Lots of doc updates

This commit is contained in:
Jan Petykiewicz 2023-10-07 01:54:16 -07:00
parent f1ca5a0111
commit 1a823a54f3
5 changed files with 559 additions and 87 deletions

View File

@ -18,6 +18,12 @@ logger = logging.getLogger(__name__)
class Abstract(PortList):
"""
An `Abstract` is a container for a name and associated ports.
When snapping a sub-component to an existing pattern, only the name (not contained
in a `Pattern` object) and port info is needed, and not the geometry itself.
"""
__slots__ = ('name', '_ports')
name: str

View File

@ -1,3 +1,6 @@
"""
Simplified Pattern assembly (`Builder`)
"""
from typing import Self, Sequence, Mapping, Literal, overload
import copy
import logging
@ -105,7 +108,15 @@ class Builder(PortList):
name: str | None = None,
) -> None:
"""
# TODO documentation for Builder() constructor
Args:
library: The library from which referenced patterns will be taken
pattern: The pattern which will be modified by subsequent operations.
If `None` (default), a new pattern is created.
ports: Allows specifying the initial set of ports, if `pattern` does
not already have any ports (or is not provided). May be a string,
in which case it is interpreted as a name in `library`.
Default `None` (no ports).
name: If specified, `library[name]` is set to `self.pattern`.
"""
self._dead = False
self.library = library
@ -263,32 +274,26 @@ class Builder(PortList):
append: bool = False,
) -> Self:
"""
Instantiate or append the device `other` into the current device, adding its
ports to those of the current device (but not connecting any ports).
Mirroring is applied before rotation; translation (`offset`) is applied last.
Examples:
=========
- `my_device.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
instantiates `pad` at the specified (x, y) offset and with the specified
rotation, adding its ports to those of `my_device`. Port 'A' of `pad` is
renamed to 'gnd' so that further routing can use this signal or net name
rather than the port name on the original `pad` device.
Wrapper around `Pattern.place` which allows a string for `other`.
The `Builder`'s library is used to dereference the string (or `Abstract`, if
one is passed with `append=True`).
Args:
other: An `Abstract` describing the device to be instatiated.
other: An `Abstract`, string, or `Pattern` describing the device to be instatiated.
offset: Offset at which to place the instance. Default (0, 0).
rotation: Rotation applied to the instance before placement. Default 0.
pivot: Rotation is applied around this pivot point (default (0, 0)).
Rotation is applied prior to translation (`offset`).
mirrored: Whether theinstance should be mirrored across the x and y axes.
mirrored: Whether theinstance should be mirrored across the x axis.
Mirroring is applied before translation and rotation.
port_map: dict of `{'old_name': 'new_name'}` mappings, specifying
new names for ports in the instantiated device. New names can be
`None`, which will delete those ports.
skip_port_check: Can be used to skip the internal call to `check_ports`,
in case it has already been performed elsewhere.
append: If `True`, `other` is appended instead of being referenced.
Note that this does not flatten `other`, so its refs will still
be refs (now inside `self`).
Returns:
self

View File

@ -1,3 +1,6 @@
"""
Manual wire/waveguide routing (`Pather`)
"""
from typing import Self, Sequence, MutableMapping, Mapping
import copy
import logging
@ -23,57 +26,87 @@ logger = logging.getLogger(__name__)
class Pather(Builder):
"""
TODO DOCUMENT Builder
A `Device` is a combination of a `Pattern` with a set of named `Port`s
which can be used to "snap" devices together to make complex layouts.
An extension of `Builder` which provides functionality for routing and attaching
single-use patterns (e.g. wires or waveguides) and bundles / buses of such patterns.
`Device`s can be as simple as one or two ports (e.g. an electrical pad
or wire), but can also be used to build and represent a large routed
layout (e.g. a logical block with multiple I/O connections or even a
full chip).
`Pather` is mostly concerned with calculating how long each wire should be. It calls
out to `Tool.path` functions provided by subclasses of `Tool` to build the actual patterns.
`Tool`s are assigned on a per-port basis and stored in `.tools`; a key of `None` represents
a "default" `Tool` used for all ports which do not have a port-specific `Tool` assigned.
For convenience, ports can be read out using square brackets:
- `device['A'] == Port((0, 0), 0)`
- `device[['A', 'B']] == {'A': Port((0, 0), 0), 'B': Port((0, 0), pi)}`
Examples: Creating a Device
Examples: Creating a Pather
===========================
- `Device(pattern, ports={'A': port_a, 'C': port_c})` uses an existing
pattern and defines some ports.
- `Pather(library, tools=my_tool)` makes an empty pattern with no ports. The pattern
is not added into `library` and must later be added with e.g.
`library['mypat'] = pather.pattern`.
The default wire/waveguide generating tool for all ports is set to `my_tool`.
- `Device(ports=None)` makes a new empty pattern with
default ports ('A' and 'B', in opposite directions, at (0, 0)).
- `Pather(library, ports={'in': Port(...), 'out': ...}, name='mypat', tools=my_tool)`
makes an empty pattern, adds the given ports, and places it into `library`
under the name `'mypat'`. The default wire/waveguide generating tool
for all ports is set to `my_tool`
- `my_device.build('my_layout')` makes a new pattern and instantiates
`my_device` in it with offset (0, 0) as a base for further building.
- `Pather(..., tools={'in': top_metal_40um, 'out': bottom_metal_1um, None: my_tool})`
assigns specific tools to individual ports, and `my_tool` as a default for ports
which are not specified.
- `my_device.as_interface('my_component', port_map=['A', 'B'])` makes a new
(empty) pattern, copies over ports 'A' and 'B' from `my_device`, and
creates additional ports 'in_A' and 'in_B' facing in the opposite
directions. This can be used to build a device which can plug into
`my_device` (using the 'in_*' ports) but which does not itself include
`my_device` as a subcomponent.
- `Pather.interface(other_pat, port_map=['A', 'B'], library=library, tools=my_tool)`
makes a new (empty) pattern, copies over ports 'A' and 'B' from
`other_pat`, and creates additional ports 'in_A' and 'in_B' facing
in the opposite directions. This can be used to build a device which
can plug into `other_pat` (using the 'in_*' ports) but which does not
itself include `other_pat` as a subcomponent.
Examples: Adding to a Device
============================
- `my_device.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
instantiates `subdevice` into `my_device`, plugging ports 'A' and 'B'
of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports
are removed and any unconnected ports from `subdevice` are added to
`my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
- `Pather.interface(other_pather, ...)` does the same thing as
`Builder.interface(other_builder.pattern, ...)` but also uses
`other_builder.library` as its library by default.
- `my_device.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
of `my_device`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`,
Examples: Adding to a pattern
=============================
- `pather.path('my_port', ccw=True, distance)` creates a "wire" for which the output
port is `distance` units away along the axis of `'my_port'` and rotated 90 degrees
counterclockwise (since `ccw=True`) relative to `'my_port'`. The wire is `plug`ged
into the existing `'my_port'`, causing the port to move to the wire's output.
There is no formal guarantee about how far off-axis the output will be located;
there may be a significant width to the bend that is used to accomplish the 90 degree
turn. However, an error is raised if `distance` is too small to fit the bend.
- `pather.path('my_port', ccw=None, distance)` creates a straight wire with a length
of `distance` and `plug`s it into `'my_port'`.
- `pather.path_to('my_port', ccw=False, position)` creates a wire which starts at
`'my_port'` and has its output at the specified `position`, pointing 90 degrees
clockwise relative to the input. Again, the off-axis position or distance to the
output is not specified, so `position` takes the form of a single coordinate. To
ease debugging, position may be specified as `x=position` or `y=position` and an
error will be raised if the wrong coordinate is given.
- `pather.mpath(['A', 'B', 'C'], ..., spacing=spacing)` is a superset of `path`
and `path_to` which can act on multiple ports simultaneously. Each port's wire is
generated using its own `Tool` (or the default tool if left unspecified).
The output ports are spaced out by `spacing` along the input ports' axis, unless
`ccw=None` is specified (i.e. no bends) in which case they all end at the same
destination coordinate.
- `pather.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
of `pather.pattern`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`,
argument is provided, and the `inherit_name` argument is not explicitly
set to `False`, the unconnected port of `wire` is automatically renamed to
'myport'. This allows easy extension of existing ports without changing
their names or having to provide `map_out` each time `plug` is called.
- `my_device.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
- `pather.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
instantiates `pad` at the specified (x, y) offset and with the specified
rotation, adding its ports to those of `my_device`. Port 'A' of `pad` is
rotation, adding its ports to those of `pather.pattern`. Port 'A' of `pad` is
renamed to 'gnd' so that further routing can use this signal or net name
rather than the port name on the original `pad` device.
- `pather.retool(tool)` or `pather.retool(tool, ['in', 'out', None])` can change
which tool is used for the given ports (or as the default tool). Useful
when placing vias or using multiple waveguide types along a route.
"""
__slots__ = ('tools',)
@ -85,8 +118,9 @@ class Pather(Builder):
tools: dict[str | None, Tool]
"""
Tool objects are used to dynamically generate new single-use Devices
(e.g wires or waveguides) to be plugged into this device.
Tool objects are used to dynamically generate new single-use `Pattern`s
(e.g wires or waveguides) to be plugged into this device. A key of `None`
indicates the default `Tool`.
"""
def __init__(
@ -99,13 +133,19 @@ class Pather(Builder):
name: str | None = None,
) -> None:
"""
# TODO documentation for Builder() constructor
# TODO MOVE THE BELOW DOCS to PortList
# If `ports` is `None`, two default ports ('A' and 'B') are created.
# Both are placed at (0, 0) and have default `ptype`, but 'A' has rotation 0
# (attached devices will be placed to the left) and 'B' has rotation
# pi (attached devices will be placed to the right).
Args:
library: The library from which referenced patterns will be taken,
and where new patterns (e.g. generated by the `tools`) will be placed.
pattern: The pattern which will be modified by subsequent operations.
If `None` (default), a new pattern is created.
ports: Allows specifying the initial set of ports, if `pattern` does
not already have any ports (or is not provided). May be a string,
in which case it is interpreted as a name in `library`.
Default `None` (no ports).
tools: A mapping of {port: tool} which specifies what `Tool` should be used
to generate waveguide or wire segments when `path`/`path_to`/`mpath`
are called. Relies on `Tool.path` implementations.
name: If specified, `library[name]` is set to `self.pattern`.
"""
self._dead = False
self.library = library
@ -165,7 +205,36 @@ class Pather(Builder):
name: str | None = None,
) -> 'Pather':
"""
TODO doc pather.interface
Wrapper for `Pattern.interface()`, which returns a Pather instead.
Args:
source: A collection of ports (e.g. Pattern, Builder, or dict)
from which to create the interface. May be a pattern name if
`library` is provided.
library: Library from which existing patterns should be referenced,
and to which the new one should be added (if named). If not provided,
`source.library` must exist and will be used.
tools: `Tool`s which will be used by the pather for generating new wires
or waveguides (via `path`/`path_to`/`mpath`).
in_prefix: Prepended to port names for newly-created ports with
reversed directions compared to the current device.
out_prefix: Prepended to port names for ports which are directly
copied from the current device.
port_map: Specification for ports to copy into the new device:
- If `None`, all ports are copied.
- If a sequence, only the listed ports are copied
- If a mapping, the listed ports (keys) are copied and
renamed (to the values).
Returns:
The new pather, with an empty pattern and 2x as many ports as
listed in port_map.
Raises:
`PortError` if `port_map` contains port names not present in the
current device.
`PortError` if applying the prefixes results in duplicate port
names.
"""
if library is None:
if hasattr(source, 'library') and isinstance(source.library, ILibrary):
@ -192,6 +261,18 @@ class Pather(Builder):
tool: Tool,
keys: str | Sequence[str | None] | None = None,
) -> Self:
"""
Update the `Tool` which will be used when generating `Pattern`s for the ports
given by `keys`.
Args:
tool: The new `Tool` to use for the given ports.
keys: Which ports the tool should apply to. `None` indicates the default tool,
used when there is no matching entry in `self.tools` for the port in question.
Returns:
self
"""
if keys is None or isinstance(keys, str):
self.tools[keys] = tool
else:
@ -209,6 +290,34 @@ class Pather(Builder):
base_name: str = '_path',
**kwargs,
) -> Self:
"""
Create a "wire"/"waveguide" and `plug` it into the port `portspec`, with the aim
of traveling exactly `length` distance.
The wire will travel `length` distance along the port's axis, an an unspecified
(tool-dependent) distance in the perpendicular direction. The output port will
be rotated (or not) based on the `ccw` parameter.
Args:
portspec: The name of the port into which the wire will be plugged.
ccw: If `None`, the output should be along the same axis as the input.
Otherwise, cast to bool and turn counterclockwise if True
and clockwise otherwise.
length: The total distance from input to output, along the input's axis only.
(There may be a tool-dependent offset along the other axis.)
tool_port_names: The names of the ports on the generated pattern. It is unlikely
that you will need to change these. The first port is the input (to be
connected to `portspec`).
base_name: Name to use for the generated `Pattern`. This will be passed through
`self.library.get_name()` to get a unique name for each new `Pattern`.
Returns:
self
Raises:
BuildError if `distance` is too small to fit the bend (if a bend is present).
LibraryError if no valid name could be picked for the pattern.
"""
if self._dead:
logger.error('Skipping path() since device is dead')
return self
@ -232,6 +341,44 @@ class Pather(Builder):
base_name: str = '_pathto',
**kwargs,
) -> Self:
"""
Create a "wire"/"waveguide" and `plug` it into the port `portspec`, with the aim
of ending exactly at a target position.
The wire will travel so that the output port will be placed at exactly the target
position along the input port's axis. There can be an unspecified (tool-dependent)
offset in the perpendicular direction. The output port will be rotated (or not)
based on the `ccw` parameter.
Args:
portspec: The name of the port into which the wire will be plugged.
ccw: If `None`, the output should be along the same axis as the input.
Otherwise, cast to bool and turn counterclockwise if True
and clockwise otherwise.
position: The final port position, along the input's axis only.
(There may be a tool-dependent offset along the other axis.)
Only one of `position`, `x`, and `y` may be specified.
x: The final port position along the x axis.
`portspec` must refer to a horizontal port if `x` is passed, otherwise a
BuildError will be raised.
y: The final port position along the y axis.
`portspec` must refer to a vertical port if `y` is passed, otherwise a
BuildError will be raised.
tool_port_names: The names of the ports on the generated pattern. It is unlikely
that you will need to change these. The first port is the input (to be
connected to `portspec`).
base_name: Name to use for the generated `Pattern`. This will be passed through
`self.library.get_name()` to get a unique name for each new `Pattern`.
Returns:
self
Raises:
BuildError if `position`, `x`, or `y` is too close to fit the bend (if a bend
is present).
BuildError if `x` or `y` is specified but does not match the axis of `portspec`.
BuildError if more than one of `x`, `y`, and `position` is specified.
"""
if self._dead:
logger.error('Skipping path_to() since device is dead')
return self
@ -285,6 +432,81 @@ class Pather(Builder):
base_name: str = '_mpath',
**kwargs,
) -> Self:
"""
`mpath` is a superset of `path` and `path_to` which can act on bundles or buses
of "wires or "waveguides".
The wires will travel so that the output ports will be placed at well-defined
locations along the axis of their input ports, but may have arbitrary (tool-
dependent) offsets in the perpendicular direction.
If `ccw` is not `None`, the wire bundle will turn 90 degres in either the
clockwise (`ccw=False`) or counter-clockwise (`ccw=True`) direction. Within the
bundle, the center-to-center wire spacings after the turn are set by `spacing`,
which is required when `ccw` is not `None`. The final position of bundle as a
whole can be set in a number of ways:
=A>---------------------------V turn direction: `ccw=False`
=B>-------------V |
=C>-----------------------V |
=D=>----------------V |
|
x---x---x---x `spacing` (can be scalar or array)
<--------------> `emin=`
<------> `bound_type='min_past_furthest', bound=`
<--------------------------------> `emax=`
x `pmin=`
x `pmax=`
- `emin=`, equivalent to `bound_type='min_extension', bound=`
The total extension value for the furthest-out port (B in the diagram).
- `emax=`, equivalent to `bound_type='max_extension', bound=`:
The total extension value for the closest-in port (C in the diagram).
- `pmin=`, equivalent to `xmin=`, `ymin=`, or `bound_type='min_position', bound=`:
The coordinate of the innermost bend (D's bend).
The x/y versions throw an error if they do not match the port axis (for debug)
- `pmax=`, `xmax=`, `ymax=`, or `bound_type='max_position', bound=`:
The coordinate of the outermost bend (A's bend).
The x/y versions throw an error if they do not match the port axis (for debug)
- `bound_type='min_past_furthest', bound=`:
The distance between furthest out-port (B) and the innermost bend (D's bend).
If `ccw=None`, final output positions (along the input axis) of all wires will be
identical (i.e. wires will all be cut off evenly). In this case, `spacing=None` is
required. In this case, `emin=` and `emax=` are equivalent to each other, and
`pmin=`, `pmax=`, `xmin=`, etc. are also equivalent to each other.
Args:
portspec: The names of the ports which are to be routed.
ccw: If `None`, the outputs should be along the same axis as the inputs.
Otherwise, cast to bool and turn 90 degrees counterclockwise if `True`
and clockwise otherwise.
spacing: Center-to-center distance between output ports along the input port's axis.
Must be provided if (and only if) `ccw` is not `None`.
set_rotation: If the provided ports have `rotation=None`, this can be used
to set a rotation for them.
tool_port_names: The names of the ports on the generated pattern. It is unlikely
that you will need to change these. The first port is the input (to be
connected to `portspec`).
force_container: If `False` (default), and only a single port is provided, the
generated wire for that port will be referenced directly, rather than being
wrapped in an additonal `Pattern`.
base_name: Name to use for the generated `Pattern`. This will be passed through
`self.library.get_name()` to get a unique name for each new `Pattern`.
Returns:
self
Raises:
BuildError if the implied length for any wire is too close to fit the bend
(if a bend is requested).
BuildError if `xmin`/`xmax` or `ymin`/`ymax` is specified but does not
match the axis of `portspec`.
BuildError if an incorrect bound type or spacing is specified.
"""
if self._dead:
logger.error('Skipping mpath() since device is dead')
return self

View File

@ -24,6 +24,24 @@ logger = logging.getLogger(__name__)
class RenderPather(PortList):
"""
`RenderPather` is an alternative to `Pather` which uses the `path`/`path_to`/`mpath`
functions to plan out wire paths without incrementally generating the layout. Instead,
it waits until `render` is called, at which point it draws all the planned segments
simultaneously. This allows it to e.g. draw each wire using a single `Path` or
`Polygon` shape instead of multiple rectangles.
`RenderPather` calls out to `Tool.planL` and `Tool.render` to provide tool-specific
dimensions and build the final geometry for each wire. `Tool.planL` provides the
output port data (relative to the input) for each segment. The tool, input and output
ports are placed into a `RenderStep`, and a sequence of `RenderStep`s is stored for
each port. When `render` is called, it bundles `RenderStep`s into batches which use
the same `Tool`, and passes each batch to the relevant tool's `Tool.render` to build
the geometry.
See `Pather` for routing examples. After routing is complete, `render` must be called
to generate the final geometry.
"""
__slots__ = ('pattern', 'library', 'paths', 'tools', '_dead', )
pattern: Pattern
@ -36,6 +54,7 @@ class RenderPather(PortList):
""" If True, plug()/place() are skipped (for debugging) """
paths: defaultdict[str, list[RenderStep]]
""" Per-port list of operations, to be used by `render` """
tools: dict[str | None, Tool]
"""
@ -61,8 +80,19 @@ class RenderPather(PortList):
name: str | None = None,
) -> None:
"""
# TODO documentation for Builder() constructor
Args:
library: The library from which referenced patterns will be taken,
and where new patterns (e.g. generated by the `tools`) will be placed.
pattern: The pattern which will be modified by subsequent operations.
If `None` (default), a new pattern is created.
ports: Allows specifying the initial set of ports, if `pattern` does
not already have any ports (or is not provided). May be a string,
in which case it is interpreted as a name in `library`.
Default `None` (no ports).
tools: A mapping of {port: tool} which specifies what `Tool` should be used
to generate waveguide or wire segments when `path`/`path_to`/`mpath`
are called. Relies on `Tool.planL` and `Tool.render` implementations.
name: If specified, `library[name]` is set to `self.pattern`.
"""
self._dead = False
self.paths = defaultdict(list)
@ -107,32 +137,17 @@ class RenderPather(PortList):
name: str | None = None,
) -> 'RenderPather':
"""
Begin building a new device based on all or some of the ports in the
source device. Do not include the source device; instead use it
to define ports (the "interface") for the new device.
The ports specified by `port_map` (default: all ports) are copied to
new device, and additional (input) ports are created facing in the
opposite directions. The specified `in_prefix` and `out_prefix` are
prepended to the port names to differentiate them.
By default, the flipped ports are given an 'in_' prefix and unflipped
ports keep their original names, enabling intuitive construction of
a device that will "plug into" the current device; the 'in_*' ports
are used for plugging the devices together while the original port
names are used for building the new device.
Another use-case could be to build the new device using the 'in_'
ports, creating a new device which could be used in place of the
current device.
Wrapper for `Pattern.interface()`, which returns a RenderPather instead.
Args:
source: A collection of ports (e.g. Pattern, Builder, or dict)
from which to create the interface.
library: Used for buildin functions; if not passed and the source
from which to create the interface. May be a pattern name if
`library` is provided.
library: Library from which existing patterns should be referenced,
and to which new ones should be added. If not provided,
the source's library will be used (if available).
and to which the new one should be added (if named). If not provided,
`source.library` must exist and will be used.
tools: `Tool`s which will be used by the pather for generating new wires
or waveguides (via `path`/`path_to`/`mpath`).
in_prefix: Prepended to port names for newly-created ports with
reversed directions compared to the current device.
out_prefix: Prepended to port names for ports which are directly
@ -144,7 +159,7 @@ class RenderPather(PortList):
renamed (to the values).
Returns:
The new builder, with an empty pattern and 2x as many ports as
The new `RenderPather`, with an empty pattern and 2x as many ports as
listed in port_map.
Raises:
@ -180,6 +195,46 @@ class RenderPather(PortList):
set_rotation: bool | None = None,
append: bool = False,
) -> Self:
"""
Wrapper for `Pattern.plug` which adds a `RenderStep` with opcode 'P'
for any affected ports. This separates any future `RenderStep`s on the
same port into a new batch, since the plugged device interferes with drawing.
Args:
other: An `Abstract`, string, or `Pattern` describing the device to be instatiated.
map_in: dict of `{'self_port': 'other_port'}` mappings, specifying
port connections between the two devices.
map_out: dict of `{'old_name': 'new_name'}` mappings, specifying
new names for ports in `other`.
mirrored: Enables mirroring `other` across the x axis prior to
connecting any ports.
inherit_name: If `True`, and `map_in` specifies only a single port,
and `map_out` is `None`, and `other` has only two ports total,
then automatically renames the output port of `other` to the
name of the port from `self` that appears in `map_in`. This
makes it easy to extend a device with simple 2-port devices
(e.g. wires) without providing `map_out` each time `plug` is
called. See "Examples" above for more info. Default `True`.
set_rotation: If the necessary rotation cannot be determined from
the ports being connected (i.e. all pairs have at least one
port with `rotation=None`), `set_rotation` must be provided
to indicate how much `other` should be rotated. Otherwise,
`set_rotation` must remain `None`.
append: If `True`, `other` is appended instead of being referenced.
Note that this does not flatten `other`, so its refs will still
be refs (now inside `self`).
Returns:
self
Raises:
`PortError` if any ports specified in `map_in` or `map_out` do not
exist in `self.ports` or `other_names`.
`PortError` if there are any duplicate names after `map_in` and `map_out`
are applied.
`PortError` if the specified port mapping is not achieveable (the ports
do not line up)
"""
if self._dead:
logger.error('Skipping plug() since device is dead')
return self
@ -227,6 +282,39 @@ class RenderPather(PortList):
skip_port_check: bool = False,
append: bool = False,
) -> Self:
"""
Wrapper for `Pattern.place` which adds a `RenderStep` with opcode 'P'
for any affected ports. This separates any future `RenderStep`s on the
same port into a new batch, since the placed device interferes with drawing.
Note that mirroring is applied before rotation; translation (`offset`) is applied last.
Args:
other: An `Abstract` or `Pattern` describing the device to be instatiated.
offset: Offset at which to place the instance. Default (0, 0).
rotation: Rotation applied to the instance before placement. Default 0.
pivot: Rotation is applied around this pivot point (default (0, 0)).
Rotation is applied prior to translation (`offset`).
mirrored: Whether theinstance should be mirrored across the x axis.
Mirroring is applied before translation and rotation.
port_map: dict of `{'old_name': 'new_name'}` mappings, specifying
new names for ports in the instantiated pattern. New names can be
`None`, which will delete those ports.
skip_port_check: Can be used to skip the internal call to `check_ports`,
in case it has already been performed elsewhere.
append: If `True`, `other` is appended instead of being referenced.
Note that this does not flatten `other`, so its refs will still
be refs (now inside `self`).
Returns:
self
Raises:
`PortError` if any ports specified in `map_in` or `map_out` do not
exist in `self.ports` or `other.ports`.
`PortError` if there are any duplicate names after `map_in` and `map_out`
are applied.
"""
if self._dead:
logger.error('Skipping place() since device is dead')
return self
@ -260,6 +348,18 @@ class RenderPather(PortList):
tool: Tool,
keys: str | Sequence[str | None] | None = None,
) -> Self:
"""
Update the `Tool` which will be used when generating `Pattern`s for the ports
given by `keys`.
Args:
tool: The new `Tool` to use for the given ports.
keys: Which ports the tool should apply to. `None` indicates the default tool,
used when there is no matching entry in `self.tools` for the port in question.
Returns:
self
"""
if keys is None or isinstance(keys, str):
self.tools[keys] = tool
else:
@ -274,6 +374,31 @@ class RenderPather(PortList):
length: float,
**kwargs,
) -> Self:
"""
Plan a "wire"/"waveguide" extending from the port `portspec`, with the aim
of traveling exactly `length` distance.
The wire will travel `length` distance along the port's axis, an an unspecified
(tool-dependent) distance in the perpendicular direction. The output port will
be rotated (or not) based on the `ccw` parameter.
`RenderPather.render` must be called after all paths have been fully planned.
Args:
portspec: The name of the port into which the wire will be plugged.
ccw: If `None`, the output should be along the same axis as the input.
Otherwise, cast to bool and turn counterclockwise if True
and clockwise otherwise.
length: The total distance from input to output, along the input's axis only.
(There may be a tool-dependent offset along the other axis.)
Returns:
self
Raises:
BuildError if `distance` is too small to fit the bend (if a bend is present).
LibraryError if no valid name could be picked for the pattern.
"""
if self._dead:
logger.error('Skipping path() since device is dead')
return self
@ -281,7 +406,7 @@ class RenderPather(PortList):
port = self.pattern[portspec]
in_ptype = port.ptype
port_rot = port.rotation
assert port_rot is not None # TODO allow manually setting rotation?
assert port_rot is not None # TODO allow manually setting rotation for RenderPather.path()?
tool = self.tools.get(portspec, self.tools[None])
# ask the tool for bend size (fill missing dx or dy), check feasibility, and get out_ptype
@ -308,6 +433,41 @@ class RenderPather(PortList):
y: float | None = None,
**kwargs,
) -> Self:
"""
Plan a "wire"/"waveguide" extending from the port `portspec`, with the aim
of ending exactly at a target position.
The wire will travel so that the output port will be placed at exactly the target
position along the input port's axis. There can be an unspecified (tool-dependent)
offset in the perpendicular direction. The output port will be rotated (or not)
based on the `ccw` parameter.
`RenderPather.render` must be called after all paths have been fully planned.
Args:
portspec: The name of the port into which the wire will be plugged.
ccw: If `None`, the output should be along the same axis as the input.
Otherwise, cast to bool and turn counterclockwise if True
and clockwise otherwise.
position: The final port position, along the input's axis only.
(There may be a tool-dependent offset along the other axis.)
Only one of `position`, `x`, and `y` may be specified.
x: The final port position along the x axis.
`portspec` must refer to a horizontal port if `x` is passed, otherwise a
BuildError will be raised.
y: The final port position along the y axis.
`portspec` must refer to a vertical port if `y` is passed, otherwise a
BuildError will be raised.
Returns:
self
Raises:
BuildError if `position`, `x`, or `y` is too close to fit the bend (if a bend
is present).
BuildError if `x` or `y` is specified but does not match the axis of `portspec`.
BuildError if more than one of `x`, `y`, and `position` is specified.
"""
if self._dead:
logger.error('Skipping path_to() since device is dead')
return self
@ -358,6 +518,32 @@ class RenderPather(PortList):
set_rotation: float | None = None,
**kwargs,
) -> Self:
"""
`mpath` is a superset of `path` and `path_to` which can act on bundles or buses
of "wires or "waveguides".
See `Pather.mpath` for details.
Args:
portspec: The names of the ports which are to be routed.
ccw: If `None`, the outputs should be along the same axis as the inputs.
Otherwise, cast to bool and turn 90 degrees counterclockwise if `True`
and clockwise otherwise.
spacing: Center-to-center distance between output ports along the input port's axis.
Must be provided if (and only if) `ccw` is not `None`.
set_rotation: If the provided ports have `rotation=None`, this can be used
to set a rotation for them.
Returns:
self
Raises:
BuildError if the implied length for any wire is too close to fit the bend
(if a bend is requested).
BuildError if `xmin`/`xmax` or `ymin`/`ymax` is specified but does not
match the axis of `portspec`.
BuildError if an incorrect bound type or spacing is specified.
"""
if self._dead:
logger.error('Skipping mpath() since device is dead')
return self

View File

@ -28,8 +28,61 @@ logger = logging.getLogger(__name__)
class Pattern(PortList, AnnotatableImpl, Mirrorable):
"""
2D layout consisting of some set of shapes, labels, and references to other Pattern objects
(via Ref). Shapes are assumed to inherit from `masque.shapes.Shape` or provide equivalent functions.
2D layout consisting of some set of shapes, labels, and references to other
Pattern objects (via Ref). Shapes are assumed to inherit from `masque.shapes.Shape`
or provide equivalent functions.
`Pattern` also stores a dict of `Port`s, which can be used to "snap" together points.
See `Pattern.plug()` and `Pattern.place()`, as well as the helper classes
`builder.Builder`, `builder.Pather`, `builder.RenderPather`, and `ports.PortsList`.
For convenience, ports can be read out using square brackets:
- `pattern['A'] == Port((0, 0), 0)`
- `pattern[['A', 'B']] == {'A': Port((0, 0), 0), 'B': Port((0, 0), pi)}`
Examples: Making a Pattern
==========================
- `pat = Pattern()` just creates an empty pattern, with no geometry or ports
- To immediately set some of the pattern's contents,
```
pat = Pattern(
shapes={'layer1': [shape0, ...], 'layer2': [shape,...], ...},
labels={'layer1': [...], ...},
refs={'name1': [ref0, ...], 'name2': [ref, ...], ...},
ports={'in': Port(...), 'out': Port(...)},
)
```
- `Pattern.interface(other_pat, port_map=['A', 'B'])` makes a new
(empty) pattern, copies over ports 'A' and 'B' from `other_pat`, and
creates additional ports 'in_A' and 'in_B' facing in the opposite
directions. This can be used to build a device which can plug into
`other_pat` (using the 'in_*' ports) but which does not itself include
`other_pat` as a subcomponent.
Examples: Adding to a pattern
=============================
- `pat.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
instantiates `subdevice` into `pat`, plugging ports 'A' and 'B'
of `pat` into ports 'C' and 'B' of `subdevice`. The connected ports
are removed and any unconnected ports from `subdevice` are added to
`pat`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
- `pat.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
of `pat`. If `wire` has only two ports (e.g. 'A' and 'B'), since no `map_out`
argument is provided and the `inherit_name` argument is not explicitly
set to `False`, the unconnected port of `wire` is automatically renamed to
'myport'. This allows easy extension of existing ports without changing
their names or having to provide `map_out` each time `plug` is called.
- `pat.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
instantiates `pad` at the specified (x, y) offset and with the specified
rotation, adding its ports to those of `pat`. Port 'A' of `pad` is
renamed to 'gnd' so that further routing can use this signal or net name
rather than the port name on the original `pad` device.
"""
__slots__ = (
'shapes', 'labels', 'refs', '_ports',