Add lib types

This commit is contained in:
jan 2023-01-12 02:23:36 -08:00
parent c95b2f4c0d
commit 52f0b4aa93

View File

@ -29,118 +29,18 @@ logger = logging.getLogger(__name__)
visitor_function_t = Callable[['Pattern', Tuple['Pattern'], Dict, NDArray[numpy.float64]], 'Pattern']
L = TypeVar('L', bound='Library')
LL = TypeVar('LL', bound='LazyLibrary')
class Library:
"""
This class is usually used to create a library of Patterns by mapping names to
functions which generate or load the relevant `Pattern` object as-needed.
class Library(Mapping[str, Pattern], metaclass=ABCMeta):
#def __getitem__(self, key: str) -> 'Pattern':
#def __iter__(self) -> Iterator[str]:
#def __len__(self) -> int:
The cache can be disabled by setting the `enable_cache` attribute to `False`.
"""
dict: Dict[str, Callable[[], Pattern]]
cache: Dict[str, 'Pattern']
enable_cache: bool = True
def __init__(self) -> None:
self.dict = {}
self.cache = {}
def __setitem__(self, key: str, value: Callable[[], Pattern]) -> None:
self.dict[key] = value
if key in self.cache:
del self.cache[key]
def __delitem__(self, key: str) -> None:
del self.dict[key]
if key in self.cache:
del self.cache[key]
def __getitem__(self, key: str) -> 'Pattern':
logger.debug(f'loading {key}')
if self.enable_cache and key in self.cache:
logger.debug(f'found {key} in cache')
return self.cache[key]
func = self.dict[key]
pat = func()
self.cache[key] = pat
return pat
def __iter__(self) -> Iterator[str]:
return iter(self.keys())
def __contains__(self, key: str) -> bool:
return key in self.dict
def keys(self) -> Iterator[str]:
return iter(self.dict.keys())
def values(self) -> Iterator['Pattern']:
return iter(self[key] for key in self.keys())
def items(self) -> Iterator[Tuple[str, 'Pattern']]:
return iter((key, self[key]) for key in self.keys())
#__contains__, keys, items, values, get, __eq__, __ne__ supplied by Mapping
def __repr__(self) -> str:
return '<Library with keys ' + repr(list(self.dict.keys())) + '>'
def precache(self: L) -> L:
"""
Force all patterns into the cache
Returns:
self
"""
for key in self.dict:
_ = self.dict.__getitem__(key)
return self
def add(
self: L,
other: L,
use_ours: Callable[[str], bool] = lambda name: False,
use_theirs: Callable[[str], bool] = lambda name: False,
) -> L:
"""
Add keys from another library into this one.
Args:
other: The library to insert keys from
use_ours: Decision function for name conflicts, called with cell name.
Should return `True` if the value from `self` should be used.
use_theirs: Decision function for name conflicts. Same format as `use_ours`.
Should return `True` if the value from `other` should be used.
`use_ours` takes priority over `use_theirs`.
Returns:
self
"""
duplicates = set(self.keys()) & set(other.keys())
keep_ours = set(name for name in duplicates if use_ours(name))
keep_theirs = set(name for name in duplicates - keep_ours if use_theirs(name))
conflicts = duplicates - keep_ours - keep_theirs
if conflicts:
raise LibraryError('Unresolved duplicate keys encountered in library merge: ' + pformat(conflicts))
for key in set(other.keys()) - keep_ours:
self.dict[key] = other.dict[key]
if key in other.cache:
self.cache[key] = other.cache[key]
return self
def clear_cache(self: L) -> L:
"""
Clear the cache of this library.
This is usually used before modifying or deleting cells, e.g. when merging
with another library.
Returns:
self
"""
self.cache.clear()
return self
return '<Library with keys ' + repr(list(self.keys())) + '>'
def referenced_patterns(
self,
@ -176,10 +76,11 @@ class Library:
return targets
# TODO maybe not for immutable?
def subtree(
self: L,
tops: Union[str, Sequence[str]],
) -> L:
) -> ML:
"""
Return a new `Library`, containing only the specified patterns and the patterns they
reference (recursively).
@ -192,107 +93,10 @@ class Library:
"""
keep: Set[str] = self.referenced_patterns(tops) - set((None,)) # type: ignore
new = type(self)()
for key in keep:
new.dict[key] = self.dict[key]
if key in self.cache:
new.cache[key] = self.cache[key]
filtered = {kk: vv for kk, vv in self.items() if kk in keep}
new = WrapLibrary(filtered)
return new
def dfs(
self: L,
top: str,
visit_before: visitor_function_t = None,
visit_after: visitor_function_t = None,
transform: Union[ArrayLike, bool, None] = False,
memo: Optional[Dict] = None,
hierarchy: Tuple[str, ...] = (),
) -> L:
"""
Convenience function.
Performs a depth-first traversal of a pattern and its subpatterns.
At each pattern in the tree, the following sequence is called:
```
current_pattern = visit_before(current_pattern, **vist_args)
for sp in current_pattern.subpatterns]
self.dfs(sp.target, visit_before, visit_after, updated_transform,
memo, (current_pattern,) + hierarchy)
current_pattern = visit_after(current_pattern, **visit_args)
```
where `visit_args` are
`hierarchy`: (top_pattern, L1_pattern, L2_pattern, ..., parent_pattern)
tuple of all parent-and-higher patterns
`transform`: numpy.ndarray containing cumulative
[x_offset, y_offset, rotation (rad), mirror_x (0 or 1)]
for the instance being visited
`memo`: Arbitrary dict (not altered except by `visit_before()` and `visit_after()`)
Args:
top: Name of the pattern to start at (root node of the tree).
visit_before: Function to call before traversing subpatterns.
Should accept a `Pattern` and `**visit_args`, and return the (possibly modified)
pattern. Default `None` (not called).
visit_after: Function to call after traversing subpatterns.
Should accept a `Pattern` and `**visit_args`, and return the (possibly modified)
pattern. Default `None` (not called).
transform: Initial value for `visit_args['transform']`.
Can be `False`, in which case the transform is not calculated.
`True` or `None` is interpreted as `[0, 0, 0, 0]`.
memo: Arbitrary dict for use by `visit_*()` functions. Default `None` (empty dict).
hierarchy: Tuple of patterns specifying the hierarchy above the current pattern.
Appended to the start of the generated `visit_args['hierarchy']`.
Default is an empty tuple.
Returns:
self
"""
if memo is None:
memo = {}
if transform is None or transform is True:
transform = numpy.zeros(4)
elif transform is not False:
transform = numpy.array(transform)
if top in hierarchy:
raise PatternError('.dfs() called on pattern with circular reference')
pat = self[top]
if visit_before is not None:
pat = visit_before(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
for subpattern in pat.subpatterns:
if transform is not False:
sign = numpy.ones(2)
if transform[3]:
sign[1] = -1
xy = numpy.dot(rotation_matrix_2d(transform[2]), subpattern.offset * sign)
mirror_x, angle = normalize_mirror(subpattern.mirrored)
angle += subpattern.rotation
sp_transform = transform + (xy[0], xy[1], angle, mirror_x)
sp_transform[3] %= 2
else:
sp_transform = False
if subpattern.target is None:
continue
self.dfs(
top=subpattern.target,
visit_before=visit_before,
visit_after=visit_after,
transform=sp_transform,
memo=memo,
hierarchy=hierarchy + (top,),
)
if visit_after is not None:
pat = visit_after(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
self[top] = lambda: pat
return self
def polygonize(
self: L,
poly_num_points: Optional[int] = None,
@ -335,153 +139,6 @@ class Library:
pat.manhattanize(grid_x, grid_y)
return self
def subpatternize(
self: L,
norm_value: int = int(1e6),
exclude_types: Tuple[Type] = (Polygon,),
label2name: Optional[Callable[[Tuple], str]] = None,
threshold: int = 2,
) -> L:
"""
Iterates through all `Pattern`s. Within each `Pattern`, it iterates
over all shapes, calling `.normalized_form(norm_value)` on them to retrieve a scale-,
offset-, dose-, and rotation-independent form. Each shape whose normalized form appears
more than once is removed and re-added using subpattern objects referencing a newly-created
`Pattern` containing only the normalized form of the shape.
Note:
The default norm_value was chosen to give a reasonable precision when using
integer values for coordinates.
Args:
norm_value: Passed to `shape.normalized_form(norm_value)`. Default `1e6` (see function
note)
exclude_types: Shape types passed in this argument are always left untouched, for
speed or convenience. Default: `(shapes.Polygon,)`
label2name: Given a label tuple as returned by `shape.normalized_form(...)`, pick
a name for the generated pattern. Default `self.get_name('_shape')`.
threshold: Only replace shapes with subpatterns if there will be at least this many
instances.
Returns:
self
"""
# This currently simplifies globally (same shape in different patterns is
# merged into the same subpattern target.
if exclude_types is None:
exclude_types = ()
if label2name is None:
label2name = lambda label: self.get_name('_shape')
shape_counts: MutableMapping[Tuple, int] = defaultdict(int)
shape_funcs = {}
### First pass ###
# Using the label tuple from `.normalized_form()` as a key, check how many of each shape
# are present and store the shape function for each one
for pat in tuple(self.values()):
for i, shape in enumerate(pat.shapes):
if not any(isinstance(shape, t) for t in exclude_types):
label, _values, func = shape.normalized_form(norm_value)
shape_funcs[label] = func
shape_counts[label] += 1
shape_pats = {}
for label, count in shape_counts.items():
if count < threshold:
continue
shape_func = shape_funcs[label]
shape_pat = Pattern(shapes=[shape_func()])
shape_pats[label] = shape_pat
### Second pass ###
for pat in tuple(self.values()):
# Store `[(index_in_shapes, values_from_normalized_form), ...]` for all shapes which
# are to be replaced.
# The `values` are `(offset, scale, rotation, dose)`.
shape_table: MutableMapping[Tuple, List] = defaultdict(list)
for i, shape in enumerate(pat.shapes):
if any(isinstance(shape, t) for t in exclude_types):
continue
label, values, _func = shape.normalized_form(norm_value)
if label not in shape_pats:
continue
shape_table[label].append((i, values))
# For repeated shapes, create a `Pattern` holding a normalized shape object,
# and add `pat.subpatterns` entries for each occurrence in pat. Also, note down that
# we should delete the `pat.shapes` entries for which we made SubPatterns.
shapes_to_remove = []
for label in shape_table:
target = label2name(label)
for i, values in shape_table[label]:
offset, scale, rotation, mirror_x, dose = values
pat.addsp(target=target, offset=offset, scale=scale,
rotation=rotation, dose=dose, mirrored=(mirror_x, False))
shapes_to_remove.append(i)
# Remove any shapes for which we have created subpatterns.
for i in sorted(shapes_to_remove, reverse=True):
del pat.shapes[i]
for ll, pp in shape_pats.items():
self[label2name(ll)] = lambda: pp
return self
def wrap_repeated_shapes(
self: L,
name_func: Optional[Callable[['Pattern', Union[Shape, Label]], str]] = None,
) -> L:
"""
Wraps all shapes and labels with a non-`None` `repetition` attribute
into a `SubPattern`/`Pattern` combination, and applies the `repetition`
to each `SubPattern` instead of its contained shape.
Args:
name_func: Function f(this_pattern, shape) which generates a name for the
wrapping pattern. Default is `self.get_name('_rep')`.
Returns:
self
"""
if name_func is None:
name_func = lambda _pat, _shape: self.get_name('_rep')
for pat in tuple(self.values()):
new_shapes = []
for shape in pat.shapes:
if shape.repetition is None:
new_shapes.append(shape)
continue
name = name_func(pat, shape)
self[name] = lambda: Pattern(shapes=[shape])
pat.addsp(name, repetition=shape.repetition)
shape.repetition = None
pat.shapes = new_shapes
new_labels = []
for label in pat.labels:
if label.repetition is None:
new_labels.append(label)
continue
name = name_func(pat, label)
self[name] = lambda: Pattern(labels=[label])
pat.addsp(name, repetition=label.repetition)
label.repetition = None
pat.labels = new_labels
return self
def flatten(
self: L,
tops: Union[str, Sequence[str]],
@ -590,5 +247,457 @@ class Library:
toplevel = list(names - not_toplevel)
return toplevel
def __deepcopy__(self, memo: Dict = None) -> 'Library':
raise LibraryError('Libraries cannot be deepcopied (deepcopy doesn\'t descend into closures)')
class MutableLibrary(Library, metaclass=ABCMeta):
@abstractmethod
def __setitem__(self, key: str, value: VVV) -> None:
pass
@abstractmethod
def __delitem__(self, key: str) -> None:
pass
@abstractmethod
def __delitem__(self, key: str) -> None:
pass
@abstractmethod
def _set(self, key: str, value: Pattern) -> None:
pass
@abstractmethod
def _copy(self: ML, other: ML, key: str) -> None:
pass
def add(
self: WL,
other: L,
use_ours: Callable[[str], bool] = lambda name: False,
use_theirs: Callable[[str], bool] = lambda name: False,
) -> ML:
"""
Add keys from another library into this one.
Args:
other: The library to insert keys from
use_ours: Decision function for name conflicts, called with cell name.
Should return `True` if the value from `self` should be used.
use_theirs: Decision function for name conflicts. Same format as `use_ours`.
Should return `True` if the value from `other` should be used.
`use_ours` takes priority over `use_theirs`.
Returns:
self
"""
duplicates = set(self.keys()) & set(other.keys())
keep_ours = set(name for name in duplicates if use_ours(name))
keep_theirs = set(name for name in duplicates - keep_ours if use_theirs(name))
conflicts = duplicates - keep_ours - keep_theirs
if conflicts:
raise LibraryError('Unresolved duplicate keys encountered in library merge: ' + pformat(conflicts))
for key in set(other.keys()) - keep_ours:
self._merge(other, key)
return self
#TODO maybe also in immutable case?
def dfs(
self: ML,
top: str,
visit_before: visitor_function_t = None,
visit_after: visitor_function_t = None,
transform: Union[ArrayLike, bool, None] = False,
memo: Optional[Dict] = None,
hierarchy: Tuple[str, ...] = (),
) -> ML:
"""
Convenience function.
Performs a depth-first traversal of a pattern and its subpatterns.
At each pattern in the tree, the following sequence is called:
```
current_pattern = visit_before(current_pattern, **vist_args)
for sp in current_pattern.subpatterns]
self.dfs(sp.target, visit_before, visit_after, updated_transform,
memo, (current_pattern,) + hierarchy)
current_pattern = visit_after(current_pattern, **visit_args)
```
where `visit_args` are
`hierarchy`: (top_pattern, L1_pattern, L2_pattern, ..., parent_pattern)
tuple of all parent-and-higher patterns
`transform`: numpy.ndarray containing cumulative
[x_offset, y_offset, rotation (rad), mirror_x (0 or 1)]
for the instance being visited
`memo`: Arbitrary dict (not altered except by `visit_before()` and `visit_after()`)
Args:
top: Name of the pattern to start at (root node of the tree).
visit_before: Function to call before traversing subpatterns.
Should accept a `Pattern` and `**visit_args`, and return the (possibly modified)
pattern. Default `None` (not called).
visit_after: Function to call after traversing subpatterns.
Should accept a `Pattern` and `**visit_args`, and return the (possibly modified)
pattern. Default `None` (not called).
transform: Initial value for `visit_args['transform']`.
Can be `False`, in which case the transform is not calculated.
`True` or `None` is interpreted as `[0, 0, 0, 0]`.
memo: Arbitrary dict for use by `visit_*()` functions. Default `None` (empty dict).
hierarchy: Tuple of patterns specifying the hierarchy above the current pattern.
Appended to the start of the generated `visit_args['hierarchy']`.
Default is an empty tuple.
Returns:
self
"""
if memo is None:
memo = {}
if transform is None or transform is True:
transform = numpy.zeros(4)
elif transform is not False:
transform = numpy.array(transform)
if top in hierarchy:
raise PatternError('.dfs() called on pattern with circular reference')
pat = self[top]
if visit_before is not None:
pat = visit_before(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
for subpattern in pat.subpatterns:
if transform is not False:
sign = numpy.ones(2)
if transform[3]:
sign[1] = -1
xy = numpy.dot(rotation_matrix_2d(transform[2]), subpattern.offset * sign)
mirror_x, angle = normalize_mirror(subpattern.mirrored)
angle += subpattern.rotation
sp_transform = transform + (xy[0], xy[1], angle, mirror_x)
sp_transform[3] %= 2
else:
sp_transform = False
if subpattern.target is None:
continue
self.dfs(
top=subpattern.target,
visit_before=visit_before,
visit_after=visit_after,
transform=sp_transform,
memo=memo,
hierarchy=hierarchy + (top,),
)
if visit_after is not None:
pat = visit_after(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
self._set(top, pat)
return self
def subpatternize(
self: ML,
norm_value: int = int(1e6),
exclude_types: Tuple[Type] = (Polygon,),
label2name: Optional[Callable[[Tuple], str]] = None,
threshold: int = 2,
) -> ML:
"""
Iterates through all `Pattern`s. Within each `Pattern`, it iterates
over all shapes, calling `.normalized_form(norm_value)` on them to retrieve a scale-,
offset-, dose-, and rotation-independent form. Each shape whose normalized form appears
more than once is removed and re-added using subpattern objects referencing a newly-created
`Pattern` containing only the normalized form of the shape.
Note:
The default norm_value was chosen to give a reasonable precision when using
integer values for coordinates.
Args:
norm_value: Passed to `shape.normalized_form(norm_value)`. Default `1e6` (see function
note)
exclude_types: Shape types passed in this argument are always left untouched, for
speed or convenience. Default: `(shapes.Polygon,)`
label2name: Given a label tuple as returned by `shape.normalized_form(...)`, pick
a name for the generated pattern. Default `self.get_name('_shape')`.
threshold: Only replace shapes with subpatterns if there will be at least this many
instances.
Returns:
self
"""
# This currently simplifies globally (same shape in different patterns is
# merged into the same subpattern target.
if exclude_types is None:
exclude_types = ()
if label2name is None:
label2name = lambda label: self.get_name('_shape')
shape_counts: MutableMapping[Tuple, int] = defaultdict(int)
shape_funcs = {}
### First pass ###
# Using the label tuple from `.normalized_form()` as a key, check how many of each shape
# are present and store the shape function for each one
for pat in tuple(self.values()):
for i, shape in enumerate(pat.shapes):
if not any(isinstance(shape, t) for t in exclude_types):
label, _values, func = shape.normalized_form(norm_value)
shape_funcs[label] = func
shape_counts[label] += 1
shape_pats = {}
for label, count in shape_counts.items():
if count < threshold:
continue
shape_func = shape_funcs[label]
shape_pat = Pattern(shapes=[shape_func()])
shape_pats[label] = shape_pat
### Second pass ###
for pat in tuple(self.values()):
# Store `[(index_in_shapes, values_from_normalized_form), ...]` for all shapes which
# are to be replaced.
# The `values` are `(offset, scale, rotation, dose)`.
shape_table: MutableMapping[Tuple, List] = defaultdict(list)
for i, shape in enumerate(pat.shapes):
if any(isinstance(shape, t) for t in exclude_types):
continue
label, values, _func = shape.normalized_form(norm_value)
if label not in shape_pats:
continue
shape_table[label].append((i, values))
# For repeated shapes, create a `Pattern` holding a normalized shape object,
# and add `pat.subpatterns` entries for each occurrence in pat. Also, note down that
# we should delete the `pat.shapes` entries for which we made SubPatterns.
shapes_to_remove = []
for label in shape_table:
target = label2name(label)
for i, values in shape_table[label]:
offset, scale, rotation, mirror_x, dose = values
pat.addsp(target=target, offset=offset, scale=scale,
rotation=rotation, dose=dose, mirrored=(mirror_x, False))
shapes_to_remove.append(i)
# Remove any shapes for which we have created subpatterns.
for i in sorted(shapes_to_remove, reverse=True):
del pat.shapes[i]
for ll, pp in shape_pats.items():
self._set(label2name(ll), pp)
return self
def wrap_repeated_shapes(
self: ML,
name_func: Optional[Callable[['Pattern', Union[Shape, Label]], str]] = None,
) -> ML:
"""
Wraps all shapes and labels with a non-`None` `repetition` attribute
into a `SubPattern`/`Pattern` combination, and applies the `repetition`
to each `SubPattern` instead of its contained shape.
Args:
name_func: Function f(this_pattern, shape) which generates a name for the
wrapping pattern. Default is `self.get_name('_rep')`.
Returns:
self
"""
if name_func is None:
name_func = lambda _pat, _shape: self.get_name('_rep')
for pat in tuple(self.values()):
new_shapes = []
for shape in pat.shapes:
if shape.repetition is None:
new_shapes.append(shape)
continue
name = name_func(pat, shape)
self._set(name, Pattern(shapes=[shape]))
pat.addsp(name, repetition=shape.repetition)
shape.repetition = None
pat.shapes = new_shapes
new_labels = []
for label in pat.labels:
if label.repetition is None:
new_labels.append(label)
continue
name = name_func(pat, label)
self._set(name, Pattern(labels=[label]))
pat.addsp(name, repetition=label.repetition)
label.repetition = None
pat.labels = new_labels
return self
def subtree(
self: ML,
tops: Union[str, Sequence[str]],
) -> ML:
"""
Return a new `Library`, containing only the specified patterns and the patterns they
reference (recursively).
Args:
tops: Name(s) of patterns to keep
Returns:
A `Library` containing only `tops` and the patterns they reference.
"""
keep: Set[str] = self.referenced_patterns(tops) - set((None,)) # type: ignore
new = type(self)()
for key in keep:
new._merge(self, key)
return new
class WrapROLibrary(Library):
mapping: Mapping[str, Pattern]
def __init__(
self,
mapping: Mapping[str, Pattern],
) -> None:
self.mapping = mapping
def __getitem__(self, key: str) -> 'Pattern':
return self.mapping[key]
def __iter__(self) -> Iterator[str]:
return iter(self.mapping)
def __len__(self) -> int:
return len(self.mapping)
def __repr__(self) -> str:
return f'<WrapROLibrary ({type(self.mapping)}) with keys ' + repr(list(self.keys())) + '>'
class WrapLibrary(MutableLibrary):
mapping: MutableMapping[str, Pattern]
def __init__(
self,
mapping: MutableMapping[str, Pattern],
) -> None:
self.mapping = mapping
def __getitem__(self, key: str) -> 'Pattern':
return self.mapping[key]
def __iter__(self) -> Iterator[str]:
return iter(self.mapping)
def __len__(self) -> int:
return len(self.mapping)
def __setitem__(self, key: str, value: Pattern) -> None:
self.mapping[key] = value
def __delitem__(self, key: str) -> None:
del self.mapping[key]
def _set(self, key: str, value: Pattern) -> None:
self[key] = value
def _merge(self: ML, other: L, key: str) -> None:
self[key] = other[key]
def __repr__(self) -> str:
return f'<WrapLibrary ({type(self.mapping)}) with keys ' + repr(list(self.keys())) + '>'
class LazyLibrary(MutableLibrary):
"""
This class is usually used to create a library of Patterns by mapping names to
functions which generate or load the relevant `Pattern` object as-needed.
The cache can be disabled by setting the `enable_cache` attribute to `False`.
"""
dict: Dict[str, Callable[[], Pattern]]
cache: Dict[str, 'Pattern']
enable_cache: bool = True
def __init__(self) -> None:
self.dict = {}
self.cache = {}
def __setitem__(self, key: str, value: Callable[[], Pattern]) -> None:
self.dict[key] = value
if key in self.cache:
del self.cache[key]
def __delitem__(self, key: str) -> None:
del self.dict[key]
if key in self.cache:
del self.cache[key]
def __getitem__(self, key: str) -> 'Pattern':
logger.debug(f'loading {key}')
if self.enable_cache and key in self.cache:
logger.debug(f'found {key} in cache')
return self.cache[key]
func = self.dict[key]
pat = func()
self.cache[key] = pat
return pat
def __iter__(self) -> Iterator[str]:
return iter(self.dict)
def __len__(self) -> int:
return len(self.dict)
def _set(self, key: str, value: Pattern) -> None:
self[key] = lambda: value
def _merge(self: LL, other: L, key: str) -> None:
if type(self) is type(other):
self.dict[key] = other.dict[key]
if key in other.cache:
self.cache[key] = other.cache[key]
else:
self._set(key, other[key])
def __repr__(self) -> str:
return '<LazyLibrary with keys ' + repr(list(self.dict.keys())) + '>'
def precache(self: L) -> L:
"""
Force all patterns into the cache
Returns:
self
"""
for key in self.dict:
_ = self.dict.__getitem__(key)
return self
def clear_cache(self: L) -> L:
"""
Clear the cache of this library.
This is usually used before modifying or deleting cells, e.g. when merging
with another library.
Returns:
self
"""
self.cache.clear()
return self
def __deepcopy__(self, memo: Dict = None) -> 'LazyLibrary':
raise LibraryError('LazyLibrary cannot be deepcopied (deepcopy doesn\'t descend into closures)')