masque/masque/shapes/ellipse.py

188 lines
6.0 KiB
Python
Raw Normal View History

from typing import Any, Self
2019-05-17 00:41:43 -07:00
import copy
2016-03-15 19:12:39 -07:00
import math
import numpy
2016-03-15 19:12:39 -07:00
from numpy import pi
from numpy.typing import ArrayLike, NDArray
2016-03-15 19:12:39 -07:00
2023-02-23 11:25:40 -08:00
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
from ..error import PatternError
2020-07-22 21:50:39 -07:00
from ..repetition import Repetition
2023-04-12 13:56:50 -07:00
from ..utils import is_scalar, rotation_matrix_2d, annotations_t
2016-03-15 19:12:39 -07:00
class Ellipse(Shape):
2016-03-15 19:12:39 -07:00
"""
An ellipse, which has a position, two radii, and a rotation.
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
"""
2023-01-19 22:20:16 -08:00
__slots__ = (
'_radii', '_rotation',
# Inherited
2023-04-12 13:56:50 -07:00
'_offset', '_repetition', '_annotations',
2023-01-19 22:20:16 -08:00
)
_radii: NDArray[numpy.float64]
""" Ellipse radii """
_rotation: float
""" Angle from x-axis to first radius (ccw, radians) """
2016-03-15 19:12:39 -07:00
# radius properties
@property
def radii(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
2016-03-15 19:12:39 -07:00
"""
Return the radii `[rx, ry]`
2016-03-15 19:12:39 -07:00
"""
2017-04-19 18:54:58 -07:00
return self._radii
2016-03-15 19:12:39 -07:00
@radii.setter
def radii(self, val: ArrayLike) -> None:
2016-03-15 19:12:39 -07:00
val = numpy.array(val).flatten()
if not val.size == 2:
raise PatternError('Radii must have length 2')
if not val.min() >= 0:
raise PatternError('Radii must be non-negative')
2017-04-19 18:54:58 -07:00
self._radii = val
2016-03-15 19:12:39 -07:00
@property
def radius_x(self) -> float:
return self.radii[0]
@radius_x.setter
def radius_x(self, val: float) -> None:
2016-03-15 19:12:39 -07:00
if not val >= 0:
raise PatternError('Radius must be non-negative')
self.radii[0] = val
@property
def radius_y(self) -> float:
return self.radii[1]
@radius_y.setter
def radius_y(self, val: float) -> None:
2016-03-15 19:12:39 -07:00
if not val >= 0:
raise PatternError('Radius must be non-negative')
self.radii[1] = val
# Rotation property
@property
def rotation(self) -> float:
"""
Rotation of rx from the x axis. Uses the interval [0, pi) in radians (counterclockwise
is positive)
Returns:
counterclockwise rotation in radians
2016-03-15 19:12:39 -07:00
"""
return self._rotation
@rotation.setter
def rotation(self, val: float) -> None:
2016-03-15 19:12:39 -07:00
if not is_scalar(val):
raise PatternError('Rotation must be a scalar')
self._rotation = val % pi
def __init__(
self,
radii: ArrayLike,
*,
offset: ArrayLike = (0.0, 0.0),
rotation: float = 0,
2023-02-23 13:15:32 -08:00
repetition: Repetition | None = None,
annotations: annotations_t | None = None,
raw: bool = False,
) -> None:
if raw:
2023-01-23 22:27:26 -08:00
assert isinstance(radii, numpy.ndarray)
assert isinstance(offset, numpy.ndarray)
self._radii = radii
self._offset = offset
self._rotation = rotation
self._repetition = repetition
self._annotations = annotations if annotations is not None else {}
else:
self.radii = radii
self.offset = offset
self.rotation = rotation
self.repetition = repetition
self.annotations = annotations if annotations is not None else {}
2016-03-15 19:12:39 -07:00
def __deepcopy__(self, memo: dict | None = None) -> Self:
memo = {} if memo is None else memo
2022-04-17 19:04:13 -07:00
new = copy.copy(self)
new._offset = self._offset.copy()
new._radii = self._radii.copy()
new._annotations = copy.deepcopy(self._annotations)
return new
def to_polygons(
self,
2023-02-23 13:15:32 -08:00
num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES,
max_arclen: float | None = None,
) -> list[Polygon]:
2023-02-23 11:25:40 -08:00
if (num_vertices is None) and (max_arclen is None):
2016-03-15 19:12:39 -07:00
raise PatternError('Number of points and arclength left unspecified'
' (default was also overridden)')
2017-04-19 18:54:58 -07:00
r0, r1 = self.radii
2016-03-15 19:12:39 -07:00
# Approximate perimeter
# Ramanujan, S., "Modular Equations and Approximations to ,"
# Quart. J. Pure. Appl. Math., vol. 45 (1913-1914), pp. 350-372
2017-04-19 18:54:58 -07:00
h = ((r1 - r0) / (r1 + r0)) ** 2
perimeter = pi * (r1 + r0) * (1 + 3 * h / (10 + math.sqrt(4 - 3 * h)))
2016-03-15 19:12:39 -07:00
n = []
2023-02-23 11:25:40 -08:00
if num_vertices is not None:
n += [num_vertices]
if max_arclen is not None:
n += [perimeter / max_arclen]
num_vertices = int(round(max(n)))
thetas = numpy.linspace(2 * pi, 0, num_vertices, endpoint=False)
2016-03-15 19:12:39 -07:00
sin_th, cos_th = (numpy.sin(thetas), numpy.cos(thetas))
2017-04-19 18:54:58 -07:00
xs = r0 * cos_th
ys = r1 * sin_th
2016-03-15 19:12:39 -07:00
xys = numpy.vstack((xs, ys)).T
2023-04-12 13:56:50 -07:00
poly = Polygon(xys, offset=self.offset, rotation=self.rotation)
2016-03-15 19:12:39 -07:00
return [poly]
def get_bounds_single(self) -> NDArray[numpy.float64]:
2016-03-15 19:12:39 -07:00
rot_radii = numpy.dot(rotation_matrix_2d(self.rotation), self.radii)
return numpy.vstack((self.offset - rot_radii[0],
self.offset + rot_radii[1]))
def rotate(self, theta: float) -> Self:
2016-03-15 19:12:39 -07:00
self.rotation += theta
return self
def mirror(self, axis: int = 0) -> Self:
self.offset[axis - 1] *= -1
self.rotation *= -1
self.rotation += axis * pi
return self
def scale_by(self, c: float) -> Self:
2016-03-15 19:12:39 -07:00
self.radii *= c
return self
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
if self.radius_x < self.radius_y:
radii = self.radii / self.radius_x
scale = self.radius_x
angle = self.rotation
else:
radii = self.radii[::-1] / self.radius_y
scale = self.radius_y
angle = (self.rotation + pi / 2) % pi
2023-04-12 13:56:50 -07:00
return ((type(self), radii),
(self.offset, scale / norm_value, angle, False),
2023-04-12 13:56:50 -07:00
lambda: Ellipse(radii=radii * norm_value))
2016-03-15 19:12:39 -07:00
def __repr__(self) -> str:
2023-04-12 13:56:50 -07:00
rotation = f' r{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
return f'<Ellipse o{self.offset} r{self.radii}{rotation}>'