterns, stream, *args, **kwargs)
|
||||
|
||||
|
||||
def readfile(filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `read()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically decompress gzipped files.
|
||||
|
||||
Args:
|
||||
filename: Filename to save to.
|
||||
*args: passed to `read()`
|
||||
**kwargs: passed to `read()`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if is_gzipped(path):
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
with io.BufferedReader(open_func(path, mode='rb')) as stream:
|
||||
results = read(stream, *args, **kwargs)
|
||||
return results
|
||||
|
||||
|
||||
def read(stream: BinaryIO,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
Read a gdsii file and translate it into a dict of Pattern objects. GDSII structures are
|
||||
translated into Pattern objects; boundaries are translated into polygons, and srefs and arefs
|
||||
are translated into SubPattern objects.
|
||||
|
||||
Additional library info is returned in a dict, containing:
|
||||
'name': name of the library
|
||||
'meters_per_unit': number of meters per database unit (all values are in database units)
|
||||
'logical_units_per_unit': number of "logical" units displayed by layout tools (typically microns)
|
||||
per database unit
|
||||
|
||||
Args:
|
||||
stream: Stream to read from.
|
||||
|
||||
Returns:
|
||||
- Dict of pattern_name:Patterns generated from GDSII structures
|
||||
- Dict of GDSII library info
|
||||
"""
|
||||
raw_mode = True # Whether to construct shapes in raw mode (less error checking)
|
||||
library_info = _read_header(stream)
|
||||
|
||||
patterns = []
|
||||
found_struct = records.BGNSTR.skip_past(stream)
|
||||
while found_struct:
|
||||
name = records.STRNAME.skip_and_read(stream)
|
||||
pat = read_elements(stream, name=name.decode('ASCII'), raw_mode=raw_mode)
|
||||
patterns.append(pat)
|
||||
found_struct = records.BGNSTR.skip_past(stream)
|
||||
|
||||
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
|
||||
# according to the subpattern.identifier (which is deleted after use).
|
||||
patterns_dict = dict(((p.name, p) for p in patterns))
|
||||
for p in patterns_dict.values():
|
||||
for sp in p.subpatterns:
|
||||
sp.pattern = patterns_dict[sp.identifier[0]]
|
||||
del sp.identifier
|
||||
|
||||
return patterns_dict, library_info
|
||||
|
||||
|
||||
def _read_header(stream: BinaryIO) -> Dict[str, Any]:
|
||||
"""
|
||||
Read the file header and create the library_info dict.
|
||||
"""
|
||||
header = klamath.library.FileHeader.read(stream)
|
||||
|
||||
library_info = {'name': header.name.decode('ASCII'),
|
||||
'meters_per_unit': header.meters_per_db_unit,
|
||||
'logical_units_per_unit': header.user_units_per_db_unit,
|
||||
}
|
||||
return library_info
|
||||
|
||||
|
||||
def read_elements(stream: BinaryIO,
|
||||
name: str,
|
||||
raw_mode: bool = True,
|
||||
) -> Pattern:
|
||||
"""
|
||||
Read elements from a GDS structure and build a Pattern from them.
|
||||
|
||||
Args:
|
||||
stream: Seekable stream, positioned at a record boundary.
|
||||
Will be read until an ENDSTR record is consumed.
|
||||
name: Name of the resulting Pattern
|
||||
raw_mode: If True, bypass per-shape consistency checking
|
||||
|
||||
Returns:
|
||||
A pattern containing the elements that were read.
|
||||
"""
|
||||
pat = Pattern(name)
|
||||
|
||||
elements = klamath.library.read_elements(stream)
|
||||
for element in elements:
|
||||
if isinstance(element, klamath.elements.Boundary):
|
||||
poly = _boundary_to_polygon(element, raw_mode)
|
||||
pat.shapes.append(poly)
|
||||
elif isinstance(element, klamath.elements.Path):
|
||||
path = _gpath_to_mpath(element, raw_mode)
|
||||
pat.shapes.append(path)
|
||||
elif isinstance(element, klamath.elements.Text):
|
||||
label = Label(offset=element.xy.astype(float),
|
||||
layer=element.layer,
|
||||
string=element.string.decode('ASCII'),
|
||||
annotations=_properties_to_annotations(element.properties))
|
||||
pat.labels.append(label)
|
||||
elif isinstance(element, klamath.elements.Reference):
|
||||
pat.subpatterns.append(_ref_to_subpat(element))
|
||||
return pat
|
||||
|
||||
|
||||
def _mlayer2gds(mlayer: layer_t) -> Tuple[int, int]:
|
||||
""" Helper to turn a layer tuple-or-int into a layer and datatype"""
|
||||
if isinstance(mlayer, int):
|
||||
layer = mlayer
|
||||
data_type = 0
|
||||
elif isinstance(mlayer, tuple):
|
||||
layer = mlayer[0]
|
||||
if len(mlayer) > 1:
|
||||
data_type = mlayer[1]
|
||||
else:
|
||||
data_type = 0
|
||||
else:
|
||||
raise PatternError(f'Invalid layer for gdsii: {mlayer}. Note that gdsii layers cannot be strings.')
|
||||
return layer, data_type
|
||||
|
||||
|
||||
def _ref_to_subpat(ref: klamath.library.Reference,
|
||||
) -> SubPattern:
|
||||
"""
|
||||
Helper function to create a SubPattern from an SREF or AREF. Sets subpat.pattern to None
|
||||
and sets the instance .identifier to (struct_name,).
|
||||
"""
|
||||
xy = ref.xy.astype(float)
|
||||
offset = xy[0]
|
||||
repetition = None
|
||||
if ref.colrow is not None:
|
||||
a_count, b_count = ref.colrow
|
||||
a_vector = (xy[1] - offset) / a_count
|
||||
b_vector = (xy[2] - offset) / b_count
|
||||
repetition = Grid(a_vector=a_vector, b_vector=b_vector,
|
||||
a_count=a_count, b_count=b_count)
|
||||
|
||||
subpat = SubPattern(pattern=None,
|
||||
offset=offset,
|
||||
rotation=numpy.deg2rad(ref.angle_deg),
|
||||
scale=ref.mag,
|
||||
mirrored=(ref.invert_y, False),
|
||||
annotations=_properties_to_annotations(ref.properties),
|
||||
repetition=repetition)
|
||||
subpat.identifier = (ref.struct_name.decode('ASCII'),)
|
||||
return subpat
|
||||
|
||||
|
||||
def _gpath_to_mpath(gpath: klamath.library.Path, raw_mode: bool) -> Path:
|
||||
if gpath.path_type in path_cap_map:
|
||||
cap = path_cap_map[gpath.path_type]
|
||||
else:
|
||||
raise PatternError(f'Unrecognized path type: {gpath.path_type}')
|
||||
|
||||
mpath = Path(vertices=gpath.xy.astype(float),
|
||||
layer=gpath.layer,
|
||||
width=gpath.width,
|
||||
cap=cap,
|
||||
offset=numpy.zeros(2),
|
||||
annotations=_properties_to_annotations(gpath.properties),
|
||||
raw=raw_mode,
|
||||
)
|
||||
if cap == Path.Cap.SquareCustom:
|
||||
mpath.cap_extensions = gpath.extension
|
||||
return mpath
|
||||
|
||||
|
||||
def _boundary_to_polygon(boundary: klamath.library.Boundary, raw_mode: bool) -> Polygon:
|
||||
return Polygon(vertices=boundary.xy[:-1].astype(float),
|
||||
layer=boundary.layer,
|
||||
offset=numpy.zeros(2),
|
||||
annotations=_properties_to_annotations(boundary.properties),
|
||||
raw=raw_mode,
|
||||
)
|
||||
|
||||
|
||||
def _subpatterns_to_refs(subpatterns: List[SubPattern]
|
||||
) -> List[klamath.library.Reference]:
|
||||
refs = []
|
||||
for subpat in subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
encoded_name = subpat.pattern.name.encode('ASCII')
|
||||
|
||||
# Note: GDS mirrors first and rotates second
|
||||
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
|
||||
rep = subpat.repetition
|
||||
angle_deg = numpy.rad2deg(subpat.rotation + extra_angle) % 360
|
||||
properties = _annotations_to_properties(subpat.annotations, 512)
|
||||
|
||||
if isinstance(rep, Grid):
|
||||
xy = numpy.array(subpat.offset) + [
|
||||
[0, 0],
|
||||
rep.a_vector * rep.a_count,
|
||||
rep.b_vector * rep.b_count,
|
||||
]
|
||||
aref = klamath.library.Reference(struct_name=encoded_name,
|
||||
xy=numpy.round(xy).astype(int),
|
||||
colrow=(numpy.round(rep.a_count), numpy.round(rep.b_count)),
|
||||
angle_deg=angle_deg,
|
||||
invert_y=mirror_across_x,
|
||||
mag=subpat.scale,
|
||||
properties=properties)
|
||||
refs.append(aref)
|
||||
elif rep is None:
|
||||
ref = klamath.library.Reference(struct_name=encoded_name,
|
||||
xy=numpy.round([subpat.offset]).astype(int),
|
||||
colrow=None,
|
||||
angle_deg=angle_deg,
|
||||
invert_y=mirror_across_x,
|
||||
mag=subpat.scale,
|
||||
properties=properties)
|
||||
refs.append(ref)
|
||||
else:
|
||||
new_srefs = [klamath.library.Reference(struct_name=encoded_name,
|
||||
xy=numpy.round([subpat.offset + dd]).astype(int),
|
||||
colrow=None,
|
||||
angle_deg=angle_deg,
|
||||
invert_y=mirror_across_x,
|
||||
mag=subpat.scale,
|
||||
properties=properties)
|
||||
for dd in rep.displacements]
|
||||
refs += new_srefs
|
||||
return refs
|
||||
|
||||
|
||||
def _properties_to_annotations(properties: Dict[int, bytes]) -> annotations_t:
|
||||
return {str(k): [v.decode()] for k, v in properties.items()}
|
||||
|
||||
|
||||
def _annotations_to_properties(annotations: annotations_t, max_len: int = 126) -> Dict[int, bytes]:
|
||||
cum_len = 0
|
||||
props = {}
|
||||
for key, vals in annotations.items():
|
||||
try:
|
||||
i = int(key)
|
||||
except ValueError:
|
||||
raise PatternError(f'Annotation key {key} is not convertable to an integer')
|
||||
if not (0 < i < 126):
|
||||
raise PatternError(f'Annotation key {key} converts to {i} (must be in the range [1,125])')
|
||||
|
||||
val_strings = ' '.join(str(val) for val in vals)
|
||||
b = val_strings.encode()
|
||||
if len(b) > 126:
|
||||
raise PatternError(f'Annotation value {b!r} is longer than 126 characters!')
|
||||
cum_len += numpy.ceil(len(b) / 2) * 2 + 2
|
||||
if cum_len > max_len:
|
||||
raise PatternError(f'Sum of annotation data will be longer than {max_len} bytes! Generated bytes were {b!r}')
|
||||
props[i] = b
|
||||
return props
|
||||
|
||||
|
||||
def _shapes_to_elements(shapes: List[Shape],
|
||||
polygonize_paths: bool = False
|
||||
) -> List[klamath.elements.Element]:
|
||||
elements: List[klamath.elements.Element] = []
|
||||
# Add a Boundary element for each shape, and Path elements if necessary
|
||||
for shape in shapes:
|
||||
layer, data_type = _mlayer2gds(shape.layer)
|
||||
properties = _annotations_to_properties(shape.annotations, 128)
|
||||
if isinstance(shape, Path) and not polygonize_paths:
|
||||
xy = numpy.round(shape.vertices + shape.offset).astype(int)
|
||||
width = numpy.round(shape.width).astype(int)
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
|
||||
|
||||
extension: Tuple[int, int]
|
||||
if shape.cap == Path.Cap.SquareCustom and shape.cap_extensions is not None:
|
||||
extension = tuple(shape.cap_extensions) # type: ignore
|
||||
else:
|
||||
extension = (0, 0)
|
||||
|
||||
path = klamath.elements.Path(layer=(layer, data_type),
|
||||
xy=xy,
|
||||
path_type=path_type,
|
||||
width=width,
|
||||
extension=extension,
|
||||
properties=properties)
|
||||
elements.append(path)
|
||||
elif isinstance(shape, Polygon):
|
||||
polygon = shape
|
||||
xy_open = numpy.round(polygon.vertices + polygon.offset).astype(int)
|
||||
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
|
||||
boundary = klamath.elements.Boundary(layer=(layer, data_type),
|
||||
xy=xy_closed,
|
||||
properties=properties)
|
||||
elements.append(boundary)
|
||||
else:
|
||||
for polygon in shape.to_polygons():
|
||||
xy_open = numpy.round(polygon.vertices + polygon.offset).astype(int)
|
||||
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
|
||||
boundary = klamath.elements.Boundary(layer=(layer, data_type),
|
||||
xy=xy_closed,
|
||||
properties=properties)
|
||||
elements.append(boundary)
|
||||
return elements
|
||||
|
||||
|
||||
def _labels_to_texts(labels: List[Label]) -> List[klamath.elements.Text]:
|
||||
texts = []
|
||||
for label in labels:
|
||||
properties = _annotations_to_properties(label.annotations, 128)
|
||||
layer, text_type = _mlayer2gds(label.layer)
|
||||
xy = numpy.round([label.offset]).astype(int)
|
||||
text = klamath.elements.Text(layer=(layer, text_type),
|
||||
xy=xy,
|
||||
string=label.string.encode('ASCII'),
|
||||
properties=properties,
|
||||
presentation=0, # TODO maybe set some of these?
|
||||
angle_deg=0,
|
||||
invert_y=False,
|
||||
width=0,
|
||||
path_type=0,
|
||||
mag=1)
|
||||
texts.append(text)
|
||||
return texts
|
||||
|
||||
|
||||
def disambiguate_pattern_names(patterns: Sequence[Pattern],
|
||||
max_name_length: int = 32,
|
||||
suffix_length: int = 6,
|
||||
dup_warn_filter: Optional[Callable[[str], bool]] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
patterns: List of patterns to disambiguate
|
||||
max_name_length: Names longer than this will be truncated
|
||||
suffix_length: Names which get truncated are truncated by this many extra characters. This is to
|
||||
leave room for a suffix if one is necessary.
|
||||
dup_warn_filter: (optional) Function for suppressing warnings about cell names changing. Receives
|
||||
the cell name and returns `False` if the warning should be suppressed and `True` if it should
|
||||
be displayed. Default displays all warnings.
|
||||
"""
|
||||
used_names = []
|
||||
for pat in set(patterns):
|
||||
# Shorten names which already exceed max-length
|
||||
if len(pat.name) > max_name_length:
|
||||
shortened_name = pat.name[:max_name_length - suffix_length]
|
||||
logger.warning(f'Pattern name "{pat.name}" is too long ({len(pat.name)}/{max_name_length} chars),\n'
|
||||
+ f' shortening to "{shortened_name}" before generating suffix')
|
||||
else:
|
||||
shortened_name = pat.name
|
||||
|
||||
# Remove invalid characters
|
||||
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', shortened_name)
|
||||
|
||||
# Add a suffix that makes the name unique
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
while suffixed_name in used_names or suffixed_name == '':
|
||||
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
|
||||
|
||||
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
|
||||
elif suffixed_name != sanitized_name:
|
||||
if dup_warn_filter is None or dup_warn_filter(pat.name):
|
||||
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n'
|
||||
+ f' renaming to "{suffixed_name}"')
|
||||
|
||||
# Encode into a byte-string and perform some final checks
|
||||
encoded_name = suffixed_name.encode('ASCII')
|
||||
if len(encoded_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"')
|
||||
if len(encoded_name) > max_name_length:
|
||||
raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n'
|
||||
+ f' originally "{pat.name}"')
|
||||
|
||||
pat.name = suffixed_name
|
||||
used_names.append(suffixed_name)
|
||||
|
||||
|
||||
def load_library(stream: BinaryIO,
|
||||
tag: str,
|
||||
is_secondary: Optional[Callable[[str], bool]] = None,
|
||||
) -> Tuple[Library, Dict[str, Any]]:
|
||||
"""
|
||||
Scan a GDSII stream to determine what structures are present, and create
|
||||
a library from them. This enables deferred reading of structures
|
||||
on an as-needed basis.
|
||||
All structures are loaded as secondary
|
||||
|
||||
Args:
|
||||
stream: Seekable stream. Position 0 should be the start of the file.
|
||||
The caller should leave the stream open while the library
|
||||
is still in use, since the library will need to access it
|
||||
in order to read the structure contents.
|
||||
tag: Unique identifier that will be used to identify this data source
|
||||
is_secondary: Function which takes a structure name and returns
|
||||
True if the structure should only be used as a subcell
|
||||
and not appear in the main Library interface.
|
||||
Default always returns False.
|
||||
|
||||
Returns:
|
||||
Library object, allowing for deferred load of structures.
|
||||
Additional library info (dict, same format as from `read`).
|
||||
"""
|
||||
if is_secondary is None:
|
||||
def is_secondary(k: str):
|
||||
return False
|
||||
|
||||
stream.seek(0)
|
||||
library_info = _read_header(stream)
|
||||
structs = klamath.library.scan_structs(stream)
|
||||
|
||||
lib = Library()
|
||||
for name_bytes, pos in structs.items():
|
||||
name = name_bytes.decode('ASCII')
|
||||
|
||||
def mkstruct(pos: int = pos, name: str = name) -> Pattern:
|
||||
stream.seek(pos)
|
||||
return read_elements(stream, name, raw_mode=True)
|
||||
|
||||
lib.set_value(name, tag, mkstruct, secondary=is_secondary(name))
|
||||
|
||||
return lib, library_info
|
||||
|
||||
|
||||
def load_libraryfile(filename: Union[str, pathlib.Path],
|
||||
tag: str,
|
||||
is_secondary: Optional[Callable[[str], bool]] = None,
|
||||
use_mmap: bool = True,
|
||||
) -> Tuple[Library, Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `load_library()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically decompress the file if it is gzipped.
|
||||
|
||||
NOTE that any streams/mmaps opened will remain open until ALL of the
|
||||
`PatternGenerator` objects in the library are garbage collected.
|
||||
|
||||
Args:
|
||||
path: filename or path to read from
|
||||
tag: Unique identifier for library, see `load_library`
|
||||
is_secondary: Function specifying subcess, see `load_library`
|
||||
use_mmap: If `True`, will attempt to memory-map the file instead
|
||||
of buffering. In the case of gzipped files, the file
|
||||
is decompressed into a python `bytes` object in memory
|
||||
and reopened as an `io.BytesIO` stream.
|
||||
|
||||
Returns:
|
||||
Library object, allowing for deferred load of structures.
|
||||
Additional library info (dict, same format as from `read`).
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if is_gzipped(path):
|
||||
if mmap:
|
||||
logger.info('Asked to mmap a gzipped file, reading into memory instead...')
|
||||
base_stream = gzip.open(path, mode='rb')
|
||||
stream = io.BytesIO(base_stream.read())
|
||||
else:
|
||||
base_stream = gzip.open(path, mode='rb')
|
||||
stream = io.BufferedReader(base_stream)
|
||||
else:
|
||||
base_stream = open(path, mode='rb')
|
||||
if mmap:
|
||||
stream = mmap.mmap(base_stream.fileno(), 0, access=mmap.ACCESS_READ)
|
||||
else:
|
||||
stream = io.BufferedReader(base_stream)
|
||||
return load_library(stream, tag, is_secondary)
|
@ -15,45 +15,52 @@ from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable,
|
||||
import re
|
||||
import io
|
||||
import copy
|
||||
import numpy
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
|
||||
import numpy # type: ignore
|
||||
import fatamorgana
|
||||
import fatamorgana.records as fatrec
|
||||
from fatamorgana.basic import PathExtensionScheme
|
||||
from fatamorgana.basic import PathExtensionScheme, AString, NString, PropStringReference
|
||||
|
||||
from .utils import mangle_name, make_dose_table
|
||||
from .. import Pattern, SubPattern, GridRepetition, PatternError, Label, Shape, subpattern_t
|
||||
from ..shapes import Polygon, Path
|
||||
from ..utils import rotation_matrix_2d, get_bit, set_bit, vector2, is_scalar, layer_t
|
||||
from ..utils import remove_colinear_vertices, normalize_mirror
|
||||
from .utils import clean_pattern_vertices, is_gzipped
|
||||
from .. import Pattern, SubPattern, PatternError, Label, Shape
|
||||
from ..shapes import Polygon, Path, Circle
|
||||
from ..repetition import Grid, Arbitrary, Repetition
|
||||
from ..utils import layer_t, normalize_mirror, annotations_t
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
logger.warning('OASIS support is experimental and mostly untested!')
|
||||
|
||||
|
||||
path_cap_map = {
|
||||
PathExtensionScheme.Flush: Path.Cap.Flush,
|
||||
PathExtensionScheme.HalfWidth: Path.Cap.Square,
|
||||
PathExtensionScheme.Arbitrary: Path.Cap.SquareCustom,
|
||||
}
|
||||
PathExtensionScheme.Flush: Path.Cap.Flush,
|
||||
PathExtensionScheme.HalfWidth: Path.Cap.Square,
|
||||
PathExtensionScheme.Arbitrary: Path.Cap.SquareCustom,
|
||||
}
|
||||
|
||||
#TODO implement more shape types?
|
||||
|
||||
def write(patterns: Union[Pattern, List[Pattern]],
|
||||
stream: io.BufferedIOBase,
|
||||
def build(patterns: Union[Pattern, Sequence[Pattern]],
|
||||
units_per_micron: int,
|
||||
layer_map: Dict[str, Union[int, Tuple[int, int]]] = None,
|
||||
layer_map: Optional[Dict[str, Union[int, Tuple[int, int]]]] = None,
|
||||
*,
|
||||
modify_originals: bool = False,
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None):
|
||||
disambiguate_func: Optional[Callable[[Iterable[Pattern]], None]] = None,
|
||||
annotations: Optional[annotations_t] = None
|
||||
) -> fatamorgana.OasisLayout:
|
||||
"""
|
||||
Write a `Pattern` or list of patterns to a OASIS file, writing patterns
|
||||
as OASIS cells, polygons as Polygon records, and subpatterns as Placement
|
||||
records. Other shape types may be converted to polygons if no equivalent
|
||||
record type exists (or is not implemented here yet). #TODO
|
||||
Convert a `Pattern` or list of patterns to an OASIS stream, writing patterns
|
||||
as OASIS cells, subpatterns as Placement records, and other shapes and labels
|
||||
mapped to equivalent record types (Polygon, Path, Circle, Text).
|
||||
Other shape types may be converted to polygons if no equivalent
|
||||
record type exists (or is not implemented here yet).
|
||||
|
||||
For each shape,
|
||||
layer is chosen to be equal to `shape.layer` if it is an int,
|
||||
@ -67,16 +74,26 @@ def write(patterns: Union[Pattern, List[Pattern]],
|
||||
prior to calling this function.
|
||||
|
||||
Args:
|
||||
patterns: A Pattern or list of patterns to write to file.
|
||||
stream: Stream object to write to.
|
||||
patterns: A Pattern or list of patterns to convert.
|
||||
units_per_micron: Written into the OASIS file, number of grid steps per micrometer.
|
||||
All distances are assumed to be an integer multiple of the grid step, and are stored as such.
|
||||
layer_map: Dictionary which translates
|
||||
layer_map: Dictionary which translates layer names into layer numbers. If this argument is
|
||||
provided, input shapes and labels are allowed to have layer names instead of numbers.
|
||||
It is assumed that geometry and text share the same layer names, and each name is
|
||||
assigned only to a single layer (not a range).
|
||||
If more fine-grained control is needed, manually pre-processing shapes' layer names
|
||||
into numbers, omit this argument, and manually generate the required
|
||||
`fatamorgana.records.LayerName` entries.
|
||||
Default is an empty dict (no names provided).
|
||||
modify_originals: If `True`, the original pattern is modified as part of the writing
|
||||
process. Otherwise, a copy is made and `deepunlock()`-ed.
|
||||
Default `False`.
|
||||
disambiguate_func: Function which takes a list of patterns and alters them
|
||||
to make their names valid and unique. Default is `disambiguate_pattern_names`.
|
||||
annotations: dictionary of key-value pairs which are saved as library-level properties
|
||||
|
||||
Returns:
|
||||
`fatamorgana.OasisLayout`
|
||||
"""
|
||||
if isinstance(patterns, Pattern):
|
||||
patterns = [patterns]
|
||||
@ -87,23 +104,32 @@ def write(patterns: Union[Pattern, List[Pattern]],
|
||||
if disambiguate_func is None:
|
||||
disambiguate_func = disambiguate_pattern_names
|
||||
|
||||
if annotations is None:
|
||||
annotations = {}
|
||||
|
||||
if not modify_originals:
|
||||
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)]
|
||||
|
||||
# Create library
|
||||
lib = fatamorgana.OasisLayout(unit, validation=None)
|
||||
lib = fatamorgana.OasisLayout(unit=units_per_micron, validation=None)
|
||||
lib.properties = annotations_to_properties(annotations)
|
||||
|
||||
for name, layer_num in layer_map.items():
|
||||
layer, data_type = _mlayer2oas(layer_num)
|
||||
lib.layer_names.append( #TODO figure out how to deal with text layers
|
||||
LayerName(nstring=name,
|
||||
layer_interval=(layer, layer),
|
||||
type_interval=(data_type, data_type),
|
||||
is_textlayer=False))
|
||||
if layer_map:
|
||||
for name, layer_num in layer_map.items():
|
||||
layer, data_type = _mlayer2oas(layer_num)
|
||||
lib.layers += [
|
||||
fatrec.LayerName(nstring=name,
|
||||
layer_interval=(layer, layer),
|
||||
type_interval=(data_type, data_type),
|
||||
is_textlayer=tt)
|
||||
for tt in (True, False)]
|
||||
|
||||
def layer2oas(layer: layer_t) -> Tuple[int, int]:
|
||||
layer_num = layer_map[layer] if isinstance(layer, str) else layer
|
||||
return _mlayer2oas(layer_num)
|
||||
def layer2oas(mlayer: layer_t) -> Tuple[int, int]:
|
||||
assert(layer_map is not None)
|
||||
layer_num = layer_map[mlayer] if isinstance(mlayer, str) else mlayer
|
||||
return _mlayer2oas(layer_num)
|
||||
else:
|
||||
layer2oas = _mlayer2oas
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {id(pattern): pattern for pattern in patterns}
|
||||
@ -115,18 +141,37 @@ def write(patterns: Union[Pattern, List[Pattern]],
|
||||
|
||||
# Now create a structure for each pattern
|
||||
for pat in patterns_by_id.values():
|
||||
structure = fatamorgana.Cell(name=NString(pat.name))
|
||||
structure = fatamorgana.Cell(name=pat.name)
|
||||
lib.cells.append(structure)
|
||||
|
||||
structure.properties += annotations_to_properties(pat.annotations)
|
||||
|
||||
structure.geometry += _shapes_to_elements(pat.shapes, layer2oas)
|
||||
structure.geometry += _labels_to_texts(pat.labels, layer2oas)
|
||||
structure.placements += _subpatterns_to_refs(pat.subpatterns)
|
||||
structure.placements += _subpatterns_to_placements(pat.subpatterns)
|
||||
|
||||
return lib
|
||||
|
||||
|
||||
def write(patterns: Union[Sequence[Pattern], Pattern],
|
||||
stream: io.BufferedIOBase,
|
||||
*args,
|
||||
**kwargs):
|
||||
"""
|
||||
Write a `Pattern` or list of patterns to a OASIS file. See `oasis.build()`
|
||||
for details.
|
||||
|
||||
Args:
|
||||
patterns: A Pattern or list of patterns to write to file.
|
||||
stream: Stream to write to.
|
||||
*args: passed to `oasis.build()`
|
||||
**kwargs: passed to `oasis.build()`
|
||||
"""
|
||||
lib = build(patterns, *args, **kwargs)
|
||||
lib.write(stream)
|
||||
return
|
||||
|
||||
|
||||
def writefile(patterns: Union[List[Pattern], Pattern],
|
||||
def writefile(patterns: Union[Sequence[Pattern], Pattern],
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
@ -160,7 +205,7 @@ def readfile(filename: Union[str, pathlib.Path],
|
||||
"""
|
||||
Wrapper for `oasis.read()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically decompress files with a .gz suffix.
|
||||
Will automatically decompress gzipped files.
|
||||
|
||||
Args:
|
||||
filename: Filename to save to.
|
||||
@ -168,7 +213,7 @@ def readfile(filename: Union[str, pathlib.Path],
|
||||
**kwargs: passed to `oasis.read`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if path.suffix == '.gz':
|
||||
if is_gzipped(path):
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
@ -184,10 +229,12 @@ def read(stream: io.BufferedIOBase,
|
||||
"""
|
||||
Read a OASIS file and translate it into a dict of Pattern objects. OASIS cells are
|
||||
translated into Pattern objects; Polygons are translated into polygons, and Placements
|
||||
are translated into SubPattern or GridRepetition objects.
|
||||
are translated into SubPattern objects.
|
||||
|
||||
Additional library info is returned in a dict, containing:
|
||||
'units_per_micrometer': number of database units per micrometer (all values are in database units)
|
||||
'layer_map': Mapping from layer names to fatamorgana.LayerName objects
|
||||
'annotations': Mapping of {key: value} pairs from library's properties
|
||||
|
||||
Args:
|
||||
stream: Stream to read from.
|
||||
@ -196,75 +243,205 @@ def read(stream: io.BufferedIOBase,
|
||||
Default `True`.
|
||||
|
||||
Returns:
|
||||
- Dict of pattern_name:Patterns generated from GDSII structures
|
||||
- Dict of GDSII library info
|
||||
- Dict of `pattern_name`:`Pattern`s generated from OASIS cells
|
||||
- Dict of OASIS library info
|
||||
"""
|
||||
|
||||
lib = fatamorgana.OASISLayout.read(stream)
|
||||
lib = fatamorgana.OasisLayout.read(stream)
|
||||
|
||||
library_info = {'units_per_micrometer': lib.unit,
|
||||
}
|
||||
library_info: Dict[str, Any] = {
|
||||
'units_per_micrometer': lib.unit,
|
||||
'annotations': properties_to_annotations(lib.properties, lib.propnames, lib.propstrings),
|
||||
}
|
||||
|
||||
layer_map = {}
|
||||
for layer_name in lib.layers:
|
||||
layer_map[str(layer_name.nstring)] = layer_name
|
||||
library_info['layer_map'] = layer_map
|
||||
|
||||
patterns = []
|
||||
for cell in lib.cells:
|
||||
pat = Pattern(name=cell.name.string)
|
||||
if isinstance(cell.name, int):
|
||||
cell_name = lib.cellnames[cell.name].nstring.string
|
||||
else:
|
||||
cell_name = cell.name.string
|
||||
|
||||
pat = Pattern(name=cell_name)
|
||||
for element in cell.geometry:
|
||||
if element.repetition is not None:
|
||||
raise PatternError('masque OASIS reader does not implement repetitions for shapes yet')
|
||||
if isinstance(element, fatrec.XElement):
|
||||
logger.warning('Skipping XElement record')
|
||||
# note XELEMENT has no repetition
|
||||
continue
|
||||
|
||||
assert(not isinstance(element.repetition, fatamorgana.ReuseRepetition))
|
||||
repetition = repetition_fata2masq(element.repetition)
|
||||
|
||||
# Switch based on element type:
|
||||
if isinstance(element, fatrec.Polygon):
|
||||
args = {'vertices': element.point_list,
|
||||
'layer': (element.layer, element.data_type)
|
||||
'offset': (element.x, element.y),
|
||||
}
|
||||
poly = Polygon(**args)
|
||||
|
||||
if clean_vertices:
|
||||
try:
|
||||
poly.clean_vertices()
|
||||
except PatternError:
|
||||
continue
|
||||
vertices = numpy.cumsum(numpy.vstack(((0, 0), element.get_point_list())), axis=0)
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
poly = Polygon(vertices=vertices,
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
annotations=annotations,
|
||||
repetition=repetition)
|
||||
|
||||
pat.shapes.append(poly)
|
||||
|
||||
if isinstance(element, fatrec.Path):
|
||||
cap_start = path_cap_map[element.extension_start[0]]
|
||||
cap_end = path_cap_map[element.extension_end[0]]
|
||||
elif isinstance(element, fatrec.Path):
|
||||
vertices = numpy.cumsum(numpy.vstack(((0, 0), element.get_point_list())), axis=0)
|
||||
|
||||
cap_start = path_cap_map[element.get_extension_start()[0]]
|
||||
cap_end = path_cap_map[element.get_extension_end()[0]]
|
||||
if cap_start != cap_end:
|
||||
raise Exception('masque does not support multiple cap types on a single path.') #TODO handle multiple cap types
|
||||
raise Exception('masque does not support multiple cap types on a single path.') # TODO handle multiple cap types
|
||||
cap = cap_start
|
||||
|
||||
args = {'vertices': element.point_list,
|
||||
'layer': (element.layer, element.data_type)
|
||||
'offset': (element.x, element.y),
|
||||
'width': element.half_width * 2,
|
||||
'cap': cap,
|
||||
}
|
||||
|
||||
path_args: Dict[str, Any] = {}
|
||||
if cap == Path.Cap.SquareCustom:
|
||||
args['cap_extensions'] = numpy.array((element.extension_start[1],
|
||||
element.extension_end[1]))
|
||||
path = Path(**args)
|
||||
path_args['cap_extensions'] = numpy.array((element.get_extension_start()[1],
|
||||
element.get_extension_end()[1]))
|
||||
|
||||
if clean_vertices:
|
||||
try:
|
||||
path.clean_vertices()
|
||||
except PatternError as err:
|
||||
continue
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
path = Path(vertices=vertices,
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
width=element.get_half_width() * 2,
|
||||
cap=cap,
|
||||
**path_args)
|
||||
|
||||
pat.shapes.append(path)
|
||||
|
||||
elif isinstance(element, fatrec.Rectangle):
|
||||
width = element.get_width()
|
||||
height = element.get_height()
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
rect = Polygon(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=numpy.array(((0, 0), (1, 0), (1, 1), (0, 1))) * (width, height),
|
||||
annotations=annotations,
|
||||
)
|
||||
pat.shapes.append(rect)
|
||||
|
||||
elif isinstance(element, fatrec.Trapezoid):
|
||||
vertices = numpy.array(((0, 0), (1, 0), (1, 1), (0, 1))) * (element.get_width(), element.get_height())
|
||||
a = element.get_delta_a()
|
||||
b = element.get_delta_b()
|
||||
if element.get_is_vertical():
|
||||
if a > 0:
|
||||
vertices[0, 1] += a
|
||||
else:
|
||||
vertices[3, 1] += a
|
||||
|
||||
if b > 0:
|
||||
vertices[2, 1] -= b
|
||||
else:
|
||||
vertices[1, 1] -= b
|
||||
else:
|
||||
if a > 0:
|
||||
vertices[1, 0] += a
|
||||
else:
|
||||
vertices[0, 0] += a
|
||||
|
||||
if b > 0:
|
||||
vertices[3, 0] -= b
|
||||
else:
|
||||
vertices[2, 0] -= b
|
||||
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
trapz = Polygon(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=vertices,
|
||||
annotations=annotations,
|
||||
)
|
||||
pat.shapes.append(trapz)
|
||||
|
||||
elif isinstance(element, fatrec.CTrapezoid):
|
||||
cttype = element.get_ctrapezoid_type()
|
||||
height = element.get_height()
|
||||
width = element.get_width()
|
||||
|
||||
vertices = numpy.array(((0, 0), (1, 0), (1, 1), (0, 1))) * (width, height)
|
||||
|
||||
if cttype in (0, 4, 7):
|
||||
vertices[2, 0] -= height
|
||||
if cttype in (1, 5, 6):
|
||||
vertices[3, 0] -= height
|
||||
if cttype in (2, 4, 6):
|
||||
vertices[1, 0] += height
|
||||
if cttype in (3, 5, 7):
|
||||
vertices[0, 0] += height
|
||||
|
||||
if cttype in (8, 12, 15):
|
||||
vertices[2, 0] -= width
|
||||
if cttype in (9, 13, 14):
|
||||
vertices[1, 0] -= width
|
||||
if cttype in (10, 12, 14):
|
||||
vertices[3, 0] += width
|
||||
if cttype in (11, 13, 15):
|
||||
vertices[0, 0] += width
|
||||
|
||||
if cttype == 16:
|
||||
vertices = vertices[[0, 1, 3], :]
|
||||
elif cttype == 17:
|
||||
vertices = vertices[[0, 1, 2], :]
|
||||
elif cttype == 18:
|
||||
vertices = vertices[[0, 2, 3], :]
|
||||
elif cttype == 19:
|
||||
vertices = vertices[[1, 2, 3], :]
|
||||
elif cttype == 20:
|
||||
vertices = vertices[[0, 1, 3], :]
|
||||
vertices[1, 0] += height
|
||||
elif cttype == 21:
|
||||
vertices = vertices[[0, 1, 2], :]
|
||||
vertices[0, 0] += height
|
||||
elif cttype == 22:
|
||||
vertices = vertices[[0, 1, 3], :]
|
||||
vertices[3, 1] += width
|
||||
elif cttype == 23:
|
||||
vertices = vertices[[0, 2, 3], :]
|
||||
vertices[0, 1] += width
|
||||
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
ctrapz = Polygon(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=vertices,
|
||||
annotations=annotations,
|
||||
)
|
||||
pat.shapes.append(ctrapz)
|
||||
|
||||
elif isinstance(element, fatrec.Circle):
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
circle = Circle(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
radius=float(element.get_radius()))
|
||||
pat.shapes.append(circle)
|
||||
|
||||
elif isinstance(element, fatrec.Text):
|
||||
args = {'layer': (element.layer, element.data_type)
|
||||
'offset': (element.x, element.y),
|
||||
'string': str(element.string),
|
||||
}
|
||||
pat.labels.append(Label(**args))
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
label = Label(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
string=str(element.get_string()))
|
||||
pat.labels.append(label)
|
||||
|
||||
else:
|
||||
logger.warning(f'Skipping record {element} (unimplemented)')
|
||||
continue
|
||||
|
||||
for placement in cell.placements:
|
||||
pat.subpattterns.append += _placement_to_subpats(placement)
|
||||
pat.subpatterns.append(_placement_to_subpat(placement, lib))
|
||||
|
||||
if clean_vertices:
|
||||
clean_pattern_vertices(pat)
|
||||
patterns.append(pat)
|
||||
|
||||
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
|
||||
@ -272,7 +449,9 @@ def read(stream: io.BufferedIOBase,
|
||||
patterns_dict = dict(((p.name, p) for p in patterns))
|
||||
for p in patterns_dict.values():
|
||||
for sp in p.subpatterns:
|
||||
sp.pattern = patterns_dict[sp.identifier[0]]
|
||||
ident = sp.identifier[0]
|
||||
name = ident if isinstance(ident, str) else lib.cellnames[ident].nstring.string
|
||||
sp.pattern = patterns_dict[name]
|
||||
del sp.identifier
|
||||
|
||||
return patterns_dict, library_info
|
||||
@ -290,45 +469,35 @@ def _mlayer2oas(mlayer: layer_t) -> Tuple[int, int]:
|
||||
else:
|
||||
data_type = 0
|
||||
else:
|
||||
raise PatternError(f'Invalid layer for OASIS: {layer}. Note that OASIS layers cannot be strings.') #TODO allow string layers using layer map def
|
||||
raise PatternError(f'Invalid layer for OASIS: {layer}. Note that OASIS layers cannot be '
|
||||
f'strings unless a layer map is provided.')
|
||||
return layer, data_type
|
||||
|
||||
|
||||
def _placement_to_subpats(placement: fatrec.Placement) -> List[subpattern_t]:
|
||||
def _placement_to_subpat(placement: fatrec.Placement, lib: fatamorgana.OasisLayout) -> SubPattern:
|
||||
"""
|
||||
Helper function to create a SubPattern from a placment. Sets subpat.pattern to None
|
||||
and sets the instance .identifier to (struct_name,).
|
||||
"""
|
||||
assert(not isinstance(placement.repetition, fatamorgana.ReuseRepetition))
|
||||
xy = numpy.array((placement.x, placement.y))
|
||||
kwargs = {
|
||||
'pattern': None,
|
||||
'mirrored': (placement.flip, False),
|
||||
'rotation': float(placement.angle * pi/180)
|
||||
'scale': placement.magnification,
|
||||
'identifier': (placement.name,),
|
||||
}
|
||||
|
||||
rep = placement.repetition
|
||||
if isinstance(rep, fatamorgana.GridRepetition):
|
||||
subpat = GridRepetition(a_vector=rep.a_vector,
|
||||
b_vector=rep.b_vector,
|
||||
a_count=rep.a_count,
|
||||
b_count=rep.b_count,
|
||||
offset=xy,
|
||||
**kwargs)
|
||||
subpats = [subpat]
|
||||
elif isinstance(rep, fatamorgana.ArbitraryRepetition):
|
||||
subpats = []
|
||||
for rep_offset in numpy.cumsum(numpy.column_stack((rep.x_displacements,
|
||||
rep.y_displacements))):
|
||||
subpats.append(SubPattern(offset=xy + rep_offset, **kwargs))
|
||||
elif rep is None
|
||||
subpats = [SubPattern(offset=xy + rep_offset, **kwargs)]
|
||||
return subpats
|
||||
mag = placement.magnification if placement.magnification is not None else 1
|
||||
pname = placement.get_name()
|
||||
name = pname if isinstance(pname, int) else pname.string
|
||||
annotations = properties_to_annotations(placement.properties, lib.propnames, lib.propstrings)
|
||||
subpat = SubPattern(offset=xy,
|
||||
pattern=None,
|
||||
mirrored=(placement.flip, False),
|
||||
rotation=numpy.deg2rad(placement.angle),
|
||||
scale=float(mag),
|
||||
identifier=(name,),
|
||||
repetition=repetition_fata2masq(placement.repetition),
|
||||
annotations=annotations)
|
||||
return subpat
|
||||
|
||||
|
||||
def _subpatterns_to_refs(subpatterns: List[subpattern_t]
|
||||
) -> List[fatrec.Placement]]:
|
||||
def _subpatterns_to_placements(subpatterns: List[SubPattern]
|
||||
) -> List[fatrec.Placement]:
|
||||
refs = []
|
||||
for subpat in subpatterns:
|
||||
if subpat.pattern is None:
|
||||
@ -336,25 +505,19 @@ def _subpatterns_to_refs(subpatterns: List[subpattern_t]
|
||||
|
||||
# Note: OASIS mirrors first and rotates second
|
||||
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
|
||||
xy = numpy.round(subpat.offset).astype(int)
|
||||
args = {
|
||||
'x': xy[0],
|
||||
'y': xy[1],
|
||||
}
|
||||
|
||||
if isinstance(subpat, GridRepetition):
|
||||
kwargs['rep'] = fatamorgana.GridRepetition(
|
||||
a_vector=numpy.round(subpat.a_vector).astype(int),
|
||||
b_vector=numpy.round(subpat.b_vector).astype(int),
|
||||
a_count=numpy.round(subpat.a_count).astype(int),
|
||||
b_count=numpy.round(subpat.b_count).astype(int))
|
||||
frep, rep_offset = repetition_masq2fata(subpat.repetition)
|
||||
|
||||
offset = numpy.round(subpat.offset + rep_offset).astype(int)
|
||||
angle = numpy.rad2deg(subpat.rotation + extra_angle) % 360
|
||||
ref = fatrec.Placement(
|
||||
name=subpat.pattern.name,
|
||||
flip=mirror_across_x,
|
||||
angle=((subpat.rotation + extra_angle) * 180 / numpy.pi) % 360,
|
||||
magnification=subpat.scale,
|
||||
**kwargs)
|
||||
name=subpat.pattern.name,
|
||||
flip=mirror_across_x,
|
||||
angle=angle,
|
||||
magnification=subpat.scale,
|
||||
properties=annotations_to_properties(subpat.annotations),
|
||||
x=offset[0],
|
||||
y=offset[1],
|
||||
repetition=frep)
|
||||
|
||||
refs.append(ref)
|
||||
return refs
|
||||
@ -362,36 +525,54 @@ def _subpatterns_to_refs(subpatterns: List[subpattern_t]
|
||||
|
||||
def _shapes_to_elements(shapes: List[Shape],
|
||||
layer2oas: Callable[[layer_t], Tuple[int, int]],
|
||||
polygonize_paths: bool = False,
|
||||
) -> List[Union[fatrec.Polygon, fatrec.Path]]:
|
||||
) -> List[Union[fatrec.Polygon, fatrec.Path, fatrec.Circle]]:
|
||||
# Add a Polygon record for each shape, and Path elements if necessary
|
||||
elements: List[Union[fatrec.Polygon, fatrec.Path]] = []
|
||||
elements: List[Union[fatrec.Polygon, fatrec.Path, fatrec.Circle]] = []
|
||||
for shape in shapes:
|
||||
layer, data_type = layer2oas(shape.layer)
|
||||
if isinstance(shape, Path) and not polygonize_paths:
|
||||
offset = numpy.round(shape.offset).astype(int)
|
||||
points = numpy.round(shape.vertices).astype(int)
|
||||
layer, datatype = layer2oas(shape.layer)
|
||||
repetition, rep_offset = repetition_masq2fata(shape.repetition)
|
||||
properties = annotations_to_properties(shape.annotations)
|
||||
if isinstance(shape, Circle):
|
||||
offset = numpy.round(shape.offset + rep_offset).astype(int)
|
||||
radius = numpy.round(shape.radius).astype(int)
|
||||
circle = fatrec.Circle(layer=layer,
|
||||
datatype=datatype,
|
||||
radius=radius,
|
||||
x=offset[0],
|
||||
y=offset[1],
|
||||
properties=properties,
|
||||
repetition=repetition)
|
||||
elements.append(circle)
|
||||
elif isinstance(shape, Path):
|
||||
xy = numpy.round(shape.offset + shape.vertices[0] + rep_offset).astype(int)
|
||||
deltas = numpy.round(numpy.diff(shape.vertices, axis=0)).astype(int)
|
||||
half_width = numpy.round(shape.width / 2).astype(int)
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) #reverse lookup
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
|
||||
extension_start = (path_type, shape.cap_extensions[0] if shape.cap_extensions is not None else None)
|
||||
extension_end = (path_type, shape.cap_extensions[1] if shape.cap_extensions is not None else None)
|
||||
path = fatrec.Path(layer=layer,
|
||||
data_type=data_type,
|
||||
point_list=points,
|
||||
datatype=datatype,
|
||||
point_list=deltas,
|
||||
half_width=half_width,
|
||||
x=offset[0],
|
||||
y=offset[1],
|
||||
extension_start=path_type, #TODO implement multiple cap types?
|
||||
extension_end=path_type,
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
extension_start=extension_start, # TODO implement multiple cap types?
|
||||
extension_end=extension_end,
|
||||
properties=properties,
|
||||
repetition=repetition,
|
||||
)
|
||||
elements.append(path)
|
||||
else:
|
||||
for polygon in shape.to_polygons():
|
||||
points = numpy.round(polygon.vertices).astype(int)
|
||||
offset = numpy.round(polygon.offset).astype(int)
|
||||
xy = numpy.round(polygon.offset + polygon.vertices[0] + rep_offset).astype(int)
|
||||
points = numpy.round(numpy.diff(polygon.vertices, axis=0)).astype(int)
|
||||
elements.append(fatrec.Polygon(layer=layer,
|
||||
data_type=data_type,
|
||||
x=offset[0],
|
||||
y=offset[1],
|
||||
point_list=point_list))
|
||||
datatype=datatype,
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
point_list=points,
|
||||
properties=properties,
|
||||
repetition=repetition))
|
||||
return elements
|
||||
|
||||
|
||||
@ -400,22 +581,26 @@ def _labels_to_texts(labels: List[Label],
|
||||
) -> List[fatrec.Text]:
|
||||
texts = []
|
||||
for label in labels:
|
||||
layer, text_type = layer2oas(label.layer)
|
||||
xy = numpy.round(label.offset).astype(int)
|
||||
layer, datatype = layer2oas(label.layer)
|
||||
repetition, rep_offset = repetition_masq2fata(label.repetition)
|
||||
xy = numpy.round(label.offset + rep_offset).astype(int)
|
||||
properties = annotations_to_properties(label.annotations)
|
||||
texts.append(fatrec.Text(layer=layer,
|
||||
text_type=text_type,
|
||||
datatype=datatype,
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
string=string))
|
||||
string=label.string,
|
||||
properties=properties,
|
||||
repetition=repetition))
|
||||
return texts
|
||||
|
||||
|
||||
def disambiguate_pattern_names(patterns,
|
||||
dup_warn_filter: Callable[[str,], bool] = None, # If returns False, don't warn about this name
|
||||
dup_warn_filter: Callable[[str], bool] = None, # If returns False, don't warn about this name
|
||||
):
|
||||
used_names = []
|
||||
for pat in patterns:
|
||||
sanitized_name = re.compile('[^A-Za-z0-9_\?\$]').sub('_', pat.name)
|
||||
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', pat.name)
|
||||
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
@ -426,16 +611,101 @@ def disambiguate_pattern_names(patterns,
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning('Empty pattern name saved as "{}"'.format(suffixed_name))
|
||||
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
|
||||
elif suffixed_name != sanitized_name:
|
||||
if dup_warn_filter is None or dup_warn_filter(pat.name):
|
||||
logger.warning('Pattern name "{}" ({}) appears multiple times;\n renaming to "{}"'.format(
|
||||
pat.name, sanitized_name, suffixed_name))
|
||||
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n'
|
||||
+ f' renaming to "{suffixed_name}"')
|
||||
|
||||
encoded_name = suffixed_name.encode('ASCII')
|
||||
if len(encoded_name) == 0:
|
||||
if len(suffixed_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError('Zero-length name after sanitize+encode,\n originally "{}"'.format(pat.name))
|
||||
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"')
|
||||
|
||||
pat.name = encoded_name
|
||||
pat.name = suffixed_name
|
||||
used_names.append(suffixed_name)
|
||||
|
||||
|
||||
def repetition_fata2masq(rep: Union[fatamorgana.GridRepetition, fatamorgana.ArbitraryRepetition, None]
|
||||
) -> Optional[Repetition]:
|
||||
mrep: Optional[Repetition]
|
||||
if isinstance(rep, fatamorgana.GridRepetition):
|
||||
mrep = Grid(a_vector=rep.a_vector,
|
||||
b_vector=rep.b_vector,
|
||||
a_count=rep.a_count,
|
||||
b_count=rep.b_count)
|
||||
elif isinstance(rep, fatamorgana.ArbitraryRepetition):
|
||||
displacements = numpy.cumsum(numpy.column_stack((rep.x_displacements,
|
||||
rep.y_displacements)))
|
||||
displacements = numpy.vstack(([0, 0], displacements))
|
||||
mrep = Arbitrary(displacements)
|
||||
elif rep is None:
|
||||
mrep = None
|
||||
return mrep
|
||||
|
||||
|
||||
def repetition_masq2fata(rep: Optional[Repetition]
|
||||
) -> Tuple[Union[fatamorgana.GridRepetition,
|
||||
fatamorgana.ArbitraryRepetition,
|
||||
None],
|
||||
Tuple[int, int]]:
|
||||
frep: Union[fatamorgana.GridRepetition, fatamorgana.ArbitraryRepetition, None]
|
||||
if isinstance(rep, Grid):
|
||||
frep = fatamorgana.GridRepetition(
|
||||
a_vector=numpy.round(rep.a_vector).astype(int),
|
||||
b_vector=numpy.round(rep.b_vector).astype(int),
|
||||
a_count=numpy.round(rep.a_count).astype(int),
|
||||
b_count=numpy.round(rep.b_count).astype(int))
|
||||
offset = (0, 0)
|
||||
elif isinstance(rep, Arbitrary):
|
||||
diffs = numpy.diff(rep.displacements, axis=0)
|
||||
diff_ints = numpy.round(diffs).astype(int)
|
||||
frep = fatamorgana.ArbitraryRepetition(diff_ints[:, 0], diff_ints[:, 1])
|
||||
offset = rep.displacements[0, :]
|
||||
else:
|
||||
assert(rep is None)
|
||||
frep = None
|
||||
offset = (0, 0)
|
||||
return frep, offset
|
||||
|
||||
|
||||
def annotations_to_properties(annotations: annotations_t) -> List[fatrec.Property]:
|
||||
#TODO determine is_standard based on key?
|
||||
properties = []
|
||||
for key, values in annotations.items():
|
||||
vals = [AString(v) if isinstance(v, str) else v
|
||||
for v in values]
|
||||
properties.append(fatrec.Property(key, vals, is_standard=False))
|
||||
return properties
|
||||
|
||||
|
||||
def properties_to_annotations(properties: List[fatrec.Property],
|
||||
propnames: Dict[int, NString],
|
||||
propstrings: Dict[int, AString],
|
||||
) -> annotations_t:
|
||||
annotations = {}
|
||||
for proprec in properties:
|
||||
assert(proprec.name is not None)
|
||||
if isinstance(proprec.name, int):
|
||||
key = propnames[proprec.name].string
|
||||
else:
|
||||
key = proprec.name.string
|
||||
values: List[Union[str, float, int]] = []
|
||||
|
||||
assert(proprec.values is not None)
|
||||
for value in proprec.values:
|
||||
if isinstance(value, (float, int)):
|
||||
values.append(value)
|
||||
elif isinstance(value, (NString, AString)):
|
||||
values.append(value.string)
|
||||
elif isinstance(value, PropStringReference):
|
||||
values.append(propstrings[value.ref].string) # dereference
|
||||
else:
|
||||
string = repr(value)
|
||||
logger.warning(f'Converting property value for key ({key}) to string ({string})')
|
||||
values.append(string)
|
||||
annotations[key] = values
|
||||
return annotations
|
||||
|
||||
properties = [fatrec.Property(key, vals, is_standard=False)
|
||||
for key, vals in annotations.items()]
|
||||
return properties
|
||||
|
@ -2,17 +2,19 @@
|
||||
SVG file format readers and writers
|
||||
"""
|
||||
from typing import Dict, Optional
|
||||
import svgwrite
|
||||
import numpy
|
||||
import warnings
|
||||
|
||||
import numpy # type: ignore
|
||||
import svgwrite # type: ignore
|
||||
|
||||
from .utils import mangle_name
|
||||
from .. import Pattern
|
||||
|
||||
|
||||
def writefile(pattern: Pattern,
|
||||
filename: str,
|
||||
custom_attributes: bool=False):
|
||||
filename: str,
|
||||
custom_attributes: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Write a Pattern to an SVG file, by first calling .polygonize() on it
|
||||
to change the shapes into polygons, and then writing patterns as SVG
|
||||
@ -79,8 +81,7 @@ def writefile(pattern: Pattern,
|
||||
for subpat in pat.subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
transform = 'scale({:g}) rotate({:g}) translate({:g},{:g})'.format(
|
||||
subpat.scale, subpat.rotation, subpat.offset[0], subpat.offset[1])
|
||||
transform = f'scale({subpat.scale:g}) rotate({subpat.rotation:g}) translate({subpat.offset[0]:g},{subpat.offset[1]:g})'
|
||||
use = svg.use(href='#' + mangle_name(subpat.pattern), transform=transform)
|
||||
if custom_attributes:
|
||||
use['pattern_dose'] = subpat.dose
|
||||
|
@ -1,13 +1,16 @@
|
||||
"""
|
||||
Helper functions for file reading and writing
|
||||
"""
|
||||
import re
|
||||
from typing import Set, Tuple, List
|
||||
import re
|
||||
import copy
|
||||
import pathlib
|
||||
|
||||
from masque.pattern import Pattern
|
||||
from .. import Pattern, PatternError
|
||||
from ..shapes import Polygon, Path
|
||||
|
||||
|
||||
def mangle_name(pattern: Pattern, dose_multiplier: float=1.0) -> str:
|
||||
def mangle_name(pattern: Pattern, dose_multiplier: float = 1.0) -> str:
|
||||
"""
|
||||
Create a name using `pattern.name`, `id(pattern)`, and the dose multiplier.
|
||||
|
||||
@ -18,13 +21,37 @@ def mangle_name(pattern: Pattern, dose_multiplier: float=1.0) -> str:
|
||||
Returns:
|
||||
Mangled name.
|
||||
"""
|
||||
expression = re.compile('[^A-Za-z0-9_\?\$]')
|
||||
expression = re.compile(r'[^A-Za-z0-9_\?\$]')
|
||||
full_name = '{}_{}_{}'.format(pattern.name, dose_multiplier, id(pattern))
|
||||
sanitized_name = expression.sub('_', full_name)
|
||||
return sanitized_name
|
||||
|
||||
|
||||
def make_dose_table(patterns: List[Pattern], dose_multiplier: float=1.0) -> Set[Tuple[int, float]]:
|
||||
def clean_pattern_vertices(pat: Pattern) -> Pattern:
|
||||
"""
|
||||
Given a pattern, remove any redundant vertices in its polygons and paths.
|
||||
The cleaning process completely removes any polygons with zero area or <3 vertices.
|
||||
|
||||
Args:
|
||||
pat: Pattern to clean
|
||||
|
||||
Returns:
|
||||
pat
|
||||
"""
|
||||
remove_inds = []
|
||||
for ii, shape in enumerate(pat.shapes):
|
||||
if not isinstance(shape, (Polygon, Path)):
|
||||
continue
|
||||
try:
|
||||
shape.clean_vertices()
|
||||
except PatternError:
|
||||
remove_inds.append(ii)
|
||||
for ii in sorted(remove_inds, reverse=True):
|
||||
del pat.shapes[ii]
|
||||
return pat
|
||||
|
||||
|
||||
def make_dose_table(patterns: List[Pattern], dose_multiplier: float = 1.0) -> Set[Tuple[int, float]]:
|
||||
"""
|
||||
Create a set containing `(id(pat), written_dose)` for each pattern (including subpatterns)
|
||||
|
||||
@ -116,14 +143,14 @@ def dose2dtype(patterns: List[Pattern],
|
||||
|
||||
# Create a new pattern for each non-1-dose entry in the dose table
|
||||
# and update the shapes to reflect their new dose
|
||||
new_pats = {} # (id, dose) -> new_pattern mapping
|
||||
new_pats = {} # (id, dose) -> new_pattern mapping
|
||||
for pat_id, pat_dose in sd_table:
|
||||
if pat_dose == 1:
|
||||
new_pats[(pat_id, pat_dose)] = patterns_by_id[pat_id]
|
||||
continue
|
||||
|
||||
old_pat = patterns_by_id[pat_id]
|
||||
pat = old_pat.copy() # keep old subpatterns
|
||||
pat = old_pat.copy() # keep old subpatterns
|
||||
pat.shapes = copy.deepcopy(old_pat.shapes)
|
||||
pat.labels = copy.deepcopy(old_pat.labels)
|
||||
|
||||
@ -150,3 +177,9 @@ def dose2dtype(patterns: List[Pattern],
|
||||
subpat.pattern = new_pats[(id(subpat.pattern), dose_mult)]
|
||||
|
||||
return patterns, dose_vals_list
|
||||
|
||||
|
||||
def is_gzipped(path: pathlib.Path) -> bool:
|
||||
with open(path, 'rb') as stream:
|
||||
magic_bytes = stream.read(2)
|
||||
return magic_bytes == b'\x1f\x8b'
|
||||
|
130
masque/label.py
130
masque/label.py
@ -1,23 +1,22 @@
|
||||
from typing import List, Tuple, Dict
|
||||
from typing import Tuple, Dict, Optional, TypeVar
|
||||
import copy
|
||||
import numpy
|
||||
from numpy import pi
|
||||
import numpy # type: ignore
|
||||
|
||||
from .error import PatternError, PatternLockedError
|
||||
from .utils import is_scalar, vector2, rotation_matrix_2d, layer_t
|
||||
from .repetition import Repetition
|
||||
from .utils import vector2, rotation_matrix_2d, layer_t, AutoSlots, annotations_t
|
||||
from .traits import PositionableImpl, LayerableImpl, Copyable, Pivotable, LockableImpl, RepeatableImpl
|
||||
from .traits import AnnotatableImpl
|
||||
|
||||
|
||||
class Label:
|
||||
L = TypeVar('L', bound='Label')
|
||||
|
||||
|
||||
class Label(PositionableImpl, LayerableImpl, LockableImpl, RepeatableImpl, AnnotatableImpl,
|
||||
Pivotable, Copyable, metaclass=AutoSlots):
|
||||
"""
|
||||
A text annotation with a position and layer (but no size; it is not drawn)
|
||||
"""
|
||||
__slots__ = ('_offset', '_layer', '_string', 'identifier', 'locked')
|
||||
|
||||
_offset: numpy.ndarray
|
||||
""" [x_offset, y_offset] """
|
||||
|
||||
_layer: layer_t
|
||||
""" Layer (integer >= 0, or 2-Tuple of integers) """
|
||||
__slots__ = ( '_string', 'identifier')
|
||||
|
||||
_string: str
|
||||
""" Label string """
|
||||
@ -25,44 +24,9 @@ class Label:
|
||||
identifier: Tuple
|
||||
""" Arbitrary identifier tuple, useful for keeping track of history when flattening """
|
||||
|
||||
locked: bool
|
||||
""" If `True`, any changes to the label will raise a `PatternLockedError` """
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if self.locked and name != 'locked':
|
||||
raise PatternLockedError()
|
||||
object.__setattr__(self, name, value)
|
||||
|
||||
# ---- Properties
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
"""
|
||||
[x, y] offset
|
||||
"""
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten().astype(float)
|
||||
|
||||
# layer property
|
||||
@property
|
||||
def layer(self) -> layer_t:
|
||||
"""
|
||||
Layer number or name (int, tuple of ints, or string)
|
||||
"""
|
||||
return self._layer
|
||||
|
||||
@layer.setter
|
||||
def layer(self, val: layer_t):
|
||||
self._layer = val
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
# string property
|
||||
@property
|
||||
def string(self) -> str:
|
||||
@ -77,49 +41,37 @@ class Label:
|
||||
|
||||
def __init__(self,
|
||||
string: str,
|
||||
*,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
layer: layer_t = 0,
|
||||
locked: bool = False):
|
||||
object.__setattr__(self, 'locked', False)
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
) -> None:
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
self.string = string
|
||||
self.offset = numpy.array(offset, dtype=float, copy=True)
|
||||
self.layer = layer
|
||||
self.locked = locked
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.set_locked(locked)
|
||||
|
||||
def __copy__(self) -> 'Label':
|
||||
def __copy__(self: L) -> L:
|
||||
return Label(string=self.string,
|
||||
offset=self.offset.copy(),
|
||||
layer=self.layer,
|
||||
repetition=self.repetition,
|
||||
locked=self.locked)
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Label':
|
||||
def __deepcopy__(self: L, memo: Dict = None) -> L:
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new._offset = self._offset.copy()
|
||||
new.locked = self.locked
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def copy(self) -> 'Label':
|
||||
"""
|
||||
Returns a deep copy of the label.
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def translate(self, offset: vector2) -> 'Label':
|
||||
"""
|
||||
Translate the label by the given offset
|
||||
|
||||
Args:
|
||||
offset: [x_offset, y,offset]
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'Label':
|
||||
def rotate_around(self: L, pivot: vector2, rotation: float) -> L:
|
||||
"""
|
||||
Rotate the label around a point.
|
||||
|
||||
@ -149,26 +101,14 @@ class Label:
|
||||
"""
|
||||
return numpy.array([self.offset, self.offset])
|
||||
|
||||
def lock(self) -> 'Label':
|
||||
"""
|
||||
Lock the Label, causing any modifications to raise an exception.
|
||||
|
||||
Return:
|
||||
self
|
||||
"""
|
||||
self.offset.flags.writeable = False
|
||||
object.__setattr__(self, 'locked', True)
|
||||
def lock(self: L) -> L:
|
||||
PositionableImpl._lock(self)
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Label':
|
||||
"""
|
||||
Unlock the Label, re-allowing changes.
|
||||
|
||||
Return:
|
||||
self
|
||||
"""
|
||||
object.__setattr__(self, 'locked', False)
|
||||
self.offset.flags.writeable = True
|
||||
def unlock(self: L) -> L:
|
||||
LockableImpl.unlock(self)
|
||||
PositionableImpl._unlock(self)
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
|
8
masque/library/NOTES.md
Normal file
8
masque/library/NOTES.md
Normal file
@ -0,0 +1,8 @@
|
||||
|
||||
- library:
|
||||
- takes in a string
|
||||
- builds device if not ready yet
|
||||
- returns device
|
||||
- can overwrite device and update pointers?
|
||||
- lockable?
|
||||
- add functions?
|
1
masque/library/__init__.py
Normal file
1
masque/library/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .library import Library, PatternGenerator
|
282
masque/library/library.py
Normal file
282
masque/library/library.py
Normal file
@ -0,0 +1,282 @@
|
||||
"""
|
||||
Library class for managing unique name->pattern mappings and
|
||||
deferred loading or creation.
|
||||
"""
|
||||
from typing import Dict, Callable, TypeVar, TYPE_CHECKING
|
||||
from typing import Any, Tuple, Union, Iterator
|
||||
import logging
|
||||
from pprint import pformat
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..error import LibraryError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..pattern import Pattern
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class PatternGenerator:
|
||||
__slots__ = ('tag', 'gen')
|
||||
tag: str
|
||||
""" Unique identifier for the source """
|
||||
|
||||
gen: Callable[[], 'Pattern']
|
||||
""" Function which generates a pattern when called """
|
||||
|
||||
|
||||
L = TypeVar('L', bound='Library')
|
||||
|
||||
|
||||
class Library:
|
||||
"""
|
||||
This class is usually used to create a device library by mapping names to
|
||||
functions which generate or load the relevant `Pattern` object as-needed.
|
||||
|
||||
Generated/loaded patterns can have "symbolic" references, where a SubPattern
|
||||
object `sp` has a `None`-valued `sp.pattern` attribute, in which case the
|
||||
Library expects `sp.identifier[0]` to contain a string which specifies the
|
||||
referenced pattern's name.
|
||||
|
||||
Patterns can either be "primary" (default) or "secondary". Both get the
|
||||
same deferred-load behavior, but "secondary" patterns may have conflicting
|
||||
names and are not accessible through basic []-indexing. They are only used
|
||||
to fill symbolic references in cases where there is no "primary" pattern
|
||||
available, and only if both the referencing and referenced pattern-generators'
|
||||
`tag` values match (i.e., only if they came from the same source).
|
||||
|
||||
Primary patterns can be turned into secondary patterns with the `demote`
|
||||
method, `promote` performs the reverse (secondary -> primary) operation.
|
||||
|
||||
The `set_const` and `set_value` methods provide an easy way to transparently
|
||||
construct PatternGenerator objects and directly set create "secondary"
|
||||
patterns.
|
||||
|
||||
The cache can be disabled by setting the `enable_cache` attribute to `False`.
|
||||
"""
|
||||
primary: Dict[str, PatternGenerator]
|
||||
secondary: Dict[Tuple[str, str], PatternGenerator]
|
||||
cache: Dict[Union[str, Tuple[str, str]], 'Pattern']
|
||||
enable_cache: bool = True
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.primary = {}
|
||||
self.secondary = {}
|
||||
self.cache = {}
|
||||
|
||||
def __setitem__(self, key: str, value: PatternGenerator) -> None:
|
||||
self.primary[key] = value
|
||||
if key in self.cache:
|
||||
del self.cache[key]
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
if isinstance(key, str):
|
||||
del self.primary[key]
|
||||
elif isinstance(key, tuple):
|
||||
del self.secondary[key]
|
||||
|
||||
if key in self.cache:
|
||||
del self.cache[key]
|
||||
|
||||
def __getitem__(self, key: str) -> 'Pattern':
|
||||
return self.get_primary(key)
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return iter(self.keys())
|
||||
|
||||
def __contains__(self, key: str) -> bool:
|
||||
return key in self.primary
|
||||
|
||||
def get_primary(self, key: str) -> 'Pattern':
|
||||
if self.enable_cache and key in self.cache:
|
||||
logger.debug(f'found {key} in cache')
|
||||
return self.cache[key]
|
||||
|
||||
logger.debug(f'loading {key}')
|
||||
pg = self.primary[key]
|
||||
pat = pg.gen()
|
||||
self.resolve_subpatterns(pat, pg.tag)
|
||||
self.cache[key] = pat
|
||||
return pat
|
||||
|
||||
def get_secondary(self, key: str, tag: str) -> 'Pattern':
|
||||
logger.debug(f'get_secondary({key}, {tag})')
|
||||
key2 = (key, tag)
|
||||
if self.enable_cache and key2 in self.cache:
|
||||
return self.cache[key2]
|
||||
|
||||
pg = self.secondary[key2]
|
||||
pat = pg.gen()
|
||||
self.resolve_subpatterns(pat, pg.tag)
|
||||
self.cache[key2] = pat
|
||||
return pat
|
||||
|
||||
def resolve_subpatterns(self, pat: 'Pattern', tag: str) -> 'Pattern':
|
||||
logger.debug(f'Resolving subpatterns in {pat.name}')
|
||||
for sp in pat.subpatterns:
|
||||
if sp.pattern is not None:
|
||||
continue
|
||||
|
||||
key = sp.identifier[0]
|
||||
if key in self.primary:
|
||||
sp.pattern = self.get_primary(key)
|
||||
continue
|
||||
|
||||
if (key, tag) in self.secondary:
|
||||
sp.pattern = self.get_secondary(key, tag)
|
||||
continue
|
||||
|
||||
raise LibraryError(f'Broken reference to {key} (tag {tag})')
|
||||
return pat
|
||||
|
||||
def keys(self) -> Iterator[str]:
|
||||
return iter(self.primary.keys())
|
||||
|
||||
def values(self) -> Iterator['Pattern']:
|
||||
return iter(self[key] for key in self.keys())
|
||||
|
||||
def items(self) -> Iterator[Tuple[str, 'Pattern']]:
|
||||
return iter((key, self[key]) for key in self.keys())
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return '<Library with keys ' + repr(list(self.primary.keys())) + '>'
|
||||
|
||||
def set_const(self, key: str, tag: Any, const: 'Pattern', secondary: bool = False) -> None:
|
||||
"""
|
||||
Convenience function to avoid having to manually wrap
|
||||
constant values into callables.
|
||||
|
||||
Args:
|
||||
key: Lookup key, usually the cell/pattern name
|
||||
tag: Unique tag for the source, used to disambiguate secondary patterns
|
||||
const: Pattern object to return
|
||||
secondary: If True, this pattern is not accessible for normal lookup, and is
|
||||
only used as a sub-component of other patterns if no non-secondary
|
||||
equivalent is available.
|
||||
"""
|
||||
pg = PatternGenerator(tag=tag, gen=lambda: const)
|
||||
if secondary:
|
||||
self.secondary[(key, tag)] = pg
|
||||
else:
|
||||
self.primary[key] = pg
|
||||
|
||||
def set_value(self, key: str, tag: str, value: Callable[[], 'Pattern'], secondary: bool = False) -> None:
|
||||
"""
|
||||
Convenience function to automatically build a PatternGenerator.
|
||||
|
||||
Args:
|
||||
key: Lookup key, usually the cell/pattern name
|
||||
tag: Unique tag for the source, used to disambiguate secondary patterns
|
||||
value: Callable which takes no arguments and generates the `Pattern` object
|
||||
secondary: If True, this pattern is not accessible for normal lookup, and is
|
||||
only used as a sub-component of other patterns if no non-secondary
|
||||
equivalent is available.
|
||||
"""
|
||||
pg = PatternGenerator(tag=tag, gen=value)
|
||||
if secondary:
|
||||
self.secondary[(key, tag)] = pg
|
||||
else:
|
||||
self.primary[key] = pg
|
||||
|
||||
def precache(self: L) -> L:
|
||||
"""
|
||||
Force all patterns into the cache
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for key in self.primary:
|
||||
_ = self.get_primary(key)
|
||||
for key2 in self.secondary:
|
||||
_ = self.get_secondary(*key2)
|
||||
return self
|
||||
|
||||
def add(self: L, other: L) -> L:
|
||||
"""
|
||||
Add keys from another library into this one.
|
||||
|
||||
There must be no conflicting keys.
|
||||
|
||||
Args:
|
||||
other: The library to insert keys from
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
conflicts = [key for key in other.primary
|
||||
if key in self.primary]
|
||||
if conflicts:
|
||||
raise LibraryError('Duplicate keys encountered in library merge: ' + pformat(conflicts))
|
||||
|
||||
conflicts2 = [key2 for key2 in other.secondary
|
||||
if key2 in self.secondary]
|
||||
if conflicts2:
|
||||
raise LibraryError('Duplicate secondary keys encountered in library merge: ' + pformat(conflicts2))
|
||||
|
||||
self.primary.update(other.primary)
|
||||
self.secondary.update(other.secondary)
|
||||
self.cache.update(other.cache)
|
||||
return self
|
||||
|
||||
def demote(self, key: str) -> None:
|
||||
"""
|
||||
Turn a primary pattern into a secondary one.
|
||||
It will no longer be accessible through [] indexing and will only be used to
|
||||
when referenced by other patterns from the same source, and only if no primary
|
||||
pattern with the same name exists.
|
||||
|
||||
Args:
|
||||
key: Lookup key, usually the cell/pattern name
|
||||
"""
|
||||
pg = self.primary[key]
|
||||
key2 = (key, pg.tag)
|
||||
self.secondary[key2] = pg
|
||||
if key in self.cache:
|
||||
self.cache[key2] = self.cache[key]
|
||||
del self[key]
|
||||
|
||||
def promote(self, key: str, tag: str) -> None:
|
||||
"""
|
||||
Turn a secondary pattern into a primary one.
|
||||
It will become accessible through [] indexing and will be used to satisfy any
|
||||
reference to a pattern with its key, regardless of tag.
|
||||
|
||||
Args:
|
||||
key: Lookup key, usually the cell/pattern name
|
||||
tag: Unique tag for identifying the pattern's source, used to disambiguate
|
||||
secondary patterns
|
||||
"""
|
||||
if key in self.primary:
|
||||
raise LibraryError(f'Promoting ({key}, {tag}), but {key} already exists in primary!')
|
||||
|
||||
key2 = (key, tag)
|
||||
pg = self.secondary[key2]
|
||||
self.primary[key] = pg
|
||||
if key2 in self.cache:
|
||||
self.cache[key] = self.cache[key2]
|
||||
del self.secondary[key2]
|
||||
del self.cache[key2]
|
||||
|
||||
|
||||
r"""
|
||||
# Add a filter for names which aren't added
|
||||
|
||||
- Registration:
|
||||
- scanned files (tag=filename, gen_fn[stream, {name: pos}])
|
||||
- generator functions (tag='fn?', gen_fn[params])
|
||||
- merge decision function (based on tag and cell name, can be "neither") ??? neither=keep both, load using same tag!
|
||||
- Load process:
|
||||
- file:
|
||||
- read single cell
|
||||
- check subpat identifiers, and load stuff recursively based on those. If not present, load from same file??
|
||||
- function:
|
||||
- generate cell
|
||||
- traverse and check if we should load any subcells from elsewhere. replace if so.
|
||||
* should fn generate subcells at all, or register those separately and have us control flow? maybe ask us and generate itself if not present?
|
||||
|
||||
- Scan all GDS files, save name -> (file, position). Keep the streams handy.
|
||||
- Merge all names. This requires subcell merge because we don't know hierarchy.
|
||||
- possibly include a "neither" option during merge, to deal with subcells. Means: just use parent's file.
|
||||
"""
|
48
masque/library/utils.py
Normal file
48
masque/library/utils.py
Normal file
@ -0,0 +1,48 @@
|
||||
from typing import Callable, TypeVar, Generic
|
||||
from functools import lru_cache
|
||||
|
||||
|
||||
Key = TypeVar('Key')
|
||||
Value = TypeVar('Value')
|
||||
|
||||
|
||||
class DeferredDict(dict, Generic[Key, Value]):
|
||||
"""
|
||||
This is a modified `dict` which is used to defer loading/generating
|
||||
values until they are accessed.
|
||||
|
||||
```
|
||||
bignum = my_slow_function() # slow function call, would like to defer this
|
||||
numbers = Library()
|
||||
numbers['big'] = my_slow_function # no slow function call here
|
||||
assert(bignum == numbers['big']) # first access is slow (function called)
|
||||
assert(bignum == numbers['big']) # second access is fast (result is cached)
|
||||
```
|
||||
|
||||
The `set_const` method is provided for convenience;
|
||||
`numbers['a'] = lambda: 10` is equivalent to `numbers.set_const('a', 10)`.
|
||||
"""
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
dict.__init__(self)
|
||||
self.update(*args, **kwargs)
|
||||
|
||||
def __setitem__(self, key: Key, value: Callable[[], Value]) -> None:
|
||||
cached_fn = lru_cache(maxsize=1)(value)
|
||||
dict.__setitem__(self, key, cached_fn)
|
||||
|
||||
def __getitem__(self, key: Key) -> Value:
|
||||
return dict.__getitem__(self, key)()
|
||||
|
||||
def update(self, *args, **kwargs) -> None:
|
||||
for k, v in dict(*args, **kwargs).items():
|
||||
self[k] = v
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return '<Library with keys ' + repr(set(self.keys())) + '>'
|
||||
|
||||
def set_const(self, key: Key, value: Value) -> None:
|
||||
"""
|
||||
Convenience function to avoid having to manually wrap
|
||||
constant values into callables.
|
||||
"""
|
||||
self[key] = lambda: value
|
@ -3,34 +3,36 @@
|
||||
"""
|
||||
|
||||
from typing import List, Callable, Tuple, Dict, Union, Set, Sequence, Optional, Type, overload
|
||||
from typing import MutableMapping, Iterable
|
||||
from typing import MutableMapping, Iterable, TypeVar, Any
|
||||
import copy
|
||||
import itertools
|
||||
import pickle
|
||||
from itertools import chain
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy
|
||||
import numpy # type: ignore
|
||||
from numpy import inf
|
||||
# .visualize imports matplotlib and matplotlib.collections
|
||||
|
||||
from .subpattern import SubPattern, subpattern_t
|
||||
from .repetition import GridRepetition
|
||||
from .subpattern import SubPattern
|
||||
from .shapes import Shape, Polygon
|
||||
from .label import Label
|
||||
from .utils import rotation_matrix_2d, vector2, normalize_mirror
|
||||
from .utils import rotation_matrix_2d, vector2, normalize_mirror, AutoSlots, annotations_t
|
||||
from .error import PatternError, PatternLockedError
|
||||
from .traits import LockableImpl, AnnotatableImpl, Scalable
|
||||
|
||||
|
||||
visitor_function_t = Callable[['Pattern', Tuple['Pattern'], Dict, numpy.ndarray], 'Pattern']
|
||||
|
||||
|
||||
class Pattern:
|
||||
P = TypeVar('P', bound='Pattern')
|
||||
|
||||
|
||||
class Pattern(LockableImpl, AnnotatableImpl, metaclass=AutoSlots):
|
||||
"""
|
||||
2D layout consisting of some set of shapes, labels, and references to other Pattern objects
|
||||
(via SubPattern and GridRepetition). Shapes are assumed to inherit from
|
||||
masque.shapes.Shape or provide equivalent functions.
|
||||
(via SubPattern). Shapes are assumed to inherit from masque.shapes.Shape or provide equivalent functions.
|
||||
"""
|
||||
__slots__ = ('shapes', 'labels', 'subpatterns', 'name', 'locked')
|
||||
__slots__ = ('shapes', 'labels', 'subpatterns', 'name')
|
||||
|
||||
shapes: List[Shape]
|
||||
""" List of all shapes in this Pattern.
|
||||
@ -40,26 +42,24 @@ class Pattern:
|
||||
labels: List[Label]
|
||||
""" List of all labels in this Pattern. """
|
||||
|
||||
subpatterns: List[subpattern_t]
|
||||
""" List of all objects referencing other patterns in this Pattern.
|
||||
Examples are SubPattern (gdsii "instances") or GridRepetition (gdsii "arrays")
|
||||
subpatterns: List[SubPattern]
|
||||
""" List of all references to other patterns (`SubPattern`s) in this `Pattern`.
|
||||
Multiple objects in this list may reference the same Pattern object
|
||||
(multiple instances of the same object).
|
||||
(i.e. multiple instances of the same object).
|
||||
"""
|
||||
|
||||
name: str
|
||||
""" A name for this pattern """
|
||||
|
||||
locked: bool
|
||||
""" When the pattern is locked, no changes may be made. """
|
||||
|
||||
def __init__(self,
|
||||
name: str = '',
|
||||
*,
|
||||
shapes: Sequence[Shape] = (),
|
||||
labels: Sequence[Label] = (),
|
||||
subpatterns: Sequence[subpattern_t] = (),
|
||||
subpatterns: Sequence[SubPattern] = (),
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Basic init; arguments get assigned to member variables.
|
||||
Non-list inputs for shapes and subpatterns get converted to lists.
|
||||
@ -71,7 +71,7 @@ class Pattern:
|
||||
name: An identifier for the Pattern
|
||||
locked: Whether to lock the pattern after construction
|
||||
"""
|
||||
object.__setattr__(self, 'locked', False)
|
||||
LockableImpl.unlock(self)
|
||||
if isinstance(shapes, list):
|
||||
self.shapes = shapes
|
||||
else:
|
||||
@ -87,31 +87,34 @@ class Pattern:
|
||||
else:
|
||||
self.subpatterns = list(subpatterns)
|
||||
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.name = name
|
||||
self.locked = locked
|
||||
self.set_locked(locked)
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if self.locked and name != 'locked':
|
||||
raise PatternLockedError()
|
||||
object.__setattr__(self, name, value)
|
||||
|
||||
def __copy__(self, memo: Dict = None) -> 'Pattern':
|
||||
def __copy__(self: P, memo: Dict = None) -> P:
|
||||
return Pattern(name=self.name,
|
||||
shapes=copy.deepcopy(self.shapes),
|
||||
labels=copy.deepcopy(self.labels),
|
||||
subpatterns=[copy.copy(sp) for sp in self.subpatterns],
|
||||
annotations=copy.deepcopy(self.annotations),
|
||||
locked=self.locked)
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Pattern':
|
||||
def __deepcopy__(self: P, memo: Dict = None) -> P:
|
||||
memo = {} if memo is None else memo
|
||||
new = Pattern(name=self.name,
|
||||
shapes=copy.deepcopy(self.shapes, memo),
|
||||
labels=copy.deepcopy(self.labels, memo),
|
||||
subpatterns=copy.deepcopy(self.subpatterns, memo),
|
||||
locked=self.locked)
|
||||
new = Pattern(
|
||||
name=self.name,
|
||||
shapes=copy.deepcopy(self.shapes, memo),
|
||||
labels=copy.deepcopy(self.labels, memo),
|
||||
subpatterns=copy.deepcopy(self.subpatterns, memo),
|
||||
annotations=copy.deepcopy(self.annotations, memo),
|
||||
locked=self.locked)
|
||||
return new
|
||||
|
||||
def append(self, other_pattern: 'Pattern') -> 'Pattern':
|
||||
def rename(self: P, name: str) -> P:
|
||||
self.name = name
|
||||
return self
|
||||
|
||||
def append(self: P, other_pattern: P) -> P:
|
||||
"""
|
||||
Appends all shapes, labels and subpatterns from other_pattern to self's shapes,
|
||||
labels, and supbatterns.
|
||||
@ -127,12 +130,12 @@ class Pattern:
|
||||
self.labels += other_pattern.labels
|
||||
return self
|
||||
|
||||
def subset(self,
|
||||
def subset(self: P,
|
||||
shapes_func: Callable[[Shape], bool] = None,
|
||||
labels_func: Callable[[Label], bool] = None,
|
||||
subpatterns_func: Callable[[subpattern_t], bool] = None,
|
||||
subpatterns_func: Callable[[SubPattern], bool] = None,
|
||||
recursive: bool = False,
|
||||
) -> 'Pattern':
|
||||
) -> P:
|
||||
"""
|
||||
Returns a Pattern containing only the entities (e.g. shapes) for which the
|
||||
given entity_func returns True.
|
||||
@ -152,7 +155,7 @@ class Pattern:
|
||||
A Pattern containing all the shapes and subpatterns for which the parameter
|
||||
functions return True
|
||||
"""
|
||||
def do_subset(src: Optional['Pattern']) -> Optional['Pattern']:
|
||||
def do_subset(src: Optional[P]) -> Optional[P]:
|
||||
if src is None:
|
||||
return None
|
||||
pat = Pattern(name=src.name)
|
||||
@ -172,10 +175,10 @@ class Pattern:
|
||||
assert(pat is not None)
|
||||
return pat
|
||||
|
||||
def apply(self,
|
||||
func: Callable[[Optional['Pattern']], Optional['Pattern']],
|
||||
memo: Optional[Dict[int, Optional['Pattern']]] = None,
|
||||
) -> Optional['Pattern']:
|
||||
def apply(self: P,
|
||||
func: Callable[[Optional[P]], Optional[P]],
|
||||
memo: Optional[Dict[int, Optional[P]]] = None,
|
||||
) -> Optional[P]:
|
||||
"""
|
||||
Recursively apply func() to this pattern and any pattern it references.
|
||||
func() is expected to take and return a Pattern.
|
||||
@ -215,13 +218,13 @@ class Pattern:
|
||||
pat = memo[pat_id]
|
||||
return pat
|
||||
|
||||
def dfs(self,
|
||||
def dfs(self: P,
|
||||
visit_before: visitor_function_t = None,
|
||||
visit_after: visitor_function_t = None,
|
||||
transform: Union[numpy.ndarray, bool, None] = False,
|
||||
memo: Optional[Dict] = None,
|
||||
hierarchy: Tuple['Pattern', ...] = (),
|
||||
) -> 'Pattern':
|
||||
hierarchy: Tuple[P, ...] = (),
|
||||
) -> P:
|
||||
"""
|
||||
Experimental convenience function.
|
||||
Performs a depth-first traversal of this pattern and its subpatterns.
|
||||
@ -277,7 +280,7 @@ class Pattern:
|
||||
if transform is not False:
|
||||
sign = numpy.ones(2)
|
||||
if transform[3]:
|
||||
sign[1] = -1
|
||||
sign[1] = -1
|
||||
xy = numpy.dot(rotation_matrix_2d(transform[2]), subpattern.offset * sign)
|
||||
mirror_x, angle = normalize_mirror(subpattern.mirrored)
|
||||
angle += subpattern.rotation
|
||||
@ -287,20 +290,23 @@ class Pattern:
|
||||
sp_transform = False
|
||||
|
||||
if subpattern.pattern is not None:
|
||||
subpattern.pattern = subpattern.pattern.dfs(visit_before=visit_before,
|
||||
visit_after=visit_after,
|
||||
transform=sp_transform,
|
||||
memo=memo,
|
||||
hierarchy=hierarchy + (self,))
|
||||
result = subpattern.pattern.dfs(visit_before=visit_before,
|
||||
visit_after=visit_after,
|
||||
transform=sp_transform,
|
||||
memo=memo,
|
||||
hierarchy=hierarchy + (self,))
|
||||
if result is not subpattern.pattern:
|
||||
# skip assignment to avoid PatternLockedError unless modified
|
||||
subpattern.pattern = result
|
||||
|
||||
if visit_after is not None:
|
||||
pat = visit_after(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
|
||||
return pat
|
||||
|
||||
def polygonize(self,
|
||||
def polygonize(self: P,
|
||||
poly_num_points: Optional[int] = None,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
) -> 'Pattern':
|
||||
) -> P:
|
||||
"""
|
||||
Calls `.to_polygons(...)` on all the shapes in this Pattern and any referenced patterns,
|
||||
replacing them with the returned polygons.
|
||||
@ -317,18 +323,18 @@ class Pattern:
|
||||
self
|
||||
"""
|
||||
old_shapes = self.shapes
|
||||
self.shapes = list(itertools.chain.from_iterable(
|
||||
(shape.to_polygons(poly_num_points, poly_max_arclen)
|
||||
for shape in old_shapes)))
|
||||
self.shapes = list(chain.from_iterable(
|
||||
(shape.to_polygons(poly_num_points, poly_max_arclen)
|
||||
for shape in old_shapes)))
|
||||
for subpat in self.subpatterns:
|
||||
if subpat.pattern is not None:
|
||||
subpat.pattern.polygonize(poly_num_points, poly_max_arclen)
|
||||
return self
|
||||
|
||||
def manhattanize(self,
|
||||
def manhattanize(self: P,
|
||||
grid_x: numpy.ndarray,
|
||||
grid_y: numpy.ndarray,
|
||||
) -> 'Pattern':
|
||||
) -> P:
|
||||
"""
|
||||
Calls `.polygonize()` and `.flatten()` on the pattern, then calls `.manhattanize()` on all the
|
||||
resulting shapes, replacing them with the returned Manhattan polygons.
|
||||
@ -343,15 +349,15 @@ class Pattern:
|
||||
|
||||
self.polygonize().flatten()
|
||||
old_shapes = self.shapes
|
||||
self.shapes = list(itertools.chain.from_iterable(
|
||||
(shape.manhattanize(grid_x, grid_y) for shape in old_shapes)))
|
||||
self.shapes = list(chain.from_iterable(
|
||||
(shape.manhattanize(grid_x, grid_y) for shape in old_shapes)))
|
||||
return self
|
||||
|
||||
def subpatternize(self,
|
||||
def subpatternize(self: P,
|
||||
recursive: bool = True,
|
||||
norm_value: int = int(1e6),
|
||||
exclude_types: Tuple[Type] = (Polygon,)
|
||||
) -> 'Pattern':
|
||||
) -> P:
|
||||
"""
|
||||
Iterates through this `Pattern` and all referenced `Pattern`s. Within each `Pattern`, it iterates
|
||||
over all shapes, calling `.normalized_form(norm_value)` on them to retrieve a scale-,
|
||||
@ -407,9 +413,8 @@ class Pattern:
|
||||
|
||||
for i, values in shape_table[label][1]:
|
||||
(offset, scale, rotation, mirror_x, dose) = values
|
||||
subpat = SubPattern(pattern=pat, offset=offset, scale=scale,
|
||||
rotation=rotation, dose=dose, mirrored=(mirror_x, False))
|
||||
self.subpatterns.append(subpat)
|
||||
self.addsp(pattern=pat, offset=offset, scale=scale,
|
||||
rotation=rotation, dose=dose, mirrored=(mirror_x, False))
|
||||
shapes_to_remove.append(i)
|
||||
|
||||
# Remove any shapes for which we have created subpatterns.
|
||||
@ -441,28 +446,31 @@ class Pattern:
|
||||
pass
|
||||
|
||||
def referenced_patterns_by_id(self,
|
||||
include_none: bool = False
|
||||
include_none: bool = False,
|
||||
recursive: bool = True,
|
||||
) -> Union[Dict[int, Optional['Pattern']],
|
||||
Dict[int, 'Pattern']]:
|
||||
|
||||
"""
|
||||
Create a dictionary with `{id(pat): pat}` for all Pattern objects referenced by this
|
||||
Pattern (operates recursively on all referenced Patterns as well)
|
||||
Pattern (by default, operates recursively on all referenced Patterns as well).
|
||||
|
||||
Args:
|
||||
include_none: If `True`, references to `None` will be included. Default `False`.
|
||||
recursive: If `True`, operates recursively on all referenced patterns. Default `True`.
|
||||
|
||||
Returns:
|
||||
Dictionary with `{id(pat): pat}` for all referenced Pattern objects
|
||||
"""
|
||||
ids: Dict[int, Optional['Pattern']] = {}
|
||||
for subpat in self.subpatterns:
|
||||
if id(subpat.pattern) not in ids:
|
||||
if subpat.pattern is not None:
|
||||
ids[id(subpat.pattern)] = subpat.pattern
|
||||
ids.update(subpat.pattern.referenced_patterns_by_id())
|
||||
elif include_none:
|
||||
ids[id(subpat.pattern)] = subpat.pattern
|
||||
pat = subpat.pattern
|
||||
if id(pat) in ids:
|
||||
continue
|
||||
if include_none or pat is not None:
|
||||
ids[id(pat)] = pat
|
||||
if recursive and pat is not None:
|
||||
ids.update(pat.referenced_patterns_by_id())
|
||||
return ids
|
||||
|
||||
def referenced_patterns_by_name(self, **kwargs) -> List[Tuple[Optional[str], Optional['Pattern']]]:
|
||||
@ -483,6 +491,31 @@ class Pattern:
|
||||
pat_list = [(p.name if p is not None else None, p) for p in pats_by_id.values()]
|
||||
return pat_list
|
||||
|
||||
def subpatterns_by_id(self,
|
||||
include_none: bool = False,
|
||||
recursive: bool = True,
|
||||
) -> Dict[int, List[SubPattern]]:
|
||||
"""
|
||||
Create a dictionary which maps `{id(referenced_pattern): [subpattern0, ...]}`
|
||||
for all SubPattern objects referenced by this Pattern (by default, operates
|
||||
recursively on all referenced Patterns as well).
|
||||
|
||||
Args:
|
||||
include_none: If `True`, references to `None` will be included. Default `False`.
|
||||
recursive: If `True`, operates recursively on all referenced patterns. Default `True`.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping each pattern id to a list of subpattern objects referencing the pattern.
|
||||
"""
|
||||
ids: Dict[int, List[SubPattern]] = defaultdict(list)
|
||||
for subpat in self.subpatterns:
|
||||
pat = subpat.pattern
|
||||
if include_none or pat is not None:
|
||||
ids[id(pat)].append(subpat)
|
||||
if recursive and pat is not None:
|
||||
ids.update(pat.subpatterns_by_id(include_none=include_none))
|
||||
return dict(ids)
|
||||
|
||||
def get_bounds(self) -> Union[numpy.ndarray, None]:
|
||||
"""
|
||||
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
||||
@ -492,13 +525,12 @@ class Pattern:
|
||||
Returns:
|
||||
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
||||
"""
|
||||
entries = self.shapes + self.subpatterns + self.labels
|
||||
if not entries:
|
||||
if self.is_empty():
|
||||
return None
|
||||
|
||||
min_bounds = numpy.array((+inf, +inf))
|
||||
max_bounds = numpy.array((-inf, -inf))
|
||||
for entry in entries:
|
||||
for entry in chain(self.shapes, self.subpatterns, self.labels):
|
||||
bounds = entry.get_bounds()
|
||||
if bounds is None:
|
||||
continue
|
||||
@ -509,7 +541,7 @@ class Pattern:
|
||||
else:
|
||||
return numpy.vstack((min_bounds, max_bounds))
|
||||
|
||||
def flatten(self) -> 'Pattern':
|
||||
def flatten(self: P) -> P:
|
||||
"""
|
||||
Removes all subpatterns and adds equivalent shapes.
|
||||
|
||||
@ -545,7 +577,50 @@ class Pattern:
|
||||
self.append(p)
|
||||
return self
|
||||
|
||||
def translate_elements(self, offset: vector2) -> 'Pattern':
|
||||
def wrap_repeated_shapes(self: P,
|
||||
name_func: Callable[['Pattern', Union[Shape, Label]], str] = lambda p, s: '_repetition',
|
||||
recursive: bool = True,
|
||||
) -> P:
|
||||
"""
|
||||
Wraps all shapes and labels with a non-`None` `repetition` attribute
|
||||
into a `SubPattern`/`Pattern` combination, and applies the `repetition`
|
||||
to each `SubPattern` instead of its contained shape.
|
||||
|
||||
Args:
|
||||
name_func: Function f(this_pattern, shape) which generates a name for the
|
||||
wrapping pattern. Default always returns '_repetition'.
|
||||
recursive: If `True`, this function is also applied to all referenced patterns
|
||||
recursively. Default `True`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
def do_wrap(pat: Optional[Pattern]) -> Optional[Pattern]:
|
||||
if pat is None:
|
||||
return pat
|
||||
|
||||
for shape in pat.shapes:
|
||||
if shape.repetition is None:
|
||||
continue
|
||||
pat.addsp(Pattern(name_func(pat, shape), shapes=[shape]))
|
||||
shape.repetition = None
|
||||
|
||||
for label in self.labels:
|
||||
if label.repetition is None:
|
||||
continue
|
||||
pat.addsp(Pattern(name_func(pat, shape), labels=[label]))
|
||||
label.repetition = None
|
||||
|
||||
return pat
|
||||
|
||||
if recursive:
|
||||
self.apply(do_wrap)
|
||||
else:
|
||||
do_wrap(self)
|
||||
|
||||
return self
|
||||
|
||||
def translate_elements(self: P, offset: vector2) -> P:
|
||||
"""
|
||||
Translates all shapes, label, and subpatterns by the given offset.
|
||||
|
||||
@ -555,11 +630,11 @@ class Pattern:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns + self.labels:
|
||||
for entry in chain(self.shapes, self.subpatterns, self.labels):
|
||||
entry.translate(offset)
|
||||
return self
|
||||
|
||||
def scale_elements(self, c: float) -> 'Pattern':
|
||||
def scale_elements(self: P, c: float) -> P:
|
||||
""""
|
||||
Scales all shapes and subpatterns by the given value.
|
||||
|
||||
@ -569,11 +644,11 @@ class Pattern:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
for entry in chain(self.shapes, self.subpatterns):
|
||||
entry.scale_by(c)
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> 'Pattern':
|
||||
def scale_by(self: P, c: float) -> P:
|
||||
"""
|
||||
Scale this Pattern by the given value
|
||||
(all shapes and subpatterns and their offsets are scaled)
|
||||
@ -584,14 +659,15 @@ class Pattern:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
entry: Scalable
|
||||
for entry in chain(self.shapes, self.subpatterns):
|
||||
entry.offset *= c
|
||||
entry.scale_by(c)
|
||||
for label in self.labels:
|
||||
label.offset *= c
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'Pattern':
|
||||
def rotate_around(self: P, pivot: vector2, rotation: float) -> P:
|
||||
"""
|
||||
Rotate the Pattern around the a location.
|
||||
|
||||
@ -609,7 +685,7 @@ class Pattern:
|
||||
self.translate_elements(+pivot)
|
||||
return self
|
||||
|
||||
def rotate_element_centers(self, rotation: float) -> 'Pattern':
|
||||
def rotate_element_centers(self: P, rotation: float) -> P:
|
||||
"""
|
||||
Rotate the offsets of all shapes, labels, and subpatterns around (0, 0)
|
||||
|
||||
@ -619,11 +695,11 @@ class Pattern:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns + self.labels:
|
||||
for entry in chain(self.shapes, self.subpatterns, self.labels):
|
||||
entry.offset = numpy.dot(rotation_matrix_2d(rotation), entry.offset)
|
||||
return self
|
||||
|
||||
def rotate_elements(self, rotation: float) -> 'Pattern':
|
||||
def rotate_elements(self: P, rotation: float) -> P:
|
||||
"""
|
||||
Rotate each shape and subpattern around its center (offset)
|
||||
|
||||
@ -633,11 +709,11 @@ class Pattern:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
for entry in chain(self.shapes, self.subpatterns):
|
||||
entry.rotate(rotation)
|
||||
return self
|
||||
|
||||
def mirror_element_centers(self, axis: int) -> 'Pattern':
|
||||
def mirror_element_centers(self: P, axis: int) -> P:
|
||||
"""
|
||||
Mirror the offsets of all shapes, labels, and subpatterns across an axis
|
||||
|
||||
@ -648,11 +724,11 @@ class Pattern:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns + self.labels:
|
||||
for entry in chain(self.shapes, self.subpatterns, self.labels):
|
||||
entry.offset[axis - 1] *= -1
|
||||
return self
|
||||
|
||||
def mirror_elements(self, axis: int) -> 'Pattern':
|
||||
def mirror_elements(self: P, axis: int) -> P:
|
||||
"""
|
||||
Mirror each shape and subpattern across an axis, relative to its
|
||||
offset
|
||||
@ -664,11 +740,11 @@ class Pattern:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
for entry in chain(self.shapes, self.subpatterns):
|
||||
entry.mirror(axis)
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Pattern':
|
||||
def mirror(self: P, axis: int) -> P:
|
||||
"""
|
||||
Mirror the Pattern across an axis
|
||||
|
||||
@ -683,7 +759,7 @@ class Pattern:
|
||||
self.mirror_element_centers(axis)
|
||||
return self
|
||||
|
||||
def scale_element_doses(self, c: float) -> 'Pattern':
|
||||
def scale_element_doses(self: P, c: float) -> P:
|
||||
"""
|
||||
Multiply all shape and subpattern doses by a factor
|
||||
|
||||
@ -693,11 +769,11 @@ class Pattern:
|
||||
Return:
|
||||
self
|
||||
"""
|
||||
for entry in self.shapes + self.subpatterns:
|
||||
for entry in chain(self.shapes, self.subpatterns):
|
||||
entry.dose *= c
|
||||
return self
|
||||
|
||||
def copy(self) -> 'Pattern':
|
||||
def copy(self: P) -> P:
|
||||
"""
|
||||
Return a copy of the Pattern, deep-copying shapes and copying subpattern
|
||||
entries, but not deep-copying any referenced patterns.
|
||||
@ -709,7 +785,7 @@ class Pattern:
|
||||
"""
|
||||
return copy.copy(self)
|
||||
|
||||
def deepcopy(self) -> 'Pattern':
|
||||
def deepcopy(self: P) -> P:
|
||||
"""
|
||||
Convenience method for `copy.deepcopy(pattern)`
|
||||
|
||||
@ -723,11 +799,26 @@ class Pattern:
|
||||
Returns:
|
||||
True if the pattern is contains no shapes, labels, or subpatterns.
|
||||
"""
|
||||
return (len(self.subpatterns) == 0 and
|
||||
len(self.shapes) == 0 and
|
||||
len(self.labels) == 0)
|
||||
return (len(self.subpatterns) == 0
|
||||
and len(self.shapes) == 0
|
||||
and len(self.labels) == 0)
|
||||
|
||||
def lock(self) -> 'Pattern':
|
||||
def addsp(self, *args: Dict[str, Any], **kwargs: Dict[str, Any]):
|
||||
"""
|
||||
Convenience function which constructs a subpattern object and adds it
|
||||
to this pattern.
|
||||
|
||||
Args:
|
||||
*args: Passed to SubPattern()
|
||||
**kwargs: Passed to SubPattern()
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.subpatterns.append(SubPattern(*args, **kwargs))
|
||||
return self
|
||||
|
||||
def lock(self: P) -> P:
|
||||
"""
|
||||
Lock the pattern, raising an exception if it is modified.
|
||||
Also see `deeplock()`.
|
||||
@ -735,26 +826,28 @@ class Pattern:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.shapes = tuple(self.shapes)
|
||||
self.labels = tuple(self.labels)
|
||||
self.subpatterns = tuple(self.subpatterns)
|
||||
object.__setattr__(self, 'locked', True)
|
||||
if not self.locked:
|
||||
self.shapes = tuple(self.shapes)
|
||||
self.labels = tuple(self.labels)
|
||||
self.subpatterns = tuple(self.subpatterns)
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Pattern':
|
||||
def unlock(self: P) -> P:
|
||||
"""
|
||||
Unlock the pattern
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
object.__setattr__(self, 'locked', False)
|
||||
self.shapes = list(self.shapes)
|
||||
self.labels = list(self.labels)
|
||||
self.subpatterns = list(self.subpatterns)
|
||||
if self.locked:
|
||||
LockableImpl.unlock(self)
|
||||
self.shapes = list(self.shapes)
|
||||
self.labels = list(self.labels)
|
||||
self.subpatterns = list(self.subpatterns)
|
||||
return self
|
||||
|
||||
def deeplock(self) -> 'Pattern':
|
||||
def deeplock(self: P) -> P:
|
||||
"""
|
||||
Recursively lock the pattern, all referenced shapes, subpatterns, and labels.
|
||||
|
||||
@ -762,13 +855,13 @@ class Pattern:
|
||||
self
|
||||
"""
|
||||
self.lock()
|
||||
for ss in self.shapes + self.labels:
|
||||
for ss in chain(self.shapes, self.labels):
|
||||
ss.lock()
|
||||
for sp in self.subpatterns:
|
||||
sp.deeplock()
|
||||
return self
|
||||
|
||||
def deepunlock(self) -> 'Pattern':
|
||||
def deepunlock(self: P) -> P:
|
||||
"""
|
||||
Recursively unlock the pattern, all referenced shapes, subpatterns, and labels.
|
||||
|
||||
@ -779,7 +872,7 @@ class Pattern:
|
||||
self
|
||||
"""
|
||||
self.unlock()
|
||||
for ss in self.shapes + self.labels:
|
||||
for ss in chain(self.shapes, self.labels):
|
||||
ss.unlock()
|
||||
for sp in self.subpatterns:
|
||||
sp.deepunlock()
|
||||
@ -819,7 +912,8 @@ class Pattern:
|
||||
offset: vector2 = (0., 0.),
|
||||
line_color: str = 'k',
|
||||
fill_color: str = 'none',
|
||||
overdraw: bool = False):
|
||||
overdraw: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Draw a picture of the Pattern and wait for the user to inspect it
|
||||
|
||||
@ -835,8 +929,8 @@ class Pattern:
|
||||
overdraw: Whether to create a new figure or draw on a pre-existing one
|
||||
"""
|
||||
# TODO: add text labels to visualize()
|
||||
from matplotlib import pyplot
|
||||
import matplotlib.collections
|
||||
from matplotlib import pyplot # type: ignore
|
||||
import matplotlib.collections # type: ignore
|
||||
|
||||
offset = numpy.array(offset, dtype=float)
|
||||
|
||||
@ -878,12 +972,9 @@ class Pattern:
|
||||
A filtered list in which no pattern is referenced by any other pattern.
|
||||
"""
|
||||
def get_children(pat: Pattern, memo: Set) -> Set:
|
||||
if pat in memo:
|
||||
return memo
|
||||
|
||||
children = set(sp.pattern for sp in pat.subpatterns if sp.pattern is not None)
|
||||
new_children = children - memo
|
||||
memo |= children
|
||||
memo |= new_children
|
||||
|
||||
for child_pat in new_children:
|
||||
memo |= get_children(child_pat, memo)
|
||||
|
@ -1,81 +0,0 @@
|
||||
from typing import List, Tuple, Callable, TypeVar, Optional
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import copy
|
||||
import numpy
|
||||
|
||||
from ..error import PatternError, PatternLockedError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Positionable')
|
||||
|
||||
|
||||
class Positionable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all positionable entities
|
||||
"""
|
||||
__slots__ = ('_offset',)
|
||||
|
||||
_offset: numpy.ndarray
|
||||
""" `[x_offset, y_offset]` """
|
||||
|
||||
# --- Abstract methods
|
||||
@abstractmethod
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
"""
|
||||
Returns `[[x_min, y_min], [x_max, y_max]]` which specify a minimal bounding box for the entity.
|
||||
"""
|
||||
pass
|
||||
|
||||
# ---- Non-abstract properties
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
"""
|
||||
[x, y] offset
|
||||
"""
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten()
|
||||
|
||||
|
||||
# ---- Non-abstract methods
|
||||
def translate(self: T, offset: vector2) -> T:
|
||||
"""
|
||||
Translate the entity by the given offset
|
||||
|
||||
Args:
|
||||
offset: [x_offset, y,offset]
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def lock(self: T) -> T:
|
||||
"""
|
||||
Lock the entity, disallowing further changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset.flags.writeable = False
|
||||
return self
|
||||
|
||||
def unlock(self: T) -> T:
|
||||
"""
|
||||
Unlock the entity
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset.flags.writeable = True
|
||||
return self
|
0
masque/py.typed
Normal file
0
masque/py.typed
Normal file
@ -1,78 +1,47 @@
|
||||
"""
|
||||
Repetitions provides support for efficiently nesting multiple identical
|
||||
instances of a Pattern in the same parent Pattern.
|
||||
Repetitions provide support for efficiently representing multiple identical
|
||||
instances of an object .
|
||||
"""
|
||||
|
||||
from typing import Union, List, Dict, Tuple, Optional, Sequence, TYPE_CHECKING, Any
|
||||
from typing import Union, Dict, Optional, Sequence, Any
|
||||
import copy
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
import numpy # type: ignore
|
||||
|
||||
from .error import PatternError, PatternLockedError
|
||||
from .utils import is_scalar, rotation_matrix_2d, vector2
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from . import Pattern
|
||||
from .error import PatternError
|
||||
from .utils import rotation_matrix_2d, vector2, AutoSlots
|
||||
from .traits import LockableImpl, Copyable, Scalable, Rotatable, Mirrorable
|
||||
|
||||
|
||||
# TODO need top-level comment about what order rotation/scale/offset/mirror/array are applied
|
||||
|
||||
class GridRepetition:
|
||||
class Repetition(Copyable, Rotatable, Mirrorable, Scalable, metaclass=ABCMeta):
|
||||
"""
|
||||
GridRepetition provides support for efficiently embedding multiple copies of a `Pattern`
|
||||
into another `Pattern` at regularly-spaced offsets.
|
||||
|
||||
Note that rotation, scaling, and mirroring are applied to individual instances of the
|
||||
pattern, not to the grid vectors.
|
||||
|
||||
The order of operations is
|
||||
1. A single refernce instance to the target pattern is mirrored
|
||||
2. The single instance is rotated.
|
||||
3. The instance is scaled by the scaling factor.
|
||||
4. The instance is shifted by the provided offset
|
||||
(no mirroring/scaling/rotation is applied to the offset).
|
||||
5. Additional copies of the instance will appear at coordinates specified by
|
||||
`(offset + aa * a_vector + bb * b_vector)`, with `aa in range(0, a_count)`
|
||||
and `bb in range(0, b_count)`. All instance locations remain unaffected by
|
||||
mirroring/scaling/rotation, though each instance's data will be transformed
|
||||
relative to the instance's location (i.e. relative to the contained pattern's
|
||||
(0, 0) point).
|
||||
Interface common to all objects which specify repetitions
|
||||
"""
|
||||
__slots__ = ('_pattern',
|
||||
'_offset',
|
||||
'_rotation',
|
||||
'_dose',
|
||||
'_scale',
|
||||
'_mirrored',
|
||||
'_a_vector',
|
||||
__slots__ = ()
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def displacements(self) -> numpy.ndarray:
|
||||
"""
|
||||
An Nx2 ndarray specifying all offsets generated by this repetition
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
|
||||
"""
|
||||
`Grid` describes a 2D grid formed by two basis vectors and two 'counts' (sizes).
|
||||
|
||||
The second basis vector and count (`b_vector` and `b_count`) may be omitted,
|
||||
which makes the grid describe a 1D array.
|
||||
|
||||
Note that the offsets in either the 2D or 1D grids do not have to be axis-aligned.
|
||||
"""
|
||||
__slots__ = ('_a_vector',
|
||||
'_b_vector',
|
||||
'_a_count',
|
||||
'_b_count',
|
||||
'identifier',
|
||||
'locked')
|
||||
|
||||
_pattern: Optional['Pattern']
|
||||
""" The `Pattern` being instanced """
|
||||
|
||||
_offset: numpy.ndarray
|
||||
""" (x, y) offset for the base instance """
|
||||
|
||||
_dose: float
|
||||
""" Scaling factor applied to the dose """
|
||||
|
||||
_rotation: float
|
||||
""" Rotation of the individual instances in the grid (not the grid vectors).
|
||||
Radians, counterclockwise.
|
||||
"""
|
||||
|
||||
_scale: float
|
||||
""" Scaling factor applied to individual instances in the grid (not the grid vectors) """
|
||||
|
||||
_mirrored: numpy.ndarray # ndarray[bool]
|
||||
""" Whether to mirror individual instances across the x and y axes
|
||||
(Applies to individual instances in the grid, not the grid vectors)
|
||||
"""
|
||||
'_b_count')
|
||||
|
||||
_a_vector: numpy.ndarray
|
||||
""" Vector `[x, y]` specifying the first lattice vector of the grid.
|
||||
@ -91,28 +60,14 @@ class GridRepetition:
|
||||
_b_count: int
|
||||
""" Number of instances along the direction specified by the `b_vector` """
|
||||
|
||||
identifier: Tuple[Any, ...]
|
||||
""" Arbitrary identifier, used internally by some `masque` functions. """
|
||||
|
||||
locked: bool
|
||||
""" If `True`, disallows changes to the GridRepetition """
|
||||
|
||||
def __init__(self,
|
||||
pattern: Optional['Pattern'],
|
||||
a_vector: numpy.ndarray,
|
||||
a_count: int,
|
||||
b_vector: Optional[numpy.ndarray] = None,
|
||||
b_count: Optional[int] = 1,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
mirrored: Optional[Sequence[bool]] = None,
|
||||
dose: float = 1.0,
|
||||
scale: float = 1.0,
|
||||
locked: bool = False,
|
||||
identifier: Tuple[Any, ...] = ()):
|
||||
locked: bool = False,):
|
||||
"""
|
||||
Args:
|
||||
pattern: Pattern to reference.
|
||||
a_vector: First lattice vector, of the form `[x, y]`.
|
||||
Specifies center-to-center spacing between adjacent instances.
|
||||
a_count: Number of elements in the a_vector direction.
|
||||
@ -121,14 +76,7 @@ class GridRepetition:
|
||||
Can be omitted when specifying a 1D array.
|
||||
b_count: Number of elements in the `b_vector` direction.
|
||||
Should be omitted if `b_vector` was omitted.
|
||||
offset: (x, y) offset applied to all instances.
|
||||
rotation: Rotation (radians, counterclockwise) applied to each instance.
|
||||
Relative to each instance's (0, 0).
|
||||
mirrored: Whether to mirror individual instances across the x and y axes.
|
||||
dose: Scaling factor applied to the dose.
|
||||
scale: Scaling factor applied to the instances' geometry.
|
||||
locked: Whether the `GridRepetition` is locked after initialization.
|
||||
identifier: Arbitrary tuple, used internally by some `masque` functions.
|
||||
locked: Whether the `Grid` is locked after initialization.
|
||||
|
||||
Raises:
|
||||
PatternError if `b_*` inputs conflict with each other
|
||||
@ -144,132 +92,31 @@ class GridRepetition:
|
||||
b_vector = numpy.array([0.0, 0.0])
|
||||
|
||||
if a_count < 1:
|
||||
raise PatternError('Repetition has too-small a_count: '
|
||||
'{}'.format(a_count))
|
||||
raise PatternError(f'Repetition has too-small a_count: {a_count}')
|
||||
if b_count < 1:
|
||||
raise PatternError('Repetition has too-small b_count: '
|
||||
'{}'.format(b_count))
|
||||
raise PatternError(f'Repetition has too-small b_count: {b_count}')
|
||||
|
||||
object.__setattr__(self, 'locked', False)
|
||||
self.a_vector = a_vector
|
||||
self.b_vector = b_vector
|
||||
self.a_count = a_count
|
||||
self.b_count = b_count
|
||||
|
||||
self.identifier = identifier
|
||||
self.pattern = pattern
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.dose = dose
|
||||
self.scale = scale
|
||||
if mirrored is None:
|
||||
mirrored = [False, False]
|
||||
self.mirrored = mirrored
|
||||
self.locked = locked
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if self.locked and name != 'locked':
|
||||
raise PatternLockedError()
|
||||
object.__setattr__(self, name, value)
|
||||
|
||||
def __copy__(self) -> 'GridRepetition':
|
||||
new = GridRepetition(pattern=self.pattern,
|
||||
a_vector=self.a_vector.copy(),
|
||||
b_vector=copy.copy(self.b_vector),
|
||||
a_count=self.a_count,
|
||||
b_count=self.b_count,
|
||||
offset=self.offset.copy(),
|
||||
rotation=self.rotation,
|
||||
dose=self.dose,
|
||||
scale=self.scale,
|
||||
mirrored=self.mirrored.copy(),
|
||||
locked=self.locked)
|
||||
def __copy__(self) -> 'Grid':
|
||||
new = Grid(a_vector=self.a_vector.copy(),
|
||||
b_vector=copy.copy(self.b_vector),
|
||||
a_count=self.a_count,
|
||||
b_count=self.b_count,
|
||||
locked=self.locked)
|
||||
return new
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'GridRepetition':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Grid':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new.pattern = copy.deepcopy(self.pattern, memo)
|
||||
new.locked = self.locked
|
||||
return new
|
||||
|
||||
# pattern property
|
||||
@property
|
||||
def pattern(self) -> Optional['Pattern']:
|
||||
return self._pattern
|
||||
|
||||
@pattern.setter
|
||||
def pattern(self, val: Optional['Pattern']):
|
||||
from .pattern import Pattern
|
||||
if val is not None and not isinstance(val, Pattern):
|
||||
raise PatternError('Provided pattern {} is not a Pattern object or None!'.format(val))
|
||||
self._pattern = val
|
||||
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if self.locked:
|
||||
raise PatternLockedError()
|
||||
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten().astype(float)
|
||||
|
||||
# dose property
|
||||
@property
|
||||
def dose(self) -> float:
|
||||
return self._dose
|
||||
|
||||
@dose.setter
|
||||
def dose(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Dose must be a scalar')
|
||||
if not val >= 0:
|
||||
raise PatternError('Dose must be non-negative')
|
||||
self._dose = val
|
||||
|
||||
# scale property
|
||||
@property
|
||||
def scale(self) -> float:
|
||||
return self._scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Scale must be a scalar')
|
||||
if not val > 0:
|
||||
raise PatternError('Scale must be positive')
|
||||
self._scale = val
|
||||
|
||||
# Rotation property [ccw]
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> numpy.ndarray: # ndarray[bool]
|
||||
return self._mirrored
|
||||
|
||||
@mirrored.setter
|
||||
def mirrored(self, val: Sequence[bool]):
|
||||
if is_scalar(val):
|
||||
raise PatternError('Mirrored must be a 2-element list of booleans')
|
||||
self._mirrored = numpy.array(val, dtype=bool, copy=True)
|
||||
|
||||
# a_vector property
|
||||
@property
|
||||
def a_vector(self) -> numpy.ndarray:
|
||||
@ -320,71 +167,15 @@ class GridRepetition:
|
||||
raise PatternError('b_count must be convertable to an int!')
|
||||
self._b_count = int(val)
|
||||
|
||||
def as_pattern(self) -> 'Pattern':
|
||||
@property
|
||||
def displacements(self) -> numpy.ndarray:
|
||||
aa, bb = numpy.meshgrid(numpy.arange(self.a_count), numpy.arange(self.b_count), indexing='ij')
|
||||
return (aa.flatten()[:, None] * self.a_vector[None, :]
|
||||
+ bb.flatten()[:, None] * self.b_vector[None, :]) # noqa
|
||||
|
||||
def rotate(self, rotation: float) -> 'Grid':
|
||||
"""
|
||||
Returns a copy of self.pattern which has been scaled, rotated, repeated, etc.
|
||||
etc. according to this `GridRepetition`'s properties.
|
||||
|
||||
Returns:
|
||||
A copy of self.pattern which has been scaled, rotated, repeated, etc.
|
||||
etc. according to this `GridRepetition`'s properties.
|
||||
"""
|
||||
assert(self.pattern is not None)
|
||||
patterns = []
|
||||
|
||||
for a in range(self.a_count):
|
||||
for b in range(self.b_count):
|
||||
offset = a * self.a_vector + b * self.b_vector
|
||||
newPat = self.pattern.deepcopy().deepunlock()
|
||||
newPat.translate_elements(offset)
|
||||
patterns.append(newPat)
|
||||
|
||||
combined = patterns[0]
|
||||
for p in patterns[1:]:
|
||||
combined.append(p)
|
||||
|
||||
combined.scale_by(self.scale)
|
||||
[combined.mirror(ax) for ax, do in enumerate(self.mirrored) if do]
|
||||
combined.rotate_around((0.0, 0.0), self.rotation)
|
||||
combined.translate_elements(self.offset)
|
||||
combined.scale_element_doses(self.dose)
|
||||
|
||||
return combined
|
||||
|
||||
def translate(self, offset: vector2) -> 'GridRepetition':
|
||||
"""
|
||||
Translate by the given offset
|
||||
|
||||
Args:
|
||||
offset: `[x, y]` to translate by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'GridRepetition':
|
||||
"""
|
||||
Rotate the array around a point
|
||||
|
||||
Args:
|
||||
pivot: Point `[x, y]` to rotate around
|
||||
rotation: Angle to rotate by (counterclockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.rotate(rotation)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
def rotate(self, rotation: float) -> 'GridRepetition':
|
||||
"""
|
||||
Rotate around (0, 0)
|
||||
Rotate lattice vectors (around (0, 0))
|
||||
|
||||
Args:
|
||||
rotation: Angle to rotate by (counterclockwise, radians)
|
||||
@ -392,15 +183,179 @@ class GridRepetition:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.rotate_elements(rotation)
|
||||
self.a_vector = numpy.dot(rotation_matrix_2d(rotation), self.a_vector)
|
||||
if self.b_vector is not None:
|
||||
self.b_vector = numpy.dot(rotation_matrix_2d(rotation), self.b_vector)
|
||||
return self
|
||||
|
||||
def rotate_elements(self, rotation: float) -> 'GridRepetition':
|
||||
def mirror(self, axis: int) -> 'Grid':
|
||||
"""
|
||||
Rotate each element around its origin
|
||||
Mirror the Grid across an axis.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across.
|
||||
(0: mirror across x-axis, 1: mirror across y-axis)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.a_vector[1 - axis] *= -1
|
||||
if self.b_vector is not None:
|
||||
self.b_vector[1 - axis] *= -1
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> Optional[numpy.ndarray]:
|
||||
"""
|
||||
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
||||
extent of the `Grid` in each dimension.
|
||||
|
||||
Returns:
|
||||
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
||||
"""
|
||||
a_extent = self.a_vector * self.a_count
|
||||
b_extent = self.b_vector * self.b_count if self.b_count != 0 else 0
|
||||
|
||||
corners = ((0, 0), a_extent, b_extent, a_extent + b_extent)
|
||||
xy_min = numpy.min(corners, axis=0)
|
||||
xy_max = numpy.max(corners, axis=0)
|
||||
return numpy.array((xy_min, xy_max))
|
||||
|
||||
def scale_by(self, c: float) -> 'Grid':
|
||||
"""
|
||||
Scale the Grid by a factor
|
||||
|
||||
Args:
|
||||
c: scaling factor
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.a_vector *= c
|
||||
if self.b_vector is not None:
|
||||
self.b_vector *= c
|
||||
return self
|
||||
|
||||
def lock(self) -> 'Grid':
|
||||
"""
|
||||
Lock the `Grid`, disallowing changes.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.a_vector.flags.writeable = False
|
||||
if self.b_vector is not None:
|
||||
self.b_vector.flags.writeable = False
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Grid':
|
||||
"""
|
||||
Unlock the `Grid`
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.a_vector.flags.writeable = True
|
||||
if self.b_vector is not None:
|
||||
self.b_vector.flags.writeable = True
|
||||
LockableImpl.unlock(self)
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
locked = ' L' if self.locked else ''
|
||||
bv = f', {self.b_vector}' if self.b_vector is not None else ''
|
||||
return (f'<Grid {self.a_count}x{self.b_count} ({self.a_vector}{bv}){locked}>')
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
if not isinstance(other, type(self)):
|
||||
return False
|
||||
if self.a_count != other.a_count or self.b_count != other.b_count:
|
||||
return False
|
||||
if any(self.a_vector[ii] != other.a_vector[ii] for ii in range(2)):
|
||||
return False
|
||||
if self.b_vector is None and other.b_vector is None:
|
||||
return True
|
||||
if self.b_vector is None or other.b_vector is None:
|
||||
return False
|
||||
if any(self.b_vector[ii] != other.b_vector[ii] for ii in range(2)):
|
||||
return False
|
||||
if self.locked != other.locked:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
class Arbitrary(LockableImpl, Repetition, metaclass=AutoSlots):
|
||||
"""
|
||||
`Arbitrary` is a simple list of (absolute) displacements for instances.
|
||||
|
||||
Attributes:
|
||||
displacements (numpy.ndarray): absolute displacements of all elements
|
||||
`[[x0, y0], [x1, y1], ...]`
|
||||
"""
|
||||
|
||||
_displacements: numpy.ndarray
|
||||
""" List of vectors `[[x0, y0], [x1, y1], ...]` specifying the offsets
|
||||
of the instances.
|
||||
"""
|
||||
|
||||
@property
|
||||
def displacements(self) -> numpy.ndarray:
|
||||
return self._displacements
|
||||
|
||||
@displacements.setter
|
||||
def displacements(self, val: Union[Sequence[Sequence[float]], numpy.ndarray]):
|
||||
val = numpy.array(val, float)
|
||||
val = numpy.sort(val.view([('', val.dtype)] * val.shape[1]), 0).view(val.dtype) # sort rows
|
||||
self._displacements = val
|
||||
|
||||
def __init__(self,
|
||||
displacements: numpy.ndarray,
|
||||
locked: bool = False,):
|
||||
"""
|
||||
Args:
|
||||
displacements: List of vectors (Nx2 ndarray) specifying displacements.
|
||||
locked: Whether the object is locked after initialization.
|
||||
"""
|
||||
object.__setattr__(self, 'locked', False)
|
||||
self.displacements = displacements
|
||||
self.locked = locked
|
||||
|
||||
def lock(self) -> 'Arbitrary':
|
||||
"""
|
||||
Lock the object, disallowing changes.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._displacements.flags.writeable = False
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Arbitrary':
|
||||
"""
|
||||
Unlock the object
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._displacements.flags.writeable = True
|
||||
LockableImpl.unlock(self)
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
locked = ' L' if self.locked else ''
|
||||
return (f'<Arbitrary {len(self.displacements)}pts {locked}>')
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
if not isinstance(other, type(self)):
|
||||
return False
|
||||
if self.locked != other.locked:
|
||||
return False
|
||||
return numpy.array_equal(self.displacements, other.displacements)
|
||||
|
||||
def rotate(self, rotation: float) -> 'Arbitrary':
|
||||
"""
|
||||
Rotate dispacements (around (0, 0))
|
||||
|
||||
Args:
|
||||
rotation: Angle to rotate by (counterclockwise, radians)
|
||||
@ -408,12 +363,12 @@ class GridRepetition:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.rotation += rotation
|
||||
self.displacements = numpy.dot(rotation_matrix_2d(rotation), self.displacements.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'GridRepetition':
|
||||
def mirror(self, axis: int) -> 'Arbitrary':
|
||||
"""
|
||||
Mirror the GridRepetition across an axis.
|
||||
Mirror the displacements across an axis.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across.
|
||||
@ -422,43 +377,24 @@ class GridRepetition:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.mirror_elements(axis)
|
||||
self.a_vector[1-axis] *= -1
|
||||
if self.b_vector is not None:
|
||||
self.b_vector[1-axis] *= -1
|
||||
return self
|
||||
|
||||
def mirror_elements(self, axis: int) -> 'GridRepetition':
|
||||
"""
|
||||
Mirror each element across an axis relative to its origin.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across.
|
||||
(0: mirror across x-axis, 1: mirror across y-axis)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.mirrored[axis] = not self.mirrored[axis]
|
||||
self.rotation *= -1
|
||||
self.displacements[1 - axis] *= -1
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> Optional[numpy.ndarray]:
|
||||
"""
|
||||
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
||||
extent of the `GridRepetition` in each dimension.
|
||||
Returns `None` if the contained `Pattern` is empty.
|
||||
extent of the `displacements` in each dimension.
|
||||
|
||||
Returns:
|
||||
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
||||
"""
|
||||
if self.pattern is None:
|
||||
return None
|
||||
return self.as_pattern().get_bounds()
|
||||
xy_min = numpy.min(self.displacements, axis=0)
|
||||
xy_max = numpy.max(self.displacements, axis=0)
|
||||
return numpy.array((xy_min, xy_max))
|
||||
|
||||
def scale_by(self, c: float) -> 'GridRepetition':
|
||||
def scale_by(self, c: float) -> 'Arbitrary':
|
||||
"""
|
||||
Scale the GridRepetition by a factor
|
||||
Scale the displacements by a factor
|
||||
|
||||
Args:
|
||||
c: scaling factor
|
||||
@ -466,107 +402,6 @@ class GridRepetition:
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.scale_elements_by(c)
|
||||
self.a_vector *= c
|
||||
if self.b_vector is not None:
|
||||
self.b_vector *= c
|
||||
self.displacements *= c
|
||||
return self
|
||||
|
||||
def scale_elements_by(self, c: float) -> 'GridRepetition':
|
||||
"""
|
||||
Scale each element by a factor
|
||||
|
||||
Args:
|
||||
c: scaling factor
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.scale *= c
|
||||
return self
|
||||
|
||||
def copy(self) -> 'GridRepetition':
|
||||
"""
|
||||
Return a shallow copy of the repetition.
|
||||
|
||||
Returns:
|
||||
`copy.copy(self)`
|
||||
"""
|
||||
return copy.copy(self)
|
||||
|
||||
def deepcopy(self) -> 'GridRepetition':
|
||||
"""
|
||||
Return a deep copy of the repetition.
|
||||
|
||||
Returns:
|
||||
`copy.deepcopy(self)`
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def lock(self) -> 'GridRepetition':
|
||||
"""
|
||||
Lock the `GridRepetition`, disallowing changes.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset.flags.writeable = False
|
||||
self.a_vector.flags.writeable = False
|
||||
self.mirrored.flags.writeable = False
|
||||
if self.b_vector is not None:
|
||||
self.b_vector.flags.writeable = False
|
||||
object.__setattr__(self, 'locked', True)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'GridRepetition':
|
||||
"""
|
||||
Unlock the `GridRepetition`
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset.flags.writeable = True
|
||||
self.a_vector.flags.writeable = True
|
||||
self.mirrored.flags.writeable = True
|
||||
if self.b_vector is not None:
|
||||
self.b_vector.flags.writeable = True
|
||||
object.__setattr__(self, 'locked', False)
|
||||
return self
|
||||
|
||||
def deeplock(self) -> 'GridRepetition':
|
||||
"""
|
||||
Recursively lock the `GridRepetition` and its contained pattern
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
assert(self.pattern is not None)
|
||||
self.lock()
|
||||
self.pattern.deeplock()
|
||||
return self
|
||||
|
||||
def deepunlock(self) -> 'GridRepetition':
|
||||
"""
|
||||
Recursively unlock the `GridRepetition` and its contained pattern
|
||||
|
||||
This is dangerous unless you have just performed a deepcopy, since
|
||||
the component parts may be reused elsewhere.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
assert(self.pattern is not None)
|
||||
self.unlock()
|
||||
self.pattern.deepunlock()
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
name = self.pattern.name if self.pattern is not None else None
|
||||
rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else ''
|
||||
scale = f' d{self.scale:g}' if self.scale != 1 else ''
|
||||
mirrored = ' m{:d}{:d}'.format(*self.mirrored) if self.mirrored.any() else ''
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
bv = f', {self.b_vector}' if self.b_vector is not None else ''
|
||||
return (f'<GridRepetition "{name}" at {self.offset} {rotation}{scale}{mirrored}{dose}'
|
||||
f' {self.a_count}x{self.b_count} ({self.a_vector}{bv}){locked}>')
|
||||
|
@ -1,15 +1,18 @@
|
||||
from typing import List, Tuple, Dict, Optional, Sequence
|
||||
from typing import List, Dict, Optional, Sequence
|
||||
import copy
|
||||
import math
|
||||
import numpy
|
||||
|
||||
import numpy # type: ignore
|
||||
from numpy import pi
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, vector2, layer_t
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, vector2, layer_t, AutoSlots, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
class Arc(Shape):
|
||||
class Arc(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
An elliptical arc, formed by cutting off an elliptical ring with two rays which exit from its
|
||||
center. It has a position, two radii, a start and stop angle, a rotation, and a width.
|
||||
@ -20,6 +23,7 @@ class Arc(Shape):
|
||||
"""
|
||||
__slots__ = ('_radii', '_angles', '_width', '_rotation',
|
||||
'poly_num_points', 'poly_max_arclen')
|
||||
|
||||
_radii: numpy.ndarray
|
||||
""" Two radii for defining an ellipse """
|
||||
|
||||
@ -77,7 +81,7 @@ class Arc(Shape):
|
||||
|
||||
# arc start/stop angle properties
|
||||
@property
|
||||
def angles(self) -> numpy.ndarray: #ndarray[float]
|
||||
def angles(self) -> numpy.ndarray:
|
||||
"""
|
||||
Return the start and stop angles `[a_start, a_stop]`.
|
||||
Angles are measured from x-axis after rotation
|
||||
@ -150,6 +154,7 @@ class Arc(Shape):
|
||||
radii: vector2,
|
||||
angles: vector2,
|
||||
width: float,
|
||||
*,
|
||||
poly_num_points: Optional[int] = DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
@ -157,28 +162,46 @@ class Arc(Shape):
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
locked: bool = False):
|
||||
object.__setattr__(self, 'locked', False)
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
):
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
self.radii = radii
|
||||
self.angles = angles
|
||||
self.width = width
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
if raw:
|
||||
self._radii = radii
|
||||
self._angles = angles
|
||||
self._width = width
|
||||
self._offset = offset
|
||||
self._rotation = rotation
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
else:
|
||||
self.radii = radii
|
||||
self.angles = angles
|
||||
self.width = width
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
self.locked = locked
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Arc':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Arc':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new._offset = self._offset.copy()
|
||||
new._radii = self._radii.copy()
|
||||
new._angles = self._angles.copy()
|
||||
new.locked = self.locked
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def to_polygons(self,
|
||||
@ -191,8 +214,8 @@ class Arc(Shape):
|
||||
poly_max_arclen = self.poly_max_arclen
|
||||
|
||||
if (poly_num_points is None) and (poly_max_arclen is None):
|
||||
raise PatternError('Max number of points and arclength left unspecified' +
|
||||
' (default was also overridden)')
|
||||
raise PatternError('Max number of points and arclength left unspecified'
|
||||
+ ' (default was also overridden)')
|
||||
|
||||
r0, r1 = self.radii
|
||||
|
||||
@ -212,8 +235,9 @@ class Arc(Shape):
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [perimeter / poly_max_arclen]
|
||||
thetas_inner = numpy.linspace(a_ranges[0][1], a_ranges[0][0], max(n), endpoint=True)
|
||||
thetas_outer = numpy.linspace(a_ranges[1][0], a_ranges[1][1], max(n), endpoint=True)
|
||||
num_points = int(round(max(n)))
|
||||
thetas_inner = numpy.linspace(a_ranges[0][1], a_ranges[0][0], num_points, endpoint=True)
|
||||
thetas_outer = numpy.linspace(a_ranges[1][0], a_ranges[1][1], num_points, endpoint=True)
|
||||
|
||||
sin_th_i, cos_th_i = (numpy.sin(thetas_inner), numpy.cos(thetas_inner))
|
||||
sin_th_o, cos_th_o = (numpy.sin(thetas_outer), numpy.cos(thetas_outer))
|
||||
@ -249,7 +273,7 @@ class Arc(Shape):
|
||||
mins = []
|
||||
maxs = []
|
||||
for a, sgn in zip(a_ranges, (-1, +1)):
|
||||
wh = sgn * self.width/2
|
||||
wh = sgn * self.width / 2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
|
||||
@ -263,7 +287,7 @@ class Arc(Shape):
|
||||
|
||||
# Cutoff angles
|
||||
xpt = (-self.rotation) % (2 * pi) + a0_offset
|
||||
ypt = (pi/2 - self.rotation) % (2 * pi) + a0_offset
|
||||
ypt = (pi / 2 - self.rotation) % (2 * pi) + a0_offset
|
||||
xnt = (xpt - pi) % (2 * pi) + a0_offset
|
||||
ynt = (ypt - pi) % (2 * pi) + a0_offset
|
||||
|
||||
@ -332,9 +356,9 @@ class Arc(Shape):
|
||||
rotation %= 2 * pi
|
||||
width = self.width
|
||||
|
||||
return (type(self), radii, angles, width/norm_value, self.layer), \
|
||||
(self.offset, scale/norm_value, rotation, False, self.dose), \
|
||||
lambda: Arc(radii=radii*norm_value, angles=angles, width=width*norm_value, layer=self.layer)
|
||||
return ((type(self), radii, angles, width / norm_value, self.layer),
|
||||
(self.offset, scale / norm_value, rotation, False, self.dose),
|
||||
lambda: Arc(radii=radii * norm_value, angles=angles, width=width * norm_value, layer=self.layer))
|
||||
|
||||
def get_cap_edges(self) -> numpy.ndarray:
|
||||
'''
|
||||
@ -349,7 +373,7 @@ class Arc(Shape):
|
||||
mins = []
|
||||
maxs = []
|
||||
for a, sgn in zip(a_ranges, (-1, +1)):
|
||||
wh = sgn * self.width/2
|
||||
wh = sgn * self.width / 2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
|
||||
@ -364,7 +388,7 @@ class Arc(Shape):
|
||||
|
||||
mins.append([xn, yn])
|
||||
maxs.append([xp, yp])
|
||||
return numpy.array([mins, maxs]) + self.offset
|
||||
return numpy.array([mins, maxs]) + self.offset
|
||||
|
||||
def _angles_to_parameters(self) -> numpy.ndarray:
|
||||
'''
|
||||
@ -374,12 +398,12 @@ class Arc(Shape):
|
||||
'''
|
||||
a = []
|
||||
for sgn in (-1, +1):
|
||||
wh = sgn * self.width/2
|
||||
wh = sgn * self.width / 2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
|
||||
# create paremeter 'a' for parametrized ellipse
|
||||
a0, a1 = (numpy.arctan2(rx*numpy.sin(a), ry*numpy.cos(a)) for a in self.angles)
|
||||
a0, a1 = (numpy.arctan2(rx * numpy.sin(a), ry * numpy.cos(a)) for a in self.angles)
|
||||
sign = numpy.sign(self.angles[1] - self.angles[0])
|
||||
if sign != numpy.sign(a1 - a0):
|
||||
a1 += sign * 2 * pi
|
||||
@ -400,8 +424,8 @@ class Arc(Shape):
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
angles = f' a°{self.angles*180/pi}'
|
||||
rotation = f' r°{self.rotation*180/pi:g}' if self.rotation != 0 else ''
|
||||
angles = f' a°{numpy.rad2deg(self.angles)}'
|
||||
rotation = f' r°{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<Arc l{self.layer} o{self.offset} r{self.radii}{angles} w{self.width:g}{rotation}{dose}{locked}>'
|
||||
|
@ -1,18 +1,22 @@
|
||||
from typing import List, Dict, Optional
|
||||
import copy
|
||||
import numpy
|
||||
|
||||
import numpy # type: ignore
|
||||
from numpy import pi
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, vector2, layer_t
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, vector2, layer_t, AutoSlots, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
class Circle(Shape):
|
||||
class Circle(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
A circle, which has a position and radius.
|
||||
"""
|
||||
__slots__ = ('_radius', 'poly_num_points', 'poly_max_arclen')
|
||||
|
||||
_radius: float
|
||||
""" Circle radius """
|
||||
|
||||
@ -40,27 +44,43 @@ class Circle(Shape):
|
||||
|
||||
def __init__(self,
|
||||
radius: float,
|
||||
*,
|
||||
poly_num_points: Optional[int] = DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
locked: bool = False):
|
||||
object.__setattr__(self, 'locked', False)
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
):
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
self.offset = numpy.array(offset, dtype=float)
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.radius = radius
|
||||
if raw:
|
||||
self._radius = radius
|
||||
self._offset = offset
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
else:
|
||||
self.radius = radius
|
||||
self.offset = offset
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
self.locked = locked
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Circle':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Circle':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new._offset = self._offset.copy()
|
||||
new.locked = self.locked
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def to_polygons(self,
|
||||
@ -81,7 +101,8 @@ class Circle(Shape):
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [2 * pi * self.radius / poly_max_arclen]
|
||||
thetas = numpy.linspace(2 * pi, 0, max(n), endpoint=False)
|
||||
num_points = int(round(max(n)))
|
||||
thetas = numpy.linspace(2 * pi, 0, num_points, endpoint=False)
|
||||
xs = numpy.cos(thetas) * self.radius
|
||||
ys = numpy.sin(thetas) * self.radius
|
||||
xys = numpy.vstack((xs, ys)).T
|
||||
@ -106,9 +127,9 @@ class Circle(Shape):
|
||||
def normalized_form(self, norm_value) -> normalized_shape_tuple:
|
||||
rotation = 0.0
|
||||
magnitude = self.radius / norm_value
|
||||
return (type(self), self.layer), \
|
||||
(self.offset, magnitude, rotation, False, self.dose), \
|
||||
lambda: Circle(radius=norm_value, layer=self.layer)
|
||||
return ((type(self), self.layer),
|
||||
(self.offset, magnitude, rotation, False, self.dose),
|
||||
lambda: Circle(radius=norm_value, layer=self.layer))
|
||||
|
||||
def __repr__(self) -> str:
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
|
@ -1,21 +1,25 @@
|
||||
from typing import List, Tuple, Dict, Sequence, Optional
|
||||
from typing import List, Dict, Sequence, Optional
|
||||
import copy
|
||||
import math
|
||||
import numpy
|
||||
|
||||
import numpy # type: ignore
|
||||
from numpy import pi
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t, AutoSlots, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
class Ellipse(Shape):
|
||||
class Ellipse(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
An ellipse, which has a position, two radii, and a rotation.
|
||||
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
|
||||
"""
|
||||
__slots__ = ('_radii', '_rotation',
|
||||
'poly_num_points', 'poly_max_arclen')
|
||||
|
||||
_radii: numpy.ndarray
|
||||
""" Ellipse radii """
|
||||
|
||||
@ -85,6 +89,7 @@ class Ellipse(Shape):
|
||||
|
||||
def __init__(self,
|
||||
radii: vector2,
|
||||
*,
|
||||
poly_num_points: Optional[int] = DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
@ -92,25 +97,41 @@ class Ellipse(Shape):
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
locked: bool = False):
|
||||
object.__setattr__(self, 'locked', False)
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
):
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
self.radii = radii
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
if raw:
|
||||
self._radii = radii
|
||||
self._offset = offset
|
||||
self._rotation = rotation
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
else:
|
||||
self.radii = radii
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
self.locked = locked
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Ellipse':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Ellipse':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new._offset = self._offset.copy()
|
||||
new._radii = self._radii.copy()
|
||||
new.locked = self.locked
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def to_polygons(self,
|
||||
@ -139,7 +160,8 @@ class Ellipse(Shape):
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [perimeter / poly_max_arclen]
|
||||
thetas = numpy.linspace(2 * pi, 0, max(n), endpoint=False)
|
||||
num_points = int(round(max(n)))
|
||||
thetas = numpy.linspace(2 * pi, 0, num_points, endpoint=False)
|
||||
|
||||
sin_th, cos_th = (numpy.sin(thetas), numpy.cos(thetas))
|
||||
xs = r0 * cos_th
|
||||
@ -176,9 +198,9 @@ class Ellipse(Shape):
|
||||
radii = self.radii[::-1] / self.radius_y
|
||||
scale = self.radius_y
|
||||
angle = (self.rotation + pi / 2) % pi
|
||||
return (type(self), radii, self.layer), \
|
||||
(self.offset, scale/norm_value, angle, False, self.dose), \
|
||||
lambda: Ellipse(radii=radii*norm_value, layer=self.layer)
|
||||
return ((type(self), radii, self.layer),
|
||||
(self.offset, scale / norm_value, angle, False, self.dose),
|
||||
lambda: Ellipse(radii=radii * norm_value, layer=self.layer))
|
||||
|
||||
def lock(self) -> 'Ellipse':
|
||||
self.radii.flags.writeable = False
|
||||
|
@ -1,13 +1,16 @@
|
||||
from typing import List, Tuple, Dict, Optional, Sequence
|
||||
import copy
|
||||
from enum import Enum
|
||||
import numpy
|
||||
|
||||
import numpy # type: ignore
|
||||
from numpy import pi, inf
|
||||
|
||||
from . import Shape, normalized_shape_tuple, Polygon, Circle
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t, AutoSlots
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
class PathCap(Enum):
|
||||
@ -15,10 +18,10 @@ class PathCap(Enum):
|
||||
Circle = 1 # Path extends past final vertices with a semicircle of radius width/2
|
||||
Square = 2 # Path extends past final vertices with a width-by-width/2 rectangle
|
||||
SquareCustom = 4 # Path extends past final vertices with a rectangle of length
|
||||
# defined by path.cap_extensions
|
||||
# # defined by path.cap_extensions
|
||||
|
||||
|
||||
class Path(Shape):
|
||||
class Path(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
A path, consisting of a bunch of vertices (Nx2 ndarray), a width, an end-cap shape,
|
||||
and an offset.
|
||||
@ -100,7 +103,7 @@ class Path(Shape):
|
||||
|
||||
@vertices.setter
|
||||
def vertices(self, val: numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float) #TODO document that these might not be copied
|
||||
val = numpy.array(val, dtype=float) # TODO document that these might not be copied
|
||||
if len(val.shape) < 2 or val.shape[1] != 2:
|
||||
raise PatternError('Vertices must be an Nx2 array')
|
||||
if val.shape[0] < 2:
|
||||
@ -140,6 +143,7 @@ class Path(Shape):
|
||||
def __init__(self,
|
||||
vertices: numpy.ndarray,
|
||||
width: float = 0.0,
|
||||
*,
|
||||
cap: PathCap = PathCap.Flush,
|
||||
cap_extensions: numpy.ndarray = None,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
@ -147,39 +151,55 @@ class Path(Shape):
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
):
|
||||
object.__setattr__(self, 'locked', False)
|
||||
LockableImpl.unlock(self)
|
||||
self._cap_extensions = None # Since .cap setter might access it
|
||||
|
||||
self.identifier = ()
|
||||
self.offset = offset
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.vertices = vertices
|
||||
self.width = width
|
||||
self.cap = cap
|
||||
if cap_extensions is not None:
|
||||
if raw:
|
||||
self._vertices = vertices
|
||||
self._offset = offset
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
self._width = width
|
||||
self._cap = cap
|
||||
self._cap_extensions = cap_extensions
|
||||
else:
|
||||
self.vertices = vertices
|
||||
self.offset = offset
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.width = width
|
||||
self.cap = cap
|
||||
self.cap_extensions = cap_extensions
|
||||
self.rotate(rotation)
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.locked = locked
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Path':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Path':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new._offset = self._offset.copy()
|
||||
new._vertices = self._vertices.copy()
|
||||
new._cap = copy.deepcopy(self._cap, memo)
|
||||
new._cap_extensions = copy.deepcopy(self._cap_extensions, memo)
|
||||
new.locked = self.locked
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
@staticmethod
|
||||
def travel(travel_pairs: Tuple[Tuple[float, float]],
|
||||
width: float = 0.0,
|
||||
cap: PathCap = PathCap.Flush,
|
||||
cap_extensions = None,
|
||||
cap_extensions: Optional[Tuple[float, float]] = None,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
rotation: float = 0,
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
@ -255,9 +275,9 @@ class Path(Shape):
|
||||
intersection_p = v[:-2] + rp * dv[:-1] + perp[:-1]
|
||||
intersection_n = v[:-2] + rn * dv[:-1] - perp[:-1]
|
||||
|
||||
towards_perp = (dv[1:] * perp[:-1]).sum(axis=1) > 0 # path bends towards previous perp?
|
||||
# straight = (dv[1:] * perp[:-1]).sum(axis=1) == 0 # path is straight
|
||||
acute = (dv[1:] * dv[:-1]).sum(axis=1) < 0 # angle is acute?
|
||||
towards_perp = (dv[1:] * perp[:-1]).sum(axis=1) > 0 # path bends towards previous perp?
|
||||
# straight = (dv[1:] * perp[:-1]).sum(axis=1) == 0 # path is straight
|
||||
acute = (dv[1:] * dv[:-1]).sum(axis=1) < 0 # angle is acute?
|
||||
|
||||
# Build vertices
|
||||
o0 = [v[0] + perp[0]]
|
||||
@ -309,12 +329,13 @@ class Path(Shape):
|
||||
bounds[0, :] = numpy.minimum(bounds[0, :], poly_bounds[0, :])
|
||||
bounds[1, :] = numpy.maximum(bounds[1, :], poly_bounds[1, :])
|
||||
else:
|
||||
raise PatternError('get_bounds() not implemented for endcaps: {}'.format(self.cap))
|
||||
raise PatternError(f'get_bounds() not implemented for endcaps: {self.cap}')
|
||||
|
||||
return bounds
|
||||
|
||||
def rotate(self, theta: float) -> 'Path':
|
||||
self.vertices = numpy.dot(rotation_matrix_2d(theta), self.vertices.T).T
|
||||
if theta != 0:
|
||||
self.vertices = numpy.dot(rotation_matrix_2d(theta), self.vertices.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Path':
|
||||
@ -349,10 +370,10 @@ class Path(Shape):
|
||||
|
||||
width0 = self.width / norm_value
|
||||
|
||||
return (type(self), reordered_vertices.data.tobytes(), width0, self.cap, self.layer), \
|
||||
(offset, scale/norm_value, rotation, False, self.dose), \
|
||||
lambda: Path(reordered_vertices*norm_value, width=self.width*norm_value,
|
||||
cap=self.cap, layer=self.layer)
|
||||
return ((type(self), reordered_vertices.data.tobytes(), width0, self.cap, self.layer),
|
||||
(offset, scale / norm_value, rotation, False, self.dose),
|
||||
lambda: Path(reordered_vertices * norm_value, width=self.width * norm_value,
|
||||
cap=self.cap, layer=self.layer))
|
||||
|
||||
def clean_vertices(self) -> 'Path':
|
||||
"""
|
||||
@ -388,7 +409,7 @@ class Path(Shape):
|
||||
if self.cap == PathCap.Square:
|
||||
extensions = numpy.full(2, self.width / 2)
|
||||
elif self.cap == PathCap.SquareCustom:
|
||||
extensions = self.cap_extensions
|
||||
extensions = self.cap_extensions
|
||||
else:
|
||||
# Flush or Circle
|
||||
extensions = numpy.zeros(2)
|
||||
|
@ -1,15 +1,18 @@
|
||||
from typing import List, Tuple, Dict, Optional, Sequence
|
||||
from typing import List, Dict, Optional, Sequence
|
||||
import copy
|
||||
import numpy
|
||||
|
||||
import numpy # type: ignore
|
||||
from numpy import pi
|
||||
|
||||
from . import Shape, normalized_shape_tuple
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t, AutoSlots
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
class Polygon(Shape):
|
||||
class Polygon(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
A polygon, consisting of a bunch of vertices (Nx2 ndarray) which specify an
|
||||
implicitly-closed boundary, and an offset.
|
||||
@ -17,6 +20,7 @@ class Polygon(Shape):
|
||||
A `normalized_form(...)` is available, but can be quite slow with lots of vertices.
|
||||
"""
|
||||
__slots__ = ('_vertices',)
|
||||
|
||||
_vertices: numpy.ndarray
|
||||
""" Nx2 ndarray of vertices `[[x0, y0], [x1, y1], ...]` """
|
||||
|
||||
@ -30,7 +34,7 @@ class Polygon(Shape):
|
||||
|
||||
@vertices.setter
|
||||
def vertices(self, val: numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float) #TODO document that these might not be copied
|
||||
val = numpy.array(val, dtype=float) # TODO document that these might not be copied
|
||||
if len(val.shape) < 2 or val.shape[1] != 2:
|
||||
raise PatternError('Vertices must be an Nx2 array')
|
||||
if val.shape[0] < 3:
|
||||
@ -69,29 +73,44 @@ class Polygon(Shape):
|
||||
|
||||
def __init__(self,
|
||||
vertices: numpy.ndarray,
|
||||
*,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
):
|
||||
object.__setattr__(self, 'locked', False)
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.vertices = vertices
|
||||
self.offset = offset
|
||||
if raw:
|
||||
self._vertices = vertices
|
||||
self._offset = offset
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
else:
|
||||
self.vertices = vertices
|
||||
self.offset = offset
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.rotate(rotation)
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.locked = locked
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: Optional[Dict] = None) -> 'Polygon':
|
||||
def __deepcopy__(self, memo: Optional[Dict] = None) -> 'Polygon':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new._offset = self._offset.copy()
|
||||
new._vertices = self._vertices.copy()
|
||||
new.locked = self.locked
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
@staticmethod
|
||||
@ -250,7 +269,6 @@ class Polygon(Shape):
|
||||
layer=layer, dose=dose)
|
||||
return poly
|
||||
|
||||
|
||||
def to_polygons(self,
|
||||
poly_num_points: int = None, # unused
|
||||
poly_max_arclen: float = None, # unused
|
||||
@ -262,7 +280,8 @@ class Polygon(Shape):
|
||||
self.offset + numpy.max(self.vertices, axis=0)))
|
||||
|
||||
def rotate(self, theta: float) -> 'Polygon':
|
||||
self.vertices = numpy.dot(rotation_matrix_2d(theta), self.vertices.T).T
|
||||
if theta != 0:
|
||||
self.vertices = numpy.dot(rotation_matrix_2d(theta), self.vertices.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Polygon':
|
||||
@ -296,9 +315,9 @@ class Polygon(Shape):
|
||||
|
||||
# TODO: normalize mirroring?
|
||||
|
||||
return (type(self), reordered_vertices.data.tobytes(), self.layer), \
|
||||
(offset, scale/norm_value, rotation, False, self.dose), \
|
||||
lambda: Polygon(reordered_vertices*norm_value, layer=self.layer)
|
||||
return ((type(self), reordered_vertices.data.tobytes(), self.layer),
|
||||
(offset, scale / norm_value, rotation, False, self.dose),
|
||||
lambda: Polygon(reordered_vertices * norm_value, layer=self.layer))
|
||||
|
||||
def clean_vertices(self) -> 'Polygon':
|
||||
"""
|
||||
|
@ -1,10 +1,12 @@
|
||||
from typing import List, Tuple, Callable, TypeVar, Optional, TYPE_CHECKING
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import copy
|
||||
import numpy
|
||||
|
||||
from ..error import PatternError, PatternLockedError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2, layer_t
|
||||
import numpy # type: ignore
|
||||
|
||||
from ..traits import (PositionableImpl, LayerableImpl, DoseableImpl,
|
||||
Rotatable, Mirrorable, Copyable, Scalable,
|
||||
PivotableImpl, LockableImpl, RepeatableImpl,
|
||||
AnnotatableImpl)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from . import Polygon
|
||||
@ -23,36 +25,20 @@ DEFAULT_POLY_NUM_POINTS = 24
|
||||
T = TypeVar('T', bound='Shape')
|
||||
|
||||
|
||||
class Shape(metaclass=ABCMeta):
|
||||
class Shape(PositionableImpl, LayerableImpl, DoseableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
PivotableImpl, RepeatableImpl, LockableImpl, AnnotatableImpl, metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class specifying functions common to all shapes.
|
||||
"""
|
||||
__slots__ = ('_offset', '_layer', '_dose', 'identifier', 'locked')
|
||||
|
||||
_offset: numpy.ndarray
|
||||
""" `[x_offset, y_offset]` """
|
||||
|
||||
_layer: layer_t
|
||||
""" Layer (integer >= 0 or tuple) """
|
||||
|
||||
_dose: float
|
||||
""" Dose """
|
||||
__slots__ = () # Children should use AutoSlots
|
||||
|
||||
identifier: Tuple
|
||||
""" An arbitrary identifier for the shape, usually empty but used by `Pattern.flatten()` """
|
||||
|
||||
locked: bool
|
||||
""" If `True`, any changes to the shape will raise a `PatternLockedError` """
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if self.locked and name != 'locked':
|
||||
raise PatternLockedError()
|
||||
object.__setattr__(self, name, value)
|
||||
|
||||
def __copy__(self) -> 'Shape':
|
||||
cls = self.__class__
|
||||
new = cls.__new__(cls)
|
||||
for name in Shape.__slots__ + self.__slots__:
|
||||
for name in self.__slots__: # type: str
|
||||
object.__setattr__(new, name, getattr(self, name))
|
||||
return new
|
||||
|
||||
@ -79,53 +65,6 @@ class Shape(metaclass=ABCMeta):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
"""
|
||||
Returns `[[x_min, y_min], [x_max, y_max]]` which specify a minimal bounding box for the shape.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def rotate(self: T, theta: float) -> T:
|
||||
"""
|
||||
Rotate the shape around its origin (0, 0), ignoring its offset.
|
||||
|
||||
Args:
|
||||
theta: Angle to rotate by (counterclockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def mirror(self: T, axis: int) -> T:
|
||||
"""
|
||||
Mirror the shape across an axis.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across.
|
||||
(0: mirror across x axis, 1: mirror across y axis)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def scale_by(self: T, c: float) -> T:
|
||||
"""
|
||||
Scale the shape's size (eg. radius, for a circle) by a constant factor.
|
||||
|
||||
Args:
|
||||
c: Factor to scale by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def normalized_form(self: T, norm_value: int) -> normalized_shape_tuple:
|
||||
"""
|
||||
@ -150,97 +89,9 @@ class Shape(metaclass=ABCMeta):
|
||||
"""
|
||||
pass
|
||||
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
"""
|
||||
[x, y] offset
|
||||
"""
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten()
|
||||
|
||||
# layer property
|
||||
@property
|
||||
def layer(self) -> layer_t:
|
||||
"""
|
||||
Layer number or name (int, tuple of ints, or string)
|
||||
"""
|
||||
return self._layer
|
||||
|
||||
@layer.setter
|
||||
def layer(self, val: layer_t):
|
||||
self._layer = val
|
||||
|
||||
# dose property
|
||||
@property
|
||||
def dose(self) -> float:
|
||||
"""
|
||||
Dose (float >= 0)
|
||||
"""
|
||||
return self._dose
|
||||
|
||||
@dose.setter
|
||||
def dose(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Dose must be a scalar')
|
||||
if not val >= 0:
|
||||
raise PatternError('Dose must be non-negative')
|
||||
self._dose = val
|
||||
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def copy(self: T) -> T:
|
||||
"""
|
||||
Returns a deep copy of the shape.
|
||||
|
||||
Returns:
|
||||
copy.deepcopy(self)
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def translate(self: T, offset: vector2) -> T:
|
||||
"""
|
||||
Translate the shape by the given offset
|
||||
|
||||
Args:
|
||||
offset: [x_offset, y,offset]
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def rotate_around(self: T, pivot: vector2, rotation: float) -> T:
|
||||
"""
|
||||
Rotate the shape around a point.
|
||||
|
||||
Args:
|
||||
pivot: Point (x, y) to rotate around
|
||||
rotation: Angle to rotate by (counterclockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.rotate(rotation)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
def manhattanize_fast(self,
|
||||
grid_x: numpy.ndarray,
|
||||
grid_y: numpy.ndarray,
|
||||
@ -288,7 +139,6 @@ class Shape(metaclass=ABCMeta):
|
||||
if err_xmax >= 0.5:
|
||||
gxi_max += 1
|
||||
|
||||
|
||||
if abs(dv[0]) < 1e-20:
|
||||
# Vertical line, don't calculate slope
|
||||
xi = [gxi_min, gxi_max - 1]
|
||||
@ -301,8 +151,9 @@ class Shape(metaclass=ABCMeta):
|
||||
vertex_lists.append(segment)
|
||||
continue
|
||||
|
||||
m = dv[1]/dv[0]
|
||||
def get_grid_inds(xes):
|
||||
m = dv[1] / dv[0]
|
||||
|
||||
def get_grid_inds(xes: numpy.ndarray) -> numpy.ndarray:
|
||||
ys = m * (xes - v[0]) + v[1]
|
||||
|
||||
# (inds - 1) is the index of the y-grid line below the edge's intersection with the x-grid
|
||||
@ -324,7 +175,7 @@ class Shape(metaclass=ABCMeta):
|
||||
xs2 = (xs[:-1] + xs[1:]) / 2
|
||||
inds2 = get_grid_inds(xs2)
|
||||
|
||||
xinds = numpy.round(numpy.arange(gxi_min, gxi_max - 0.99, 1/3)).astype(int)
|
||||
xinds = numpy.round(numpy.arange(gxi_min, gxi_max - 0.99, 1 / 3)).astype(int)
|
||||
|
||||
# interleave the results
|
||||
yinds = xinds.copy()
|
||||
@ -348,7 +199,6 @@ class Shape(metaclass=ABCMeta):
|
||||
|
||||
return manhattan_polygons
|
||||
|
||||
|
||||
def manhattanize(self,
|
||||
grid_x: numpy.ndarray,
|
||||
grid_y: numpy.ndarray
|
||||
@ -392,7 +242,7 @@ class Shape(metaclass=ABCMeta):
|
||||
List of `Polygon` objects with grid-aligned edges.
|
||||
"""
|
||||
from . import Polygon
|
||||
import skimage.measure
|
||||
import skimage.measure # type: ignore
|
||||
import float_raster
|
||||
|
||||
grid_x = numpy.unique(grid_x)
|
||||
@ -442,37 +292,12 @@ class Shape(metaclass=ABCMeta):
|
||||
|
||||
return manhattan_polygons
|
||||
|
||||
def set_layer(self: T, layer: layer_t) -> T:
|
||||
"""
|
||||
Chainable method for changing the layer.
|
||||
|
||||
Args:
|
||||
layer: new value for self.layer
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.layer = layer
|
||||
return self
|
||||
|
||||
def lock(self: T) -> T:
|
||||
"""
|
||||
Lock the Shape, disallowing further changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset.flags.writeable = False
|
||||
object.__setattr__(self, 'locked', True)
|
||||
PositionableImpl._lock(self)
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self: T) -> T:
|
||||
"""
|
||||
Unlock the Shape
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
object.__setattr__(self, 'locked', False)
|
||||
self.offset.flags.writeable = True
|
||||
LockableImpl.unlock(self)
|
||||
PositionableImpl._unlock(self)
|
||||
return self
|
||||
|
@ -1,27 +1,32 @@
|
||||
from typing import List, Tuple, Dict, Sequence, Optional, MutableSequence
|
||||
from typing import List, Tuple, Dict, Sequence, Optional
|
||||
import copy
|
||||
import numpy
|
||||
|
||||
import numpy # type: ignore
|
||||
from numpy import pi, inf
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple
|
||||
from .. import PatternError
|
||||
from ..utils import is_scalar, vector2, get_bit, normalize_mirror, layer_t
|
||||
from ..repetition import Repetition
|
||||
from ..traits import RotatableImpl
|
||||
from ..utils import is_scalar, vector2, get_bit, normalize_mirror, layer_t, AutoSlots
|
||||
from ..utils import annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
# Loaded on use:
|
||||
# from freetype import Face
|
||||
# from matplotlib.path import Path
|
||||
|
||||
|
||||
class Text(Shape):
|
||||
class Text(RotatableImpl, Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
Text (to be printed e.g. as a set of polygons).
|
||||
This is distinct from non-printed Label objects.
|
||||
"""
|
||||
__slots__ = ('_string', '_height', '_rotation', '_mirrored', 'font_path')
|
||||
__slots__ = ('_string', '_height', '_mirrored', 'font_path')
|
||||
|
||||
_string: str
|
||||
_height: float
|
||||
_rotation: float
|
||||
_mirrored: numpy.ndarray #ndarray[bool]
|
||||
_mirrored: numpy.ndarray # ndarray[bool]
|
||||
font_path: str
|
||||
|
||||
# vertices property
|
||||
@ -33,17 +38,6 @@ class Text(Shape):
|
||||
def string(self, val: str):
|
||||
self._string = val
|
||||
|
||||
# Rotation property
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
# Height property
|
||||
@property
|
||||
def height(self) -> float:
|
||||
@ -57,7 +51,7 @@ class Text(Shape):
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> numpy.ndarray: #ndarray[bool]
|
||||
def mirrored(self) -> numpy.ndarray: # ndarray[bool]
|
||||
return self._mirrored
|
||||
|
||||
@mirrored.setter
|
||||
@ -70,31 +64,49 @@ class Text(Shape):
|
||||
string: str,
|
||||
height: float,
|
||||
font_path: str,
|
||||
*,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
mirrored: Tuple[bool, bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
):
|
||||
object.__setattr__(self, 'locked', False)
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
self.offset = offset
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.string = string
|
||||
self.height = height
|
||||
self.rotation = rotation
|
||||
if raw:
|
||||
self._offset = offset
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
self._string = string
|
||||
self._height = height
|
||||
self._rotation = rotation
|
||||
self._mirrored = mirrored
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
else:
|
||||
self.offset = offset
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.string = string
|
||||
self.height = height
|
||||
self.rotation = rotation
|
||||
self.mirrored = mirrored
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.font_path = font_path
|
||||
self.mirrored = mirrored
|
||||
self.locked = locked
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Text':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Text':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new._offset = self._offset.copy()
|
||||
new._mirrored = copy.deepcopy(self._mirrored, memo)
|
||||
new.locked = self.locked
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def to_polygons(self,
|
||||
@ -120,10 +132,6 @@ class Text(Shape):
|
||||
|
||||
return all_polygons
|
||||
|
||||
def rotate(self, theta: float) -> 'Text':
|
||||
self.rotation += theta
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'Text':
|
||||
self.mirrored[axis] = not self.mirrored[axis]
|
||||
return self
|
||||
@ -136,14 +144,14 @@ class Text(Shape):
|
||||
mirror_x, rotation = normalize_mirror(self.mirrored)
|
||||
rotation += self.rotation
|
||||
rotation %= 2 * pi
|
||||
return (type(self), self.string, self.font_path, self.layer), \
|
||||
(self.offset, self.height / norm_value, rotation, mirror_x, self.dose), \
|
||||
lambda: Text(string=self.string,
|
||||
height=self.height * norm_value,
|
||||
font_path=self.font_path,
|
||||
rotation=rotation,
|
||||
mirrored=(mirror_x, False),
|
||||
layer=self.layer)
|
||||
return ((type(self), self.string, self.font_path, self.layer),
|
||||
(self.offset, self.height / norm_value, rotation, mirror_x, self.dose),
|
||||
lambda: Text(string=self.string,
|
||||
height=self.height * norm_value,
|
||||
font_path=self.font_path,
|
||||
rotation=rotation,
|
||||
mirrored=(mirror_x, False),
|
||||
layer=self.layer))
|
||||
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
# rotation makes this a huge pain when using slot.advance and glyph.bbox(), so
|
||||
@ -160,10 +168,10 @@ class Text(Shape):
|
||||
|
||||
def get_char_as_polygons(font_path: str,
|
||||
char: str,
|
||||
resolution: float = 48*64,
|
||||
resolution: float = 48 * 64,
|
||||
) -> Tuple[List[List[List[float]]], float]:
|
||||
from freetype import Face
|
||||
from matplotlib.path import Path
|
||||
from freetype import Face # type: ignore
|
||||
from matplotlib.path import Path # type: ignore
|
||||
|
||||
"""
|
||||
Get a list of polygons representing a single character.
|
||||
|
121
masque/snaps/snapper.py
Normal file
121
masque/snaps/snapper.py
Normal file
@ -0,0 +1,121 @@
|
||||
|
||||
|
||||
callback_t = Callable[[T, numpy.ndarray, Dict[str, int]], ...]
|
||||
|
||||
|
||||
class Device:
|
||||
pattern: Pattern
|
||||
ports: numpy.ndarray
|
||||
port_names: Dict[str, int]
|
||||
callback: Optional[callback_t] = None
|
||||
|
||||
def __init__(self,
|
||||
pattern: Optional[Pattern] = None,
|
||||
ports: Optional[numpy.ndarray] = None,
|
||||
names: Optional[Union[Dict[str, int], List[Optional[str]]] = None,
|
||||
callback: Optional[callback_t]= None
|
||||
) -> None:
|
||||
if pattern is None:
|
||||
self.pattern = Pattern()
|
||||
|
||||
if ports is None:
|
||||
self.ports = {0: [0, 0, 0, 0],
|
||||
1: [0, 0, pi, 0]}
|
||||
else:
|
||||
self.ports = numpy.array(ports)
|
||||
|
||||
if callback:
|
||||
self.callback = callback
|
||||
self.callback(self, self.ports.keys())
|
||||
|
||||
def __getitem__(self, key) -> numpy.ndarray:
|
||||
if isinstance(key, str):
|
||||
inds = [self.port_names[key]]
|
||||
elif hasattr(key, '__iter__'):
|
||||
inds = [self.port_names.get(k, k) for k in key]
|
||||
else:
|
||||
inds = [self.port_names.get(key, key)]
|
||||
return self.ports[inds]
|
||||
|
||||
def build(self: T,
|
||||
name: str,
|
||||
other: Device,
|
||||
map_in: Dict[port_t, port_t],
|
||||
map_out: Dict[port_t, port_t],
|
||||
mirror: bool = False,
|
||||
) -> T:
|
||||
translation, rotation = self.find_transform(other, map_in, map_out, mirror)
|
||||
|
||||
pat = Pattern(name)
|
||||
pat.addsp(self.pattern)
|
||||
new = Device(pat, ports=self.ports, port_names=self.port_names, callback=self.callback)
|
||||
return new
|
||||
|
||||
|
||||
def plug(self, other, map_in, map_out, mirror):
|
||||
translation, rotation, pivot = self.find_transform(other, map_in, map_out, mirror)
|
||||
|
||||
sp = SubPattern(other.pattern, mirrored=mirror)
|
||||
sp.rotate_around(pivot, rotation)
|
||||
sp.translate(translation)
|
||||
self.pat.subpatterns.append(sp)
|
||||
|
||||
# get rid of plugged ports
|
||||
|
||||
# insert remaining device ports into router port list
|
||||
|
||||
with numpy.errstate(invalid='ignore'):
|
||||
self.ports[:, 2] %= 2 * pi
|
||||
|
||||
if self.port_callback:
|
||||
self.port_callback(...)
|
||||
|
||||
def find_transform(self, other, map_in, map_out, mirror):
|
||||
s_ports = self[map_in.keys()]
|
||||
o_ports= other[map_in.values()]
|
||||
|
||||
if mirror[0]:
|
||||
o_ports[:, 1] *= -1
|
||||
o_ports[:, 2] += pi
|
||||
if mirror[1]:
|
||||
o_ports[:, 0] *= -1
|
||||
o_ports[:, 2] += pi
|
||||
|
||||
s_offsets = s_ports[:, :2]
|
||||
s_angles = s_ports[:, 2]
|
||||
s_types = s_ports[:, 3]
|
||||
o_offsets = o_ports[:, :2]
|
||||
o_angles = o_ports[:, 2]
|
||||
o_types = o_ports[:, 3]
|
||||
|
||||
if (r_types != d_types) & (r_types != 0) & (d_types != 0):
|
||||
#TODO warn about types
|
||||
|
||||
rotations = numpy.mod(s_angles - o_angles - pi, 2 * pi)
|
||||
|
||||
if not numpy.allclose(rotations[:1], rotations):
|
||||
# TODO warn about rotation
|
||||
|
||||
rot_ports = rotate_ports_around(o_ports, o_offsets[0], rotations[0]) #TODO also rotate unplugged device ports
|
||||
|
||||
translations = r_offsets - d_offsets
|
||||
translation = translations[0]
|
||||
|
||||
if not numpy.allclose(translations[:1], translations):
|
||||
|
||||
return translations[0], rotations[0]
|
||||
|
||||
|
||||
def as_pattern(self, name) -> Pattern:
|
||||
return self.pat.copy().rename(name)
|
||||
|
||||
def as_device(self, name):
|
||||
return Device(self.as_pattern, REMAINING_NON-NAN_PORTS) #TODO
|
||||
|
||||
|
||||
def rotate_ports_around(ports: numpy.ndarray, pivot: numpy.ndarray, angle: float) -> numpy.ndarray:
|
||||
ports[:, :2] -= pivot
|
||||
ports[:, :2] = (rotation_matrix_2d(angle) @ ports[:, :2].T).T
|
||||
ports[:, :2] += pivot
|
||||
ports[:, 2] += angle
|
||||
return ports
|
@ -4,68 +4,61 @@
|
||||
"""
|
||||
#TODO more top-level documentation
|
||||
|
||||
from typing import Union, List, Dict, Tuple, Optional, Sequence, TYPE_CHECKING, Any
|
||||
from typing import Dict, Tuple, Optional, Sequence, TYPE_CHECKING, Any, TypeVar
|
||||
import copy
|
||||
|
||||
import numpy
|
||||
import numpy # type: ignore
|
||||
from numpy import pi
|
||||
|
||||
from .error import PatternError, PatternLockedError
|
||||
from .utils import is_scalar, rotation_matrix_2d, vector2
|
||||
from .repetition import GridRepetition
|
||||
from .error import PatternError
|
||||
from .utils import is_scalar, vector2, AutoSlots, annotations_t
|
||||
from .repetition import Repetition
|
||||
from .traits import (PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl,
|
||||
Mirrorable, PivotableImpl, Copyable, LockableImpl, RepeatableImpl,
|
||||
AnnotatableImpl)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from . import Pattern
|
||||
|
||||
|
||||
class SubPattern:
|
||||
S = TypeVar('S', bound='SubPattern')
|
||||
|
||||
|
||||
class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mirrorable,
|
||||
PivotableImpl, Copyable, RepeatableImpl, LockableImpl, AnnotatableImpl,
|
||||
metaclass=AutoSlots):
|
||||
"""
|
||||
SubPattern provides basic support for nesting Pattern objects within each other, by adding
|
||||
offset, rotation, scaling, and associated methods.
|
||||
"""
|
||||
__slots__ = ('_pattern',
|
||||
'_offset',
|
||||
'_rotation',
|
||||
'_dose',
|
||||
'_scale',
|
||||
'_mirrored',
|
||||
'identifier',
|
||||
'locked')
|
||||
)
|
||||
|
||||
_pattern: Optional['Pattern']
|
||||
""" The `Pattern` being instanced """
|
||||
|
||||
_offset: numpy.ndarray
|
||||
""" (x, y) offset for the instance """
|
||||
|
||||
_rotation: float
|
||||
""" rotation for the instance, radians counterclockwise """
|
||||
|
||||
_dose: float
|
||||
""" dose factor for the instance """
|
||||
|
||||
_scale: float
|
||||
""" scale factor for the instance """
|
||||
|
||||
_mirrored: numpy.ndarray # ndarray[bool]
|
||||
""" Whether to mirror the instanc across the x and/or y axes. """
|
||||
""" Whether to mirror the instance across the x and/or y axes. """
|
||||
|
||||
identifier: Tuple[Any, ...]
|
||||
""" Arbitrary identifier, used internally by some `masque` functions. """
|
||||
|
||||
locked: bool
|
||||
""" If `True`, disallows changes to the GridRepetition """
|
||||
|
||||
def __init__(self,
|
||||
pattern: Optional['Pattern'],
|
||||
*,
|
||||
offset: vector2 = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
mirrored: Optional[Sequence[bool]] = None,
|
||||
dose: float = 1.0,
|
||||
scale: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
identifier: Tuple[Any, ...] = ()):
|
||||
identifier: Tuple[Any, ...] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
pattern: Pattern to reference.
|
||||
@ -74,10 +67,11 @@ class SubPattern:
|
||||
mirrored: Whether to mirror the referenced pattern across its x and y axes.
|
||||
dose: Scaling factor applied to the dose.
|
||||
scale: Scaling factor applied to the pattern's geometry.
|
||||
repetition: TODO
|
||||
locked: Whether the `SubPattern` is locked after initialization.
|
||||
identifier: Arbitrary tuple, used internally by some `masque` functions.
|
||||
"""
|
||||
object.__setattr__(self, 'locked', False)
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = identifier
|
||||
self.pattern = pattern
|
||||
self.offset = offset
|
||||
@ -87,28 +81,29 @@ class SubPattern:
|
||||
if mirrored is None:
|
||||
mirrored = [False, False]
|
||||
self.mirrored = mirrored
|
||||
self.locked = locked
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.set_locked(locked)
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if self.locked and name != 'locked':
|
||||
raise PatternLockedError()
|
||||
object.__setattr__(self, name, value)
|
||||
|
||||
def __copy__(self) -> 'SubPattern':
|
||||
def __copy__(self: S) -> S:
|
||||
new = SubPattern(pattern=self.pattern,
|
||||
offset=self.offset.copy(),
|
||||
rotation=self.rotation,
|
||||
dose=self.dose,
|
||||
scale=self.scale,
|
||||
mirrored=self.mirrored.copy(),
|
||||
repetition=copy.deepcopy(self.repetition),
|
||||
annotations=copy.deepcopy(self.annotations),
|
||||
locked=self.locked)
|
||||
return new
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'SubPattern':
|
||||
def __deepcopy__(self: S, memo: Dict = None) -> S:
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self).unlock()
|
||||
new.pattern = copy.deepcopy(self.pattern, memo)
|
||||
new.locked = self.locked
|
||||
new.repetition = copy.deepcopy(self.repetition, memo)
|
||||
new.annotations = copy.deepcopy(self.annotations, memo)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
# pattern property
|
||||
@ -120,60 +115,9 @@ class SubPattern:
|
||||
def pattern(self, val: Optional['Pattern']):
|
||||
from .pattern import Pattern
|
||||
if val is not None and not isinstance(val, Pattern):
|
||||
raise PatternError('Provided pattern {} is not a Pattern object or None!'.format(val))
|
||||
raise PatternError(f'Provided pattern {val} is not a Pattern object or None!')
|
||||
self._pattern = val
|
||||
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten().astype(float)
|
||||
|
||||
# dose property
|
||||
@property
|
||||
def dose(self) -> float:
|
||||
return self._dose
|
||||
|
||||
@dose.setter
|
||||
def dose(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Dose must be a scalar')
|
||||
if not val >= 0:
|
||||
raise PatternError('Dose must be non-negative')
|
||||
self._dose = val
|
||||
|
||||
# scale property
|
||||
@property
|
||||
def scale(self) -> float:
|
||||
return self._scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Scale must be a scalar')
|
||||
if not val > 0:
|
||||
raise PatternError('Scale must be positive')
|
||||
self._scale = val
|
||||
|
||||
# Rotation property [ccw]
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> numpy.ndarray: # ndarray[bool]
|
||||
@ -198,64 +142,28 @@ class SubPattern:
|
||||
pattern.rotate_around((0.0, 0.0), self.rotation)
|
||||
pattern.translate_elements(self.offset)
|
||||
pattern.scale_element_doses(self.dose)
|
||||
|
||||
if self.repetition is not None:
|
||||
combined = type(pattern)(name='__repetition__')
|
||||
for dd in self.repetition.displacements:
|
||||
temp_pat = pattern.deepcopy()
|
||||
temp_pat.translate_elements(dd)
|
||||
combined.append(temp_pat)
|
||||
pattern = combined
|
||||
|
||||
return pattern
|
||||
|
||||
def translate(self, offset: vector2) -> 'SubPattern':
|
||||
"""
|
||||
Translate by the given offset
|
||||
|
||||
Args:
|
||||
offset: Offset `[x, y]` to translate by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset += offset
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: vector2, rotation: float) -> 'SubPattern':
|
||||
"""
|
||||
Rotate around a point
|
||||
|
||||
Args:
|
||||
pivot: Point `[x, y]` to rotate around
|
||||
rotation: Angle to rotate by (counterclockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.rotate(rotation)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
def rotate(self, rotation: float) -> 'SubPattern':
|
||||
"""
|
||||
Rotate the instance around it's origin
|
||||
|
||||
Args:
|
||||
rotation: Angle to rotate by (counterclockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
def rotate(self: S, rotation: float) -> S:
|
||||
self.rotation += rotation
|
||||
if self.repetition is not None:
|
||||
self.repetition.rotate(rotation)
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> 'SubPattern':
|
||||
"""
|
||||
Mirror the subpattern across an axis.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
def mirror(self: S, axis: int) -> S:
|
||||
self.mirrored[axis] = not self.mirrored[axis]
|
||||
self.rotation *= -1
|
||||
if self.repetition is not None:
|
||||
self.repetition.mirror(axis)
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> Optional[numpy.ndarray]:
|
||||
@ -271,62 +179,31 @@ class SubPattern:
|
||||
return None
|
||||
return self.as_pattern().get_bounds()
|
||||
|
||||
def scale_by(self, c: float) -> 'SubPattern':
|
||||
"""
|
||||
Scale the subpattern by a factor
|
||||
|
||||
Args:
|
||||
c: scaling factor
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.scale *= c
|
||||
return self
|
||||
|
||||
def copy(self) -> 'SubPattern':
|
||||
"""
|
||||
Return a shallow copy of the subpattern.
|
||||
|
||||
Returns:
|
||||
`copy.copy(self)`
|
||||
"""
|
||||
return copy.copy(self)
|
||||
|
||||
def deepcopy(self) -> 'SubPattern':
|
||||
"""
|
||||
Return a deep copy of the subpattern.
|
||||
|
||||
Returns:
|
||||
`copy.deepcopy(self)`
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def lock(self) -> 'SubPattern':
|
||||
def lock(self: S) -> S:
|
||||
"""
|
||||
Lock the SubPattern, disallowing changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset.flags.writeable = False
|
||||
self.mirrored.flags.writeable = False
|
||||
object.__setattr__(self, 'locked', True)
|
||||
PositionableImpl._lock(self)
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'SubPattern':
|
||||
def unlock(self: S) -> S:
|
||||
"""
|
||||
Unlock the SubPattern
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.offset.flags.writeable = True
|
||||
LockableImpl.unlock(self)
|
||||
PositionableImpl._unlock(self)
|
||||
self.mirrored.flags.writeable = True
|
||||
object.__setattr__(self, 'locked', False)
|
||||
return self
|
||||
|
||||
def deeplock(self) -> 'SubPattern':
|
||||
def deeplock(self: S) -> S:
|
||||
"""
|
||||
Recursively lock the SubPattern and its contained pattern
|
||||
|
||||
@ -338,7 +215,7 @@ class SubPattern:
|
||||
self.pattern.deeplock()
|
||||
return self
|
||||
|
||||
def deepunlock(self) -> 'SubPattern':
|
||||
def deepunlock(self: S) -> S:
|
||||
"""
|
||||
Recursively unlock the SubPattern and its contained pattern
|
||||
|
||||
@ -361,6 +238,3 @@ class SubPattern:
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<SubPattern "{name}" at {self.offset}{rotation}{scale}{mirrored}{dose}{locked}>'
|
||||
|
||||
|
||||
subpattern_t = Union[SubPattern, GridRepetition]
|
||||
|
13
masque/traits/__init__.py
Normal file
13
masque/traits/__init__.py
Normal file
@ -0,0 +1,13 @@
|
||||
"""
|
||||
Traits (mixins) and default implementations
|
||||
"""
|
||||
from .positionable import Positionable, PositionableImpl
|
||||
from .layerable import Layerable, LayerableImpl
|
||||
from .doseable import Doseable, DoseableImpl
|
||||
from .rotatable import Rotatable, RotatableImpl, Pivotable, PivotableImpl
|
||||
from .repeatable import Repeatable, RepeatableImpl
|
||||
from .scalable import Scalable, ScalableImpl
|
||||
from .mirrorable import Mirrorable
|
||||
from .copyable import Copyable
|
||||
from .lockable import Lockable, LockableImpl
|
||||
from .annotatable import Annotatable, AnnotatableImpl
|
55
masque/traits/annotatable.py
Normal file
55
masque/traits/annotatable.py
Normal file
@ -0,0 +1,55 @@
|
||||
from typing import TypeVar
|
||||
#from types import MappingProxyType
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..utils import annotations_t
|
||||
from ..error import PatternError
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Annotatable')
|
||||
I = TypeVar('I', bound='AnnotatableImpl')
|
||||
|
||||
|
||||
class Annotatable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all annotatable entities
|
||||
Annotations correspond to GDS/OASIS "properties"
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def annotations(self) -> annotations_t:
|
||||
"""
|
||||
Dictionary mapping annotation names to values
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class AnnotatableImpl(Annotatable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of `Annotatable`.
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
_annotations: annotations_t
|
||||
""" Dictionary storing annotation name/value pairs """
|
||||
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
@property
|
||||
def annotations(self) -> annotations_t:
|
||||
return self._annotations
|
||||
# # TODO: Find a way to make sure the subclass implements Lockable without dealing with diamond inheritance or this extra hasattr
|
||||
# if hasattr(self, 'is_locked') and self.is_locked():
|
||||
# return MappingProxyType(self._annotations)
|
||||
|
||||
@annotations.setter
|
||||
def annotations(self, annotations: annotations_t):
|
||||
if not isinstance(annotations, dict):
|
||||
raise PatternError(f'annotations expected dict, got {type(annotations)}')
|
||||
self._annotations = annotations
|
34
masque/traits/copyable.py
Normal file
34
masque/traits/copyable.py
Normal file
@ -0,0 +1,34 @@
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta
|
||||
import copy
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Copyable')
|
||||
|
||||
|
||||
class Copyable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class which adds .copy() and .deepcopy()
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def copy(self: T) -> T:
|
||||
"""
|
||||
Return a shallow copy of the object.
|
||||
|
||||
Returns:
|
||||
`copy.copy(self)`
|
||||
"""
|
||||
return copy.copy(self)
|
||||
|
||||
def deepcopy(self: T) -> T:
|
||||
"""
|
||||
Return a deep copy of the object.
|
||||
|
||||
Returns:
|
||||
`copy.deepcopy(self)`
|
||||
"""
|
||||
return copy.deepcopy(self)
|
76
masque/traits/doseable.py
Normal file
76
masque/traits/doseable.py
Normal file
@ -0,0 +1,76 @@
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..error import PatternError
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Doseable')
|
||||
I = TypeVar('I', bound='DoseableImpl')
|
||||
|
||||
|
||||
class Doseable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all doseable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def dose(self) -> float:
|
||||
"""
|
||||
Dose (float >= 0)
|
||||
"""
|
||||
pass
|
||||
|
||||
# @dose.setter
|
||||
# @abstractmethod
|
||||
# def dose(self, val: float):
|
||||
# pass
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def set_dose(self: T, dose: float) -> T:
|
||||
"""
|
||||
Set the dose
|
||||
|
||||
Args:
|
||||
dose: new value for dose
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DoseableImpl(Doseable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Doseable
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
_dose: float
|
||||
""" Dose """
|
||||
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
@property
|
||||
def dose(self) -> float:
|
||||
return self._dose
|
||||
|
||||
@dose.setter
|
||||
def dose(self, val: float):
|
||||
if not val >= 0:
|
||||
raise PatternError('Dose must be non-negative')
|
||||
self._dose = val
|
||||
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def set_dose(self: I, dose: float) -> I:
|
||||
self.dose = dose
|
||||
return self
|
73
masque/traits/layerable.py
Normal file
73
masque/traits/layerable.py
Normal file
@ -0,0 +1,73 @@
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..utils import layer_t
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Layerable')
|
||||
I = TypeVar('I', bound='LayerableImpl')
|
||||
|
||||
|
||||
class Layerable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all layerable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def layer(self) -> layer_t:
|
||||
"""
|
||||
Layer number or name (int, tuple of ints, or string)
|
||||
"""
|
||||
pass
|
||||
|
||||
# @layer.setter
|
||||
# @abstractmethod
|
||||
# def layer(self, val: layer_t):
|
||||
# pass
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def set_layer(self: T, layer: layer_t) -> T:
|
||||
"""
|
||||
Set the layer
|
||||
|
||||
Args:
|
||||
layer: new value for layer
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class LayerableImpl(Layerable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Layerable
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
_layer: layer_t
|
||||
""" Layer number, pair, or name """
|
||||
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
@property
|
||||
def layer(self) -> layer_t:
|
||||
return self._layer
|
||||
|
||||
@layer.setter
|
||||
def layer(self, val: layer_t):
|
||||
self._layer = val
|
||||
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def set_layer(self: I, layer: layer_t) -> I:
|
||||
self.layer = layer
|
||||
return self
|
93
masque/traits/lockable.py
Normal file
93
masque/traits/lockable.py
Normal file
@ -0,0 +1,93 @@
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..error import PatternLockedError
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Lockable')
|
||||
I = TypeVar('I', bound='LockableImpl')
|
||||
|
||||
|
||||
class Lockable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all lockable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def lock(self: T) -> T:
|
||||
"""
|
||||
Lock the object, disallowing further changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def unlock(self: T) -> T:
|
||||
"""
|
||||
Unlock the object, reallowing changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_locked(self) -> bool:
|
||||
"""
|
||||
Returns:
|
||||
True if the object is locked
|
||||
"""
|
||||
pass
|
||||
|
||||
def set_locked(self: T, locked: bool) -> T:
|
||||
"""
|
||||
Locks or unlocks based on the argument.
|
||||
No action if already in the requested state.
|
||||
|
||||
Args:
|
||||
locked: State to set.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if locked != self.is_locked():
|
||||
if locked:
|
||||
self.lock()
|
||||
else:
|
||||
self.unlock()
|
||||
return self
|
||||
|
||||
|
||||
class LockableImpl(Lockable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Lockable
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
locked: bool
|
||||
""" If `True`, disallows changes to the object """
|
||||
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def __setattr__(self, name, value):
|
||||
if self.locked and name != 'locked':
|
||||
raise PatternLockedError()
|
||||
object.__setattr__(self, name, value)
|
||||
|
||||
def lock(self: I) -> I:
|
||||
object.__setattr__(self, 'locked', True)
|
||||
return self
|
||||
|
||||
def unlock(self: I) -> I:
|
||||
object.__setattr__(self, 'locked', False)
|
||||
return self
|
||||
|
||||
def is_locked(self) -> bool:
|
||||
return self.locked
|
58
masque/traits/mirrorable.py
Normal file
58
masque/traits/mirrorable.py
Normal file
@ -0,0 +1,58 @@
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Mirrorable')
|
||||
#I = TypeVar('I', bound='MirrorableImpl')
|
||||
|
||||
|
||||
class Mirrorable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all mirrorable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Abstract methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def mirror(self: T, axis: int) -> T:
|
||||
"""
|
||||
Mirror the entity across an axis.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
#class MirrorableImpl(Mirrorable, metaclass=ABCMeta):
|
||||
# """
|
||||
# Simple implementation of `Mirrorable`
|
||||
# """
|
||||
# __slots__ = ()
|
||||
#
|
||||
# _mirrored: numpy.ndarray # ndarray[bool]
|
||||
# """ Whether to mirror the instance across the x and/or y axes. """
|
||||
#
|
||||
# '''
|
||||
# ---- Properties
|
||||
# '''
|
||||
# # Mirrored property
|
||||
# @property
|
||||
# def mirrored(self) -> numpy.ndarray: # ndarray[bool]
|
||||
# """ Whether to mirror across the [x, y] axes, respectively """
|
||||
# return self._mirrored
|
||||
#
|
||||
# @mirrored.setter
|
||||
# def mirrored(self, val: Sequence[bool]):
|
||||
# if is_scalar(val):
|
||||
# raise PatternError('Mirrored must be a 2-element list of booleans')
|
||||
# self._mirrored = numpy.array(val, dtype=bool, copy=True)
|
||||
#
|
||||
# '''
|
||||
# ---- Methods
|
||||
# '''
|
132
masque/traits/positionable.py
Normal file
132
masque/traits/positionable.py
Normal file
@ -0,0 +1,132 @@
|
||||
# TODO top-level comment about how traits should set __slots__ = (), and how to use AutoSlots
|
||||
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import numpy # type: ignore
|
||||
|
||||
from ..error import PatternError
|
||||
from ..utils import vector2
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Positionable')
|
||||
I = TypeVar('I', bound='PositionableImpl')
|
||||
|
||||
|
||||
class Positionable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all positionable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Abstract properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def offset(self) -> numpy.ndarray:
|
||||
"""
|
||||
[x, y] offset
|
||||
"""
|
||||
pass
|
||||
|
||||
# @offset.setter
|
||||
# @abstractmethod
|
||||
# def offset(self, val: vector2):
|
||||
# pass
|
||||
|
||||
'''
|
||||
--- Abstract methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def get_bounds(self) -> numpy.ndarray:
|
||||
"""
|
||||
Returns `[[x_min, y_min], [x_max, y_max]]` which specify a minimal bounding box for the entity.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_offset(self: T, offset: vector2) -> T:
|
||||
"""
|
||||
Set the offset
|
||||
|
||||
Args:
|
||||
offset: [x_offset, y,offset]
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def translate(self: T, offset: vector2) -> T:
|
||||
"""
|
||||
Translate the entity by the given offset
|
||||
|
||||
Args:
|
||||
offset: [x_offset, y,offset]
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class PositionableImpl(Positionable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Positionable
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
_offset: numpy.ndarray
|
||||
""" `[x_offset, y_offset]` """
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> numpy.ndarray:
|
||||
"""
|
||||
[x, y] offset
|
||||
"""
|
||||
return self._offset
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: vector2):
|
||||
if not isinstance(val, numpy.ndarray) or val.dtype != numpy.float64:
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten()
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def set_offset(self: I, offset: vector2) -> I:
|
||||
self.offset = offset
|
||||
return self
|
||||
|
||||
def translate(self: I, offset: vector2) -> I:
|
||||
self._offset += offset
|
||||
return self
|
||||
|
||||
def _lock(self: I) -> I:
|
||||
"""
|
||||
Lock the entity, disallowing further changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._offset.flags.writeable = False
|
||||
return self
|
||||
|
||||
def _unlock(self: I) -> I:
|
||||
"""
|
||||
Unlock the entity
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._offset.flags.writeable = True
|
||||
return self
|
82
masque/traits/repeatable.py
Normal file
82
masque/traits/repeatable.py
Normal file
@ -0,0 +1,82 @@
|
||||
from typing import TypeVar, Optional, TYPE_CHECKING
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..error import PatternError
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..repetition import Repetition
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Repeatable')
|
||||
I = TypeVar('I', bound='RepeatableImpl')
|
||||
|
||||
|
||||
class Repeatable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all repeatable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def repetition(self) -> Optional['Repetition']:
|
||||
"""
|
||||
Repetition object, or None (single instance only)
|
||||
"""
|
||||
pass
|
||||
|
||||
# @repetition.setter
|
||||
# @abstractmethod
|
||||
# def repetition(self, repetition: Optional['Repetition']):
|
||||
# pass
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def set_repetition(self: T, repetition: Optional['Repetition']) -> T:
|
||||
"""
|
||||
Set the repetition
|
||||
|
||||
Args:
|
||||
repetition: new value for repetition, or None (single instance)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class RepeatableImpl(Repeatable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of `Repeatable`
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
_repetition: Optional['Repetition']
|
||||
""" Repetition object, or None (single instance only) """
|
||||
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
@property
|
||||
def repetition(self) -> Optional['Repetition']:
|
||||
return self._repetition
|
||||
|
||||
@repetition.setter
|
||||
def repetition(self, repetition: Optional['Repetition']):
|
||||
from ..repetition import Repetition
|
||||
if repetition is not None and not isinstance(repetition, Repetition):
|
||||
raise PatternError(f'{repetition} is not a valid Repetition object!')
|
||||
self._repetition = repetition
|
||||
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def set_repetition(self: I, repetition: Optional['Repetition']) -> I:
|
||||
self.repetition = repetition
|
||||
return self
|
119
masque/traits/rotatable.py
Normal file
119
masque/traits/rotatable.py
Normal file
@ -0,0 +1,119 @@
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
import numpy # type: ignore
|
||||
from numpy import pi
|
||||
|
||||
#from .positionable import Positionable
|
||||
from ..error import PatternError
|
||||
from ..utils import is_scalar, rotation_matrix_2d, vector2
|
||||
|
||||
T = TypeVar('T', bound='Rotatable')
|
||||
I = TypeVar('I', bound='RotatableImpl')
|
||||
P = TypeVar('P', bound='Pivotable')
|
||||
J = TypeVar('J', bound='PivotableImpl')
|
||||
|
||||
|
||||
class Rotatable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all rotatable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Abstract methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def rotate(self: T, theta: float) -> T:
|
||||
"""
|
||||
Rotate the shape around its origin (0, 0), ignoring its offset.
|
||||
|
||||
Args:
|
||||
theta: Angle to rotate by (counterclockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class RotatableImpl(Rotatable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of `Rotatable`
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
_rotation: float
|
||||
""" rotation for the object, radians counterclockwise """
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
""" Rotation, radians counterclockwise """
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def rotate(self: I, rotation: float) -> I:
|
||||
self.rotation += rotation
|
||||
return self
|
||||
|
||||
def set_rotation(self: I, rotation: float) -> I:
|
||||
"""
|
||||
Set the rotation to a value
|
||||
|
||||
Args:
|
||||
rotation: radians ccw
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.rotation = rotation
|
||||
return self
|
||||
|
||||
|
||||
class Pivotable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for entites which can be rotated around a point.
|
||||
This requires that they are `Positionable` but not necessarily `Rotatable` themselves.
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
@abstractmethod
|
||||
def rotate_around(self: P, pivot: vector2, rotation: float) -> P:
|
||||
"""
|
||||
Rotate the object around a point.
|
||||
|
||||
Args:
|
||||
pivot: Point (x, y) to rotate around
|
||||
rotation: Angle to rotate by (counterclockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class PivotableImpl(Pivotable, metaclass=ABCMeta):
|
||||
"""
|
||||
Implementation of `Pivotable` for objects which are `Rotatable`
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
def rotate_around(self: J, pivot: vector2, rotation: float) -> J:
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.rotate(rotation)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
77
masque/traits/scalable.py
Normal file
77
masque/traits/scalable.py
Normal file
@ -0,0 +1,77 @@
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..error import PatternError
|
||||
from ..utils import is_scalar
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Scalable')
|
||||
I = TypeVar('I', bound='ScalableImpl')
|
||||
|
||||
|
||||
class Scalable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all scalable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Abstract methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def scale_by(self: T, c: float) -> T:
|
||||
"""
|
||||
Scale the entity by a factor
|
||||
|
||||
Args:
|
||||
c: scaling factor
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class ScalableImpl(Scalable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Scalable
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
_scale: float
|
||||
""" scale factor for the entity """
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
def scale(self) -> float:
|
||||
return self._scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise PatternError('Scale must be a scalar')
|
||||
if not val > 0:
|
||||
raise PatternError('Scale must be positive')
|
||||
self._scale = val
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def scale_by(self: I, c: float) -> I:
|
||||
self.scale *= c
|
||||
return self
|
||||
|
||||
def set_scale(self: I, scale: float) -> I:
|
||||
"""
|
||||
Set the sclae to a value
|
||||
|
||||
Args:
|
||||
scale: absolute scale factor
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.scale = scale
|
||||
return self
|
@ -1,14 +1,16 @@
|
||||
"""
|
||||
Various helper functions
|
||||
"""
|
||||
from typing import Any, Union, Tuple, Sequence, Dict, List
|
||||
from abc import ABCMeta
|
||||
|
||||
from typing import Any, Union, Tuple, Sequence
|
||||
import numpy # type: ignore
|
||||
|
||||
import numpy
|
||||
|
||||
# Type definitions
|
||||
vector2 = Union[numpy.ndarray, Tuple[float, float], Sequence[float]]
|
||||
layer_t = Union[int, Tuple[int, int], str]
|
||||
annotations_t = Dict[str, List[Union[int, float, str]]]
|
||||
|
||||
|
||||
def is_scalar(var: Any) -> bool:
|
||||
@ -82,7 +84,7 @@ def normalize_mirror(mirrored: Sequence[bool]) -> Tuple[bool, float]:
|
||||
"""
|
||||
|
||||
mirrored_x, mirrored_y = mirrored
|
||||
mirror_x = (mirrored_x != mirrored_y) #XOR
|
||||
mirror_x = (mirrored_x != mirrored_y) # XOR
|
||||
angle = numpy.pi if mirrored_y else 0
|
||||
return mirror_x, angle
|
||||
|
||||
@ -122,8 +124,8 @@ def remove_colinear_vertices(vertices: numpy.ndarray, closed_path: bool = True)
|
||||
|
||||
# Check for dx0/dy0 == dx1/dy1
|
||||
|
||||
dv = numpy.roll(vertices, -1, axis=0) - vertices # [y1-y0, y2-y1, ...]
|
||||
dxdy = dv * numpy.roll(dv, 1, axis=0)[:, ::-1] #[[dx0*(dy_-1), (dx_-1)*dy0], dx1*dy0, dy1*dy0]]
|
||||
dv = numpy.roll(vertices, -1, axis=0) - vertices # [y1-y0, y2-y1, ...]
|
||||
dxdy = dv * numpy.roll(dv, 1, axis=0)[:, ::-1] # [[dx0*(dy_-1), (dx_-1)*dy0], dx1*dy0, dy1*dy0]]
|
||||
|
||||
dxdy_diff = numpy.abs(numpy.diff(dxdy, axis=1))[:, 0]
|
||||
err_mult = 2 * numpy.abs(dxdy).sum(axis=1) + 1e-40
|
||||
@ -133,3 +135,30 @@ def remove_colinear_vertices(vertices: numpy.ndarray, closed_path: bool = True)
|
||||
slopes_equal[[0, -1]] = False
|
||||
|
||||
return vertices[~slopes_equal]
|
||||
|
||||
|
||||
class AutoSlots(ABCMeta):
|
||||
"""
|
||||
Metaclass for automatically generating __slots__ based on superclass type annotations.
|
||||
|
||||
Superclasses must set `__slots__ = ()` to make this work properly.
|
||||
|
||||
This is a workaround for the fact that non-empty `__slots__` can't be used
|
||||
with multiple inheritance. Since we only use multiple inheritance with abstract
|
||||
classes, they can have empty `__slots__` and their attribute type annotations
|
||||
can be used to generate a full `__slots__` for the concrete class.
|
||||
"""
|
||||
def __new__(cls, name, bases, dctn):
|
||||
parents = set()
|
||||
for base in bases:
|
||||
parents |= set(base.mro())
|
||||
|
||||
slots = tuple(dctn.get('__slots__', tuple()))
|
||||
for parent in parents:
|
||||
if not hasattr(parent, '__annotations__'):
|
||||
continue
|
||||
slots += tuple(getattr(parent, '__annotations__').keys())
|
||||
|
||||
dctn['__slots__'] = slots
|
||||
return super().__new__(cls, name, bases, dctn)
|
||||
|
||||
|
46
setup.py
46
setup.py
@ -2,6 +2,7 @@
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
|
||||
with open('README.md', 'r') as f:
|
||||
long_description = f.read()
|
||||
|
||||
@ -18,15 +19,20 @@ setup(name='masque',
|
||||
url='https://mpxd.net/code/jan/masque',
|
||||
packages=find_packages(),
|
||||
package_data={
|
||||
'masque': ['VERSION']
|
||||
'masque': ['VERSION',
|
||||
'py.typed',
|
||||
]
|
||||
},
|
||||
install_requires=[
|
||||
'numpy',
|
||||
],
|
||||
extras_require={
|
||||
'visualization': ['matplotlib'],
|
||||
'gdsii': ['python-gdsii'],
|
||||
'klamath': ['klamath'],
|
||||
'oasis': ['fatamorgana>=0.7'],
|
||||
'dxf': ['ezdxf'],
|
||||
'svg': ['svgwrite'],
|
||||
'visualization': ['matplotlib'],
|
||||
'text': ['freetype-py', 'matplotlib'],
|
||||
},
|
||||
classifiers=[
|
||||
@ -37,10 +43,42 @@ setup(name='masque',
|
||||
'Intended Audience :: Manufacturing',
|
||||
'Intended Audience :: Science/Research',
|
||||
'License :: OSI Approved :: GNU Affero General Public License v3',
|
||||
'Operating System :: POSIX :: Linux',
|
||||
'Operating System :: Microsoft :: Windows',
|
||||
'Topic :: Scientific/Engineering :: Electronic Design Automation (EDA)',
|
||||
'Topic :: Scientific/Engineering :: Visualization',
|
||||
],
|
||||
keywords=[
|
||||
'layout',
|
||||
'design',
|
||||
'CAD',
|
||||
'EDA',
|
||||
'electronics',
|
||||
'photonics',
|
||||
'IC',
|
||||
'mask',
|
||||
'pattern',
|
||||
'drawing',
|
||||
'lithography',
|
||||
'litho',
|
||||
'geometry',
|
||||
'geometric',
|
||||
'polygon',
|
||||
'curve',
|
||||
'ellipse',
|
||||
'oas',
|
||||
'gds',
|
||||
'dxf',
|
||||
'svg',
|
||||
'OASIS',
|
||||
'gdsii',
|
||||
'gds2',
|
||||
'convert',
|
||||
'stream',
|
||||
'custom',
|
||||
'visualize',
|
||||
'vector',
|
||||
'freeform',
|
||||
'manhattan',
|
||||
'angle',
|
||||
],
|
||||
)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user