tutorial updates
This commit is contained in:
parent
0471addd65
commit
47d655d270
@ -4,12 +4,18 @@ import numpy
|
||||
from numpy import pi
|
||||
|
||||
from masque import layer_t, Pattern, SubPattern, Label
|
||||
from masque.shapes import Circle, Arc
|
||||
from masque.shapes import Circle, Arc, Polygon
|
||||
from masque.builder import Device, Port
|
||||
from masque.library import Library, DeviceLibrary
|
||||
import masque.file.gdsii
|
||||
|
||||
import pcgen
|
||||
|
||||
# Note that masque units are arbitrary, and are only given
|
||||
# physical significance when writing to a file.
|
||||
GDS_OPTS = {
|
||||
'meters_per_unit': 1e-9, # GDS database unit, 1 nanometer
|
||||
'logical_units_per_unit': 1e-3, # GDS display unit, 1 micron
|
||||
}
|
||||
|
||||
|
||||
def hole(
|
||||
@ -20,8 +26,8 @@ def hole(
|
||||
Generate a pattern containing a single circular hole.
|
||||
|
||||
Args:
|
||||
layer: Layer to draw the circle on.
|
||||
radius: Circle radius.
|
||||
layer: Layer to draw the circle on.
|
||||
|
||||
Returns:
|
||||
Pattern, named `'hole'`
|
||||
@ -32,6 +38,32 @@ def hole(
|
||||
return pat
|
||||
|
||||
|
||||
def triangle(
|
||||
radius: float,
|
||||
layer: layer_t = (1, 0),
|
||||
) -> Pattern:
|
||||
"""
|
||||
Generate a pattern containing a single triangular hole.
|
||||
|
||||
Args:
|
||||
radius: Radius of circumscribed circle.
|
||||
layer: Layer to draw the circle on.
|
||||
|
||||
Returns:
|
||||
Pattern, named `'triangle'`
|
||||
"""
|
||||
vertices = numpy.array([
|
||||
(numpy.cos( pi / 2), numpy.sin( pi / 2)),
|
||||
(numpy.cos(pi + pi / 6), numpy.sin(pi + pi / 6)),
|
||||
(numpy.cos( - pi / 6), numpy.sin( - pi / 6)),
|
||||
]) * radius
|
||||
|
||||
pat = Pattern('triangle', shapes=[
|
||||
Polygon(offset=(0, 0), layer=layer, vertices=vertices),
|
||||
])
|
||||
return pat
|
||||
|
||||
|
||||
def smile(
|
||||
radius: float,
|
||||
layer: layer_t = (1, 0),
|
||||
@ -66,14 +98,18 @@ def smile(
|
||||
return pat
|
||||
|
||||
|
||||
def _main() -> None:
|
||||
hole_pat = hole(1000)
|
||||
smile_pat = smile(1000)
|
||||
def main() -> None:
|
||||
hole_pat = hole(1000)
|
||||
smile_pat = smile(1000)
|
||||
tri_pat = triangle(1000)
|
||||
|
||||
masque.file.gdsii.writefile([hole_pat, smile_pat], 'basic.gds', 1e-9, 1e-3)
|
||||
units_per_meter = 1e-9
|
||||
units_per_display_unit = 1e-3
|
||||
|
||||
smile_pat.visualize()
|
||||
masque.file.gdsii.writefile([hole_pat, tri_pat, smile_pat], 'basic_shapes.gds', **GDS_OPTS)
|
||||
|
||||
smile_pat.visualize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
_main()
|
||||
main()
|
368
examples/tutorial/devices.py
Normal file
368
examples/tutorial/devices.py
Normal file
@ -0,0 +1,368 @@
|
||||
from typing import Tuple, Sequence, Dict
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from masque import layer_t, Pattern, SubPattern, Label
|
||||
from masque.shapes import Polygon
|
||||
from masque.builder import Device, Port
|
||||
from masque.file.gdsii import writefile
|
||||
from masque.utils import rotation_matrix_2d
|
||||
|
||||
import pcgen
|
||||
import basic_shapes
|
||||
from basic_shapes import GDS_OPTS
|
||||
|
||||
|
||||
LATTICE_CONSTANT = 512
|
||||
RADIUS = LATTICE_CONSTANT / 2 * 0.75
|
||||
|
||||
|
||||
def perturbed_l3(
|
||||
lattice_constant: float,
|
||||
hole: Pattern,
|
||||
trench_dose: float = 1.0,
|
||||
trench_layer: layer_t = (1, 0),
|
||||
shifts_a: Sequence[float] = (0.15, 0, 0.075),
|
||||
shifts_r: Sequence[float] = (1.0, 1.0, 1.0),
|
||||
xy_size: Tuple[int, int] = (10, 10),
|
||||
perturbed_radius: float = 1.1,
|
||||
trench_width: float = 1200,
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Device` representing a perturbed L3 cavity.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: `Pattern` object containing a single hole
|
||||
trench_dose: Dose for the trenches. Default 1.0. (Hole dose is 1.0.)
|
||||
trench_layer: Layer for the trenches, default `(1, 0)`.
|
||||
shifts_a: passed to `pcgen.l3_shift`; specifies lattice constant
|
||||
(1 - multiplicative factor) for shifting holes adjacent to
|
||||
the defect (same row). Default `(0.15, 0, 0.075)` for first,
|
||||
second, third holes.
|
||||
shifts_r: passed to `pcgen.l3_shift`; specifies radius for perturbing
|
||||
holes adjacent to the defect (same row). Default 1.0 for all holes.
|
||||
Provided sequence should have same length as `shifts_a`.
|
||||
xy_size: `(x, y)` number of mirror periods in each direction; total size is
|
||||
`2 * n + 1` holes in each direction. Default (10, 10).
|
||||
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
|
||||
(multiplicative factor). Default 1.1.
|
||||
trench width: Width of the undercut trenches. Default 1200.
|
||||
|
||||
Returns:
|
||||
`Device` object representing the L3 design.
|
||||
"""
|
||||
# Get hole positions and radii
|
||||
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=xy_size,
|
||||
perturbed_radius=perturbed_radius,
|
||||
shifts_a=shifts_a,
|
||||
shifts_r=shifts_r)
|
||||
|
||||
# Build L3 cavity, using references to the provided hole pattern
|
||||
pat = Pattern(f'L3p-a{lattice_constant:g}rp{perturbed_radius:g}')
|
||||
pat.subpatterns += [
|
||||
SubPattern(hole, scale=r,
|
||||
offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y, r in xyr]
|
||||
|
||||
# Add rectangular undercut aids
|
||||
min_xy, max_xy = pat.get_bounds_nonempty()
|
||||
trench_dx = max_xy[0] - min_xy[0]
|
||||
|
||||
pat.shapes += [
|
||||
Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
|
||||
layer=trench_layer, dose=trench_dose),
|
||||
Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
|
||||
layer=trench_layer, dose=trench_dose),
|
||||
]
|
||||
|
||||
# Ports are at outer extents of the device (with y=0)
|
||||
extent = lattice_constant * xy_size[0]
|
||||
ports = {
|
||||
'input': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'output': Port((extent, 0), rotation=pi, ptype='pcwg'),
|
||||
}
|
||||
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def waveguide(
|
||||
lattice_constant: float,
|
||||
hole: Pattern,
|
||||
length: int,
|
||||
mirror_periods: int,
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Device` representing a photonic crystal line-defect waveguide.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: `Pattern` object containing a single hole
|
||||
length: Distance (number of mirror periods) between the input and output ports.
|
||||
Ports are placed at lattice sites.
|
||||
mirror_periods: Number of hole rows on each side of the line defect
|
||||
|
||||
Returns:
|
||||
`Device` object representing the waveguide.
|
||||
"""
|
||||
# Generate hole locations
|
||||
xy = pcgen.waveguide(length=length, num_mirror=mirror_periods)
|
||||
|
||||
# Build the pattern
|
||||
pat = Pattern(f'_wg-a{lattice_constant:g}l{length}')
|
||||
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
# Ports are at outer edges, with y=0
|
||||
extent = lattice_constant * length / 2
|
||||
ports = {
|
||||
'left': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'right': Port((extent, 0), rotation=pi, ptype='pcwg'),
|
||||
}
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def bend(
|
||||
lattice_constant: float,
|
||||
hole: Pattern,
|
||||
mirror_periods: int,
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Device` representing a 60-degree counterclockwise bend in a photonic crystal
|
||||
line-defect waveguide.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: `Pattern` object containing a single hole
|
||||
mirror_periods: Minimum number of mirror periods on each side of the line defect.
|
||||
|
||||
Returns:
|
||||
`Device` object representing the waveguide bend.
|
||||
Ports are named 'left' (input) and 'right' (output).
|
||||
"""
|
||||
# Generate hole locations
|
||||
xy = pcgen.wgbend(num_mirror=mirror_periods)
|
||||
|
||||
# Build the pattern
|
||||
pat= Pattern(f'_wgbend-a{lattice_constant:g}l{mirror_periods}')
|
||||
pat.subpatterns += [
|
||||
SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
# Figure out port locations.
|
||||
extent = lattice_constant * mirror_periods
|
||||
ports = {
|
||||
'left': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'right': Port((extent / 2,
|
||||
extent * numpy.sqrt(3) / 2),
|
||||
rotation=pi * 4 / 3, ptype='pcwg'),
|
||||
}
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def y_splitter(
|
||||
lattice_constant: float,
|
||||
hole: Pattern,
|
||||
mirror_periods: int,
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Device` representing a photonic crystal line-defect waveguide y-splitter.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: `Pattern` object containing a single hole
|
||||
mirror_periods: Minimum number of mirror periods on each side of the line defect.
|
||||
|
||||
Returns:
|
||||
`Device` object representing the y-splitter.
|
||||
Ports are named 'in', 'top', and 'bottom'.
|
||||
"""
|
||||
# Generate hole locations
|
||||
xy = pcgen.y_splitter(num_mirror=mirror_periods)
|
||||
|
||||
# Build pattern
|
||||
pat = Pattern(f'_wgsplit_half-a{lattice_constant:g}l{mirror_periods}')
|
||||
pat.subpatterns += [
|
||||
SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
# Determine port locations
|
||||
extent = lattice_constant * mirror_periods
|
||||
ports = {
|
||||
'in': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'top': Port((extent / 2, extent * numpy.sqrt(3) / 2), rotation=pi * 4 / 3, ptype='pcwg'),
|
||||
'bot': Port((extent / 2, -extent * numpy.sqrt(3) / 2), rotation=pi * 2 / 3, ptype='pcwg'),
|
||||
}
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def dev2pat(device: Device, layer: layer_t = (3, 0)) -> Pattern:
|
||||
"""
|
||||
Place a text label at each port location, specifying the port data.
|
||||
|
||||
This can be used to debug port locations or to automatically generate ports
|
||||
when reading in a GDS file.
|
||||
|
||||
NOTE that `device` is modified by this function, and `device.pattern` is returned.
|
||||
|
||||
Args:
|
||||
device: The device which is to have its ports labeled. MODIFIED in-place.
|
||||
layer: The layer on which the labels will be placed.
|
||||
|
||||
Returns:
|
||||
`device.pattern`
|
||||
"""
|
||||
for name, port in device.ports.items():
|
||||
if port.rotation is None:
|
||||
angle_deg = numpy.inf
|
||||
else:
|
||||
angle_deg = numpy.rad2deg(port.rotation)
|
||||
device.pattern.labels += [
|
||||
Label(string=f'{name}:{port.ptype} {angle_deg:g}', layer=layer, offset=port.offset)
|
||||
]
|
||||
return device.pattern
|
||||
|
||||
|
||||
def pat2dev(
|
||||
pattern: Pattern,
|
||||
layers: Sequence[layer_t] = ((3, 0),),
|
||||
max_depth: int = 999_999,
|
||||
skip_subcells: bool = True,
|
||||
) -> Device:
|
||||
ports = {} # Note: could do a list here, if they're not unique
|
||||
annotated_cells = set()
|
||||
def find_ports_each(pat, hierarchy, transform, memo) -> Pattern:
|
||||
if len(hierarchy) > max_depth - 1:
|
||||
return pat
|
||||
|
||||
if skip_subcells and any(parent in annotated_cells for parent in hierarchy):
|
||||
return pat
|
||||
|
||||
labels = [ll for ll in pat.labels if ll.layer in layers]
|
||||
|
||||
if len(labels) == 0:
|
||||
return pat
|
||||
|
||||
if skip_subcells:
|
||||
annotated_cells.add(pat)
|
||||
|
||||
mirr_factor = numpy.array((1, -1)) ** transform[3]
|
||||
rot_matrix = rotation_matrix_2d(transform[2])
|
||||
for label in labels:
|
||||
name, property_string = label.string.split(':')
|
||||
properties = property_string.split(' ')
|
||||
ptype = properties[0]
|
||||
angle_deg = float(properties[1]) if len(ptype) else 0
|
||||
|
||||
xy_global = transform[:2] + rot_matrix @ (label.offset * mirr_factor)
|
||||
angle = numpy.deg2rad(angle_deg) * mirr_factor[0] * mirr_factor[1] + transform[2]
|
||||
|
||||
if name in ports:
|
||||
raise Exception('Duplicate port name in pattern!')
|
||||
|
||||
ports[name] = Port(offset=xy_global, rotation=angle, ptype=ptype)
|
||||
|
||||
return pat
|
||||
|
||||
pattern.dfs(visit_before=find_ports_each, transform=True)
|
||||
return Device(pattern, ports)
|
||||
|
||||
|
||||
|
||||
def main(interactive: bool = True):
|
||||
# Generate some basic hole patterns
|
||||
smile = basic_shapes.smile(RADIUS)
|
||||
hole = basic_shapes.hole(RADIUS)
|
||||
|
||||
# Build some devices
|
||||
a = LATTICE_CONSTANT
|
||||
wg10 = waveguide(lattice_constant=a, hole=hole, length=10, mirror_periods=5).rename('wg10')
|
||||
wg05 = waveguide(lattice_constant=a, hole=hole, length=5, mirror_periods=5).rename('wg05')
|
||||
wg28 = waveguide(lattice_constant=a, hole=hole, length=28, mirror_periods=5).rename('wg28')
|
||||
bend0 = bend(lattice_constant=a, hole=hole, mirror_periods=5).rename('bend0')
|
||||
ysplit = y_splitter(lattice_constant=a, hole=hole, mirror_periods=5).rename('ysplit')
|
||||
l3cav = perturbed_l3(lattice_constant=a, hole=smile, xy_size=(4, 10)).rename('l3cav') # uses smile :)
|
||||
|
||||
# Autogenerate port labels so that GDS will also contain port data
|
||||
for device in [wg10, wg05, wg28, l3cav, ysplit, bend0]:
|
||||
dev2pat(device)
|
||||
|
||||
#
|
||||
# Build a circuit
|
||||
#
|
||||
circ = Device(name='my_circuit', ports={})
|
||||
|
||||
# Start by placing a waveguide. Call its ports "in" and "signal".
|
||||
circ.place(wg10, offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
|
||||
|
||||
# Extend the signal path by attaching the "left" port of a waveguide.
|
||||
# Since there is only one other port ("right") on the waveguide we
|
||||
# are attaching (wg10), it automatically inherits the name "signal".
|
||||
circ.plug(wg10, {'signal': 'left'})
|
||||
|
||||
# Attach a y-splitter to the signal path.
|
||||
# Since the y-splitter has 3 ports total, we can't auto-inherit the
|
||||
# port name, so we have to specify what we want to name the unattached
|
||||
# ports. We can call them "signal1" and "signal2".
|
||||
circ.plug(ysplit, {'signal': 'in'}, {'top': 'signal1', 'bot': 'signal2'})
|
||||
|
||||
# Add a waveguide to both signal ports, inheriting their names.
|
||||
circ.plug(wg05, {'signal1': 'left'})
|
||||
circ.plug(wg05, {'signal2': 'left'})
|
||||
|
||||
# Add a bend to both ports.
|
||||
# Our bend's ports "left" and "right" refer to the original counterclockwise
|
||||
# orientation. We want the bends to turn in opposite directions, so we attach
|
||||
# the "right" port to "signal1" to bend clockwise, and the "left" port
|
||||
# to "signal2" to bend counterclockwise.
|
||||
# We could also use `mirrored=(True, False)` to mirror one of the devices
|
||||
# and then use same device port on both paths.
|
||||
circ.plug(bend0, {'signal1': 'right'})
|
||||
circ.plug(bend0, {'signal2': 'left'})
|
||||
|
||||
# We add some waveguides and a cavity to "signal1".
|
||||
circ.plug(wg10, {'signal1': 'left'})
|
||||
circ.plug(l3cav, {'signal1': 'input'})
|
||||
circ.plug(wg10, {'signal1': 'left'})
|
||||
|
||||
# "signal2" just gets a single of equivalent length
|
||||
circ.plug(wg28, {'signal2': 'left'})
|
||||
|
||||
# Now we bend both waveguides back towards each other
|
||||
circ.plug(bend0, {'signal1': 'right'})
|
||||
circ.plug(bend0, {'signal2': 'left'})
|
||||
circ.plug(wg05, {'signal1': 'left'})
|
||||
circ.plug(wg05, {'signal2': 'left'})
|
||||
|
||||
# To join the waveguides, we attach a second y-junction.
|
||||
# We plug "signal1" into the "bot" port, and "signal2" into the "top" port.
|
||||
# The remaining port gets named "signal_out".
|
||||
# This operation would raise an exception if the ports did not line up
|
||||
# correctly (i.e. they required different rotations or translations of the
|
||||
# y-junction device).
|
||||
circ.plug(ysplit, {'signal1': 'bot', 'signal2': 'top'}, {'in': 'signal_out'})
|
||||
|
||||
# Finally, add some more waveguide to "signal_out".
|
||||
circ.plug(wg10, {'signal_out': 'left'})
|
||||
|
||||
# We can visualize the design. Usually it's easier to just view the GDS.
|
||||
if interactive:
|
||||
print('Visualizing... this step may be slow')
|
||||
circ.pattern.visualize()
|
||||
|
||||
# We can also add text labels for our circuit's ports.
|
||||
# They will appear at the uppermost hierarchy level, while the individual
|
||||
# device ports will appear further down, in their respective cells.
|
||||
dev2pat(circ)
|
||||
|
||||
# Write out to GDS
|
||||
writefile(circ.pattern, 'circuit.gds', **GDS_OPTS)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
136
examples/tutorial/library.py
Normal file
136
examples/tutorial/library.py
Normal file
@ -0,0 +1,136 @@
|
||||
from typing import Tuple, Sequence, Callable
|
||||
from pprint import pformat
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from masque.builder import Device
|
||||
from masque.library import Library, LibDeviceLibrary
|
||||
from masque.file.gdsii import writefile, load_libraryfile
|
||||
|
||||
import pcgen
|
||||
import basic_shapes
|
||||
import devices
|
||||
from basic_shapes import GDS_OPTS
|
||||
|
||||
|
||||
def main() -> None:
|
||||
# Define a `Library`-backed `DeviceLibrary`, which provides lazy evaluation
|
||||
# for device generation code and lazy-loading of GDS contents.
|
||||
device_lib = LibDeviceLibrary()
|
||||
|
||||
#
|
||||
# Load some devices from a GDS file
|
||||
#
|
||||
|
||||
# Scan circuit.gds and prepare to lazy-load its contents
|
||||
pattern_lib, _properties = load_libraryfile('circuit.gds', tag='mycirc01')
|
||||
|
||||
# Add it into the device library by providing a way to read port info
|
||||
# This maintains the lazy evaluation from above, so no patterns
|
||||
# are actually read yet.
|
||||
device_lib.add_library(pattern_lib, pat2dev=devices.pat2dev)
|
||||
|
||||
print('Devices loaded from GDS into library:\n' + pformat(list(device_lib.keys())))
|
||||
|
||||
|
||||
#
|
||||
# Add some new devices to the library, this time from python code rather than GDS
|
||||
#
|
||||
|
||||
a = devices.LATTICE_CONSTANT
|
||||
tri = basic_shapes.triangle(devices.RADIUS)
|
||||
|
||||
# Convenience function for adding devices
|
||||
# This is roughly equivalent to
|
||||
# `device_lib[name] = lambda: devices.dev2pat(fn())`
|
||||
# but it also guarantees that the resulting pattern is named `name`.
|
||||
def add(name: str, fn: Callable[[], Device]) -> None:
|
||||
device_lib.add_device(name=name, fn=fn, dev2pat=devices.dev2pat)
|
||||
|
||||
# Triangle-based variants. These are defined here, but they won't run until they're
|
||||
# retrieved from the library.
|
||||
add('tri_wg10', lambda: devices.waveguide(lattice_constant=a, hole=tri, length=10, mirror_periods=5))
|
||||
add('tri_wg05', lambda: devices.waveguide(lattice_constant=a, hole=tri, length=5, mirror_periods=5))
|
||||
add('tri_wg28', lambda: devices.waveguide(lattice_constant=a, hole=tri, length=28, mirror_periods=5))
|
||||
add('tri_bend0', lambda: devices.bend(lattice_constant=a, hole=tri, mirror_periods=5))
|
||||
add('tri_ysplit', lambda: devices.y_splitter(lattice_constant=a, hole=tri, mirror_periods=5))
|
||||
add('tri_l3cav', lambda: devices.perturbed_l3(lattice_constant=a, hole=tri, xy_size=(4, 10)))
|
||||
|
||||
|
||||
#
|
||||
# Build a mixed waveguide with an L3 cavity in the middle
|
||||
#
|
||||
|
||||
# Immediately start building from an instance of the L3 cavity
|
||||
circ2 = device_lib['tri_l3cav'].build('mixed_wg_cav')
|
||||
|
||||
print(device_lib['wg10'].ports)
|
||||
circ2.plug(device_lib['wg10'], {'input': 'right'})
|
||||
circ2.plug(device_lib['wg10'], {'output': 'left'})
|
||||
circ2.plug(device_lib['tri_wg10'], {'input': 'right'})
|
||||
circ2.plug(device_lib['tri_wg10'], {'output': 'left'})
|
||||
|
||||
# Add the circuit to the device library.
|
||||
# It has already been generated, so we can use `set_const` as a shorthand for
|
||||
# `device_lib['mixed_wg_cav'] = lambda: circ2`
|
||||
device_lib.set_const(circ2)
|
||||
|
||||
|
||||
#
|
||||
# Build a device that could plug into our mixed_wg_cav and joins the two ports
|
||||
#
|
||||
|
||||
# We'll be designing against an existing device's interface...
|
||||
circ3 = circ2.as_interface('loop_segment')
|
||||
# ... that lets us continue from where we left off.
|
||||
circ3.plug(device_lib['tri_bend0'], {'input': 'right'})
|
||||
circ3.plug(device_lib['tri_bend0'], {'input': 'left'}, mirrored=(True, False)) # mirror since no tri y-symmetry
|
||||
circ3.plug(device_lib['tri_bend0'], {'input': 'right'})
|
||||
circ3.plug(device_lib['bend0'], {'output': 'left'})
|
||||
circ3.plug(device_lib['bend0'], {'output': 'left'})
|
||||
circ3.plug(device_lib['bend0'], {'output': 'left'})
|
||||
circ3.plug(device_lib['tri_wg10'], {'input': 'right'})
|
||||
circ3.plug(device_lib['tri_wg28'], {'input': 'right'})
|
||||
circ3.plug(device_lib['tri_wg10'], {'input': 'right', 'output': 'left'})
|
||||
|
||||
device_lib.set_const(circ3)
|
||||
|
||||
#
|
||||
# Write all devices into a GDS file
|
||||
#
|
||||
|
||||
# This line could be slow, since it generates or loads many of the devices
|
||||
# since they were not all accessed above.
|
||||
all_device_pats = [dev.pattern for dev in device_lib.values()]
|
||||
|
||||
writefile(all_device_pats, 'library.gds', **GDS_OPTS)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
|
||||
#
|
||||
#class prout:
|
||||
# def place(
|
||||
# self,
|
||||
# other: Device,
|
||||
# label_layer: layer_t = 'WATLAYER',
|
||||
# *,
|
||||
# port_map: Optional[Dict[str, Optional[str]]] = None,
|
||||
# **kwargs,
|
||||
# ) -> 'prout':
|
||||
#
|
||||
# Device.place(self, other, port_map=port_map, **kwargs)
|
||||
# name: Optional[str]
|
||||
# for name in other.ports:
|
||||
# if port_map:
|
||||
# assert(name is not None)
|
||||
# name = port_map.get(name, name)
|
||||
# if name is None:
|
||||
# continue
|
||||
# self.pattern.labels += [
|
||||
# Label(string=name, offset=self.ports[name].offset, layer=layer)]
|
||||
# return self
|
||||
#
|
@ -1,251 +0,0 @@
|
||||
from typing import Tuple, Sequence
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from masque import layer_t, Pattern, SubPattern, Label
|
||||
from masque.shapes import Polygon, Circle
|
||||
from masque.builder import Device, Port
|
||||
from masque.library import Library, DeviceLibrary
|
||||
from masque.file.gdsii import writefile
|
||||
|
||||
import pcgen
|
||||
import basic
|
||||
|
||||
|
||||
def perturbed_l3(
|
||||
lattice_constant: float,
|
||||
hole: Pattern,
|
||||
trench_dose: float = 1.0,
|
||||
trench_layer: layer_t = (1, 0),
|
||||
shifts_a: Sequence[float] = (0.15, 0, 0.075),
|
||||
shifts_r: Sequence[float] = (1.0, 1.0, 1.0),
|
||||
xy_size: Tuple[int, int] = (10, 10),
|
||||
perturbed_radius: float = 1.1,
|
||||
trench_width: float = 1200,
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Device` representing a perturbed L3 cavity.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: `Pattern` object containing a single hole
|
||||
trench_dose: Dose for the trenches. Default 1.0. (Hole dose is 1.0.)
|
||||
trench_layer: Layer for the trenches, default `(1, 0)`.
|
||||
shifts_a: passed to `pcgen.l3_shift`; specifies lattice constant
|
||||
(1 - multiplicative factor) for shifting holes adjacent to
|
||||
the defect (same row). Default `(0.15, 0, 0.075)` for first,
|
||||
second, third holes.
|
||||
shifts_r: passed to `pcgen.l3_shift`; specifies radius for perturbing
|
||||
holes adjacent to the defect (same row). Default 1.0 for all holes.
|
||||
Provided sequence should have same length as `shifts_a`.
|
||||
xy_size: `(x, y)` number of mirror periods in each direction; total size is
|
||||
`2 * n + 1` holes in each direction. Default (10, 10).
|
||||
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
|
||||
(multiplicative factor). Default 1.1.
|
||||
trench width: Width of the undercut trenches. Default 1200.
|
||||
|
||||
Returns:
|
||||
`Device` object representing the L3 design.
|
||||
"""
|
||||
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=xy_size,
|
||||
perturbed_radius=perturbed_radius,
|
||||
shifts_a=shifts_a,
|
||||
shifts_r=shifts_r)
|
||||
|
||||
pat = Pattern(f'L3p-a{lattice_constant:g}rp{perturbed_radius:g}')
|
||||
pat.subpatterns += [SubPattern(hole,
|
||||
offset=(lattice_constant * x,
|
||||
lattice_constant * y),
|
||||
scale=r)
|
||||
for x, y, r in xyr]
|
||||
|
||||
bounds = pat.get_bounds()
|
||||
assert(bounds is not None)
|
||||
min_xy, max_xy = bounds
|
||||
trench_dx = max_xy[0] - min_xy[0]
|
||||
|
||||
pat.shapes += [
|
||||
Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
|
||||
layer=trench_layer, dose=trench_dose),
|
||||
Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
|
||||
layer=trench_layer, dose=trench_dose),
|
||||
]
|
||||
|
||||
extent = lattice_constant * xy_size[0]
|
||||
ports = {
|
||||
'input': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'output': Port((extent, 0), rotation=pi, ptype='pcwg'),
|
||||
}
|
||||
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def waveguide(
|
||||
lattice_constant: float,
|
||||
hole: Pattern,
|
||||
length: int,
|
||||
mirror_periods: int,
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Device` representing a photonic crystal line-defect waveguide.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: `Pattern` object containing a single hole
|
||||
length: Distance (number of mirror periods) between the input and output ports.
|
||||
Ports are placed at lattice sites.
|
||||
mirror_periods: Number of hole rows on each side of the line defect
|
||||
|
||||
Returns:
|
||||
`Device` object representing the waveguide.
|
||||
"""
|
||||
xy = pcgen.waveguide(length=length, num_mirror=mirror_periods)
|
||||
|
||||
pat = Pattern(f'_wg-a{lattice_constant:g}l{length}')
|
||||
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
extent = lattice_constant * length / 2
|
||||
ports = {
|
||||
'left': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'right': Port((extent, 0), rotation=pi, ptype='pcwg'),
|
||||
}
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def bend(
|
||||
lattice_constant: float,
|
||||
hole: Pattern,
|
||||
mirror_periods: int,
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Device` representing a 60-degree counterclockwise bend in a photonic crystal
|
||||
line-defect waveguide.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: `Pattern` object containing a single hole
|
||||
mirror_periods: Minimum number of mirror periods on each side of the line defect.
|
||||
|
||||
Returns:
|
||||
`Device` object representing the waveguide bend.
|
||||
Ports are named 'left' (input) and 'right' (output).
|
||||
"""
|
||||
xy = pcgen.wgbend(num_mirror=mirror_periods)
|
||||
|
||||
pat= Pattern(f'_wgbend-a{lattice_constant:g}l{mirror_periods}')
|
||||
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
extent = lattice_constant * mirror_periods
|
||||
ports = {
|
||||
'left': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'right': Port((extent / 2,
|
||||
extent * numpy.sqrt(3) / 2), rotation=pi * 4 / 3, ptype='pcwg'),
|
||||
}
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def y_splitter(
|
||||
lattice_constant: float,
|
||||
hole: Pattern,
|
||||
mirror_periods: int,
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Device` representing a photonic crystal line-defect waveguide y-splitter.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: `Pattern` object containing a single hole
|
||||
mirror_periods: Minimum number of mirror periods on each side of the line defect.
|
||||
|
||||
Returns:
|
||||
`Device` object representing the y-splitter.
|
||||
Ports are named 'in', 'top', and 'bottom'.
|
||||
"""
|
||||
xy = pcgen.y_splitter(num_mirror=mirror_periods)
|
||||
|
||||
pat = Pattern(f'_wgsplit_half-a{lattice_constant:g}l{mirror_periods}')
|
||||
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
extent = lattice_constant * mirror_periods
|
||||
ports = {
|
||||
'in': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'top': Port((extent / 2,
|
||||
extent * numpy.sqrt(3) / 2), rotation=pi * 4 / 3, ptype='pcwg'),
|
||||
'bot': Port((extent / 2,
|
||||
-extent * numpy.sqrt(3) / 2), rotation=pi * 2 / 3, ptype='pcwg'),
|
||||
}
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def label_ports(device: Device, layer: layer_t = (3, 0)) -> Device:
|
||||
"""
|
||||
Place a text label at each port location, specifying the port data.
|
||||
|
||||
This can be used to debug port locations or to automatically generate ports
|
||||
when reading in a GDS file.
|
||||
|
||||
Args:
|
||||
device: The device which is to have its ports labeled.
|
||||
layer: The layer on which the labels will be placed.
|
||||
|
||||
Returns:
|
||||
`device` is returned (and altered in-place)
|
||||
"""
|
||||
for name, port in device.ports.items():
|
||||
angle_deg = numpy.rad2deg(port.rotation) if port.rotation is not None else numpy.inf
|
||||
device.pattern.labels += [
|
||||
Label(string=f'{name} (angle {angle_deg:g})', layer=layer, offset=port.offset)
|
||||
]
|
||||
return device
|
||||
|
||||
|
||||
def main():
|
||||
a = 512
|
||||
radius = a / 2 * 0.75
|
||||
smile = basic.smile(radius)
|
||||
hole = basic.hole(radius)
|
||||
|
||||
wg10 = label_ports(waveguide(lattice_constant=a, hole=hole, length=10, mirror_periods=5))
|
||||
wg05 = label_ports(waveguide(lattice_constant=a, hole=hole, length=5, mirror_periods=5))
|
||||
wg28 = label_ports(waveguide(lattice_constant=a, hole=hole, length=28, mirror_periods=5))
|
||||
bend0 = label_ports(bend(lattice_constant=a, hole=hole, mirror_periods=5))
|
||||
l3cav = label_ports(perturbed_l3(lattice_constant=a, hole=smile, xy_size=(4, 10)))
|
||||
ysplit = label_ports(y_splitter(lattice_constant=a, hole=hole, mirror_periods=5))
|
||||
|
||||
dev = Device(name='my_bend', ports={})
|
||||
dev.place(wg10, offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
|
||||
dev.plug(wg10, {'signal': 'left'})
|
||||
dev.plug(ysplit, {'signal': 'in'}, {'top': 'signal1', 'bot': 'signal2'})
|
||||
|
||||
dev.plug(wg05, {'signal1': 'left'})
|
||||
dev.plug(wg05, {'signal2': 'left'})
|
||||
dev.plug(bend0, {'signal1': 'right'})
|
||||
dev.plug(bend0, {'signal2': 'left'})
|
||||
|
||||
dev.plug(wg10, {'signal1': 'left'})
|
||||
dev.plug(l3cav, {'signal1': 'input'})
|
||||
dev.plug(wg10, {'signal1': 'left'})
|
||||
|
||||
dev.plug(wg28, {'signal2': 'left'})
|
||||
|
||||
dev.plug(bend0, {'signal1': 'right'})
|
||||
dev.plug(bend0, {'signal2': 'left'})
|
||||
dev.plug(wg05, {'signal1': 'left'})
|
||||
dev.plug(wg05, {'signal2': 'left'})
|
||||
|
||||
dev.plug(ysplit, {'signal1': 'bot', 'signal2': 'top'}, {'in': 'signal_out'})
|
||||
dev.plug(wg10, {'signal_out': 'left'})
|
||||
|
||||
writefile(dev.pattern, 'phc.gds', 1e-9, 1e-3)
|
||||
dev.pattern.visualize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user