You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
masque/masque/builder/builder.py

797 lines
31 KiB
Python

1 year ago
from typing import Self, Sequence, MutableMapping, Mapping
import copy
import logging
import numpy
from numpy import pi
from numpy.typing import ArrayLike
from ..pattern import Pattern, NamedPattern
1 year ago
from ..ref import Ref
from ..library import MutableLibrary, Tree
from ..error import PortError, BuildError
1 year ago
from ..ports import PortList, Port
from ..abstract import Abstract
from ..utils import SupportsBool
from .tools import Tool
from .utils import ell
logger = logging.getLogger(__name__)
1 year ago
class Builder(PortList):
"""
1 year ago
TODO DOCUMENT Builder
A `Device` is a combination of a `Pattern` with a set of named `Port`s
which can be used to "snap" devices together to make complex layouts.
`Device`s can be as simple as one or two ports (e.g. an electrical pad
or wire), but can also be used to build and represent a large routed
layout (e.g. a logical block with multiple I/O connections or even a
full chip).
For convenience, ports can be read out using square brackets:
- `device['A'] == Port((0, 0), 0)`
- `device[['A', 'B']] == {'A': Port((0, 0), 0), 'B': Port((0, 0), pi)}`
Examples: Creating a Device
===========================
- `Device(pattern, ports={'A': port_a, 'C': port_c})` uses an existing
pattern and defines some ports.
- `Device(ports=None)` makes a new empty pattern with
default ports ('A' and 'B', in opposite directions, at (0, 0)).
- `my_device.build('my_layout')` makes a new pattern and instantiates
`my_device` in it with offset (0, 0) as a base for further building.
- `my_device.as_interface('my_component', port_map=['A', 'B'])` makes a new
(empty) pattern, copies over ports 'A' and 'B' from `my_device`, and
creates additional ports 'in_A' and 'in_B' facing in the opposite
directions. This can be used to build a device which can plug into
`my_device` (using the 'in_*' ports) but which does not itself include
`my_device` as a subcomponent.
Examples: Adding to a Device
============================
- `my_device.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
instantiates `subdevice` into `my_device`, plugging ports 'A' and 'B'
of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports
are removed and any unconnected ports from `subdevice` are added to
`my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
- `my_device.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
of `my_device`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`,
argument is provided, and the `inherit_name` argument is not explicitly
set to `False`, the unconnected port of `wire` is automatically renamed to
'myport'. This allows easy extension of existing ports without changing
their names or having to provide `map_out` each time `plug` is called.
- `my_device.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
instantiates `pad` at the specified (x, y) offset and with the specified
rotation, adding its ports to those of `my_device`. Port 'A' of `pad` is
renamed to 'gnd' so that further routing can use this signal or net name
rather than the port name on the original `pad` device.
"""
__slots__ = ('pattern', 'library', '_dead')
pattern: Pattern
""" Layout of this device """
library: MutableLibrary | None
1 year ago
"""
Library from which existing patterns should be referenced, and to which
new ones should be added
"""
_dead: bool
""" If True, plug()/place() are skipped (for debugging)"""
@property
def ports(self) -> dict[str, Port]:
return self.pattern.ports
@ports.setter
def ports(self, value: dict[str, Port]) -> None:
self.pattern.ports = value
def __init__(
self,
library: MutableLibrary | None = None,
*,
pattern: Pattern | None = None,
ports: str | Mapping[str, Port] | None = None,
name: str | None = None,
) -> None:
"""
# TODO documentation for Builder() constructor
# TODO MOVE THE BELOW DOCS to PortList
# If `ports` is `None`, two default ports ('A' and 'B') are created.
# Both are placed at (0, 0) and have default `ptype`, but 'A' has rotation 0
# (attached devices will be placed to the left) and 'B' has rotation
# pi (attached devices will be placed to the right).
"""
self._dead = False
1 year ago
self.library = library
if pattern is not None:
self.pattern = pattern
else:
self.pattern = Pattern()
if ports is not None:
if self.pattern.ports:
raise BuildError('Ports supplied for pattern with pre-existing ports!')
if isinstance(ports, str):
if library is None:
raise BuildError('Ports given as a string, but `library` was `None`!')
ports = library.abstract(ports).ports
self.pattern.ports.update(copy.deepcopy(dict(ports)))
1 year ago
if name is not None:
if library is None:
raise BuildError('Name was supplied, but no library was given!')
library[name] = self.pattern
@classmethod
def interface(
cls,
source: PortList | Mapping[str, Port] | str,
*,
library: MutableLibrary | None = None,
in_prefix: str = 'in_',
out_prefix: str = '',
port_map: dict[str, str] | Sequence[str] | None = None,
name: str | None = None,
1 year ago
) -> 'Builder':
"""
Begin building a new device based on all or some of the ports in the
source device. Do not include the source device; instead use it
to define ports (the "interface") for the new device.
The ports specified by `port_map` (default: all ports) are copied to
new device, and additional (input) ports are created facing in the
opposite directions. The specified `in_prefix` and `out_prefix` are
prepended to the port names to differentiate them.
By default, the flipped ports are given an 'in_' prefix and unflipped
ports keep their original names, enabling intuitive construction of
a device that will "plug into" the current device; the 'in_*' ports
are used for plugging the devices together while the original port
names are used for building the new device.
Another use-case could be to build the new device using the 'in_'
ports, creating a new device which could be used in place of the
current device.
Args:
source: A collection of ports (e.g. Pattern, Builder, or dict)
from which to create the interface.
library: Used for buildin functions; if not passed and the source
library: Library from which existing patterns should be referenced,
and to which new ones should be added. If not provided,
the source's library will be used (if available).
in_prefix: Prepended to port names for newly-created ports with
reversed directions compared to the current device.
out_prefix: Prepended to port names for ports which are directly
copied from the current device.
port_map: Specification for ports to copy into the new device:
- If `None`, all ports are copied.
- If a sequence, only the listed ports are copied
- If a mapping, the listed ports (keys) are copied and
renamed (to the values).
Returns:
The new builder, with an empty pattern and 2x as many ports as
listed in port_map.
Raises:
`PortError` if `port_map` contains port names not present in the
current device.
`PortError` if applying the prefixes results in duplicate port
names.
"""
if library is None:
if hasattr(source, 'library') and isinstance(source.library, MutableLibrary):
library = source.library
if isinstance(source, str):
if library is None:
raise BuildError('Source given as a string, but `library` was `None`!')
orig_ports = library.abstract(source).ports
elif isinstance(source, PortList):
orig_ports = source.ports
elif isinstance(source, dict):
orig_ports = source
else:
raise BuildError(f'Unable to get ports from {type(source)}: {source}')
if port_map:
if isinstance(port_map, dict):
missing_inkeys = set(port_map.keys()) - set(orig_ports.keys())
mapped_ports = {port_map[k]: v for k, v in orig_ports.items() if k in port_map}
else:
port_set = set(port_map)
missing_inkeys = port_set - set(orig_ports.keys())
mapped_ports = {k: v for k, v in orig_ports.items() if k in port_set}
if missing_inkeys:
raise PortError(f'`port_map` keys not present in source: {missing_inkeys}')
else:
mapped_ports = orig_ports
ports_in = {f'{in_prefix}{name}': port.deepcopy().rotate(pi)
for name, port in mapped_ports.items()}
ports_out = {f'{out_prefix}{name}': port.deepcopy()
for name, port in mapped_ports.items()}
duplicates = set(ports_out.keys()) & set(ports_in.keys())
if duplicates:
raise PortError(f'Duplicate keys after prefixing, try a different prefix: {duplicates}')
1 year ago
new = Builder(library=library, ports={**ports_in, **ports_out}, name=name)
return new
def plug(
1 year ago
self,
other: Abstract | str | NamedPattern,
map_in: dict[str, str],
map_out: dict[str, str | None] | None = None,
*,
mirrored: tuple[bool, bool] = (False, False),
inherit_name: bool = True,
set_rotation: bool | None = None,
1 year ago
) -> Self:
"""
Instantiate a device `library[name]` into the current device, connecting
the ports specified by `map_in` and renaming the unconnected
ports specified by `map_out`.
Examples:
=========
- `my_device.plug(lib, 'subdevice', {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
instantiates `lib['subdevice']` into `my_device`, plugging ports 'A' and 'B'
of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports
are removed and any unconnected ports from `subdevice` are added to
`my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
- `my_device.plug(lib, 'wire', {'myport': 'A'})` places port 'A' of `lib['wire']`
at 'myport' of `my_device`.
If `'wire'` has only two ports (e.g. 'A' and 'B'), no `map_out` argument is
provided, and the `inherit_name` argument is not explicitly set to `False`,
the unconnected port of `wire` is automatically renamed to 'myport'. This
allows easy extension of existing ports without changing their names or
having to provide `map_out` each time `plug` is called.
Args:
other: An `Abstract` describing the device to be instatiated.
map_in: dict of `{'self_port': 'other_port'}` mappings, specifying
port connections between the two devices.
map_out: dict of `{'old_name': 'new_name'}` mappings, specifying
new names for ports in `other`.
mirrored: Enables mirroring `other` across the x or y axes prior
to connecting any ports.
inherit_name: If `True`, and `map_in` specifies only a single port,
and `map_out` is `None`, and `other` has only two ports total,
then automatically renames the output port of `other` to the
name of the port from `self` that appears in `map_in`. This
makes it easy to extend a device with simple 2-port devices
(e.g. wires) without providing `map_out` each time `plug` is
called. See "Examples" above for more info. Default `True`.
set_rotation: If the necessary rotation cannot be determined from
the ports being connected (i.e. all pairs have at least one
port with `rotation=None`), `set_rotation` must be provided
to indicate how much `other` should be rotated. Otherwise,
`set_rotation` must remain `None`.
Returns:
self
Raises:
`PortError` if any ports specified in `map_in` or `map_out` do not
exist in `self.ports` or `other_names`.
`PortError` if there are any duplicate names after `map_in` and `map_out`
are applied.
`PortError` if the specified port mapping is not achieveable (the ports
do not line up)
"""
if self._dead:
logger.error('Skipping plug() since device is dead')
return self
if isinstance(other, str):
if self.library is None:
raise BuildError('No library available, but `other` was a string!')
other = self.library.abstract(other)
1 year ago
# If asked to inherit a name, check that all conditions are met
if (inherit_name
and not map_out
and len(map_in) == 1
and len(other.ports) == 2):
out_port_name = next(iter(set(other.ports.keys()) - set(map_in.values())))
map_out = {out_port_name: next(iter(map_in.keys()))}
if map_out is None:
map_out = {}
map_out = copy.deepcopy(map_out)
self.check_ports(other.ports.keys(), map_in, map_out)
1 year ago
translation, rotation, pivot = self.find_transform(
other,
map_in,
mirrored=mirrored,
set_rotation=set_rotation,
)
# get rid of plugged ports
for ki, vi in map_in.items():
del self.ports[ki]
map_out[vi] = None
self.place(other, offset=translation, rotation=rotation, pivot=pivot,
mirrored=mirrored, port_map=map_out, skip_port_check=True)
return self
def place(
1 year ago
self,
other: Abstract | str | NamedPattern,
*,
offset: ArrayLike = (0, 0),
rotation: float = 0,
pivot: ArrayLike = (0, 0),
mirrored: tuple[bool, bool] = (False, False),
port_map: dict[str, str | None] | None = None,
skip_port_check: bool = False,
1 year ago
) -> Self:
"""
Instantiate the device `other` into the current device, adding its
ports to those of the current device (but not connecting any ports).
Mirroring is applied before rotation; translation (`offset`) is applied last.
Examples:
=========
- `my_device.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
instantiates `pad` at the specified (x, y) offset and with the specified
rotation, adding its ports to those of `my_device`. Port 'A' of `pad` is
renamed to 'gnd' so that further routing can use this signal or net name
rather than the port name on the original `pad` device.
Args:
other: An `Abstract` describing the device to be instatiated.
offset: Offset at which to place the instance. Default (0, 0).
rotation: Rotation applied to the instance before placement. Default 0.
pivot: Rotation is applied around this pivot point (default (0, 0)).
Rotation is applied prior to translation (`offset`).
mirrored: Whether theinstance should be mirrored across the x and y axes.
Mirroring is applied before translation and rotation.
port_map: dict of `{'old_name': 'new_name'}` mappings, specifying
new names for ports in the instantiated device. New names can be
`None`, which will delete those ports.
skip_port_check: Can be used to skip the internal call to `check_ports`,
in case it has already been performed elsewhere.
Returns:
self
Raises:
`PortError` if any ports specified in `map_in` or `map_out` do not
exist in `self.ports` or `library[name].ports`.
`PortError` if there are any duplicate names after `map_in` and `map_out`
are applied.
"""
if self._dead:
logger.error('Skipping place() since device is dead')
return self
if isinstance(other, str):
if self.library is None:
raise BuildError('No library available, but `other` was a string!')
other = self.library.abstract(other)
if port_map is None:
port_map = {}
if not skip_port_check:
self.check_ports(other.ports.keys(), map_in=None, map_out=port_map)
ports = {}
for name, port in other.ports.items():
new_name = port_map.get(name, name)
if new_name is None:
continue
ports[new_name] = port
for name, port in ports.items():
p = port.deepcopy()
p.mirror2d(mirrored)
p.rotate_around(pivot, rotation)
p.translate(offset)
self.ports[name] = p
1 year ago
sp = Ref(other.name, mirrored=mirrored)
sp.rotate_around(pivot, rotation)
sp.translate(offset)
1 year ago
self.pattern.refs.append(sp)
return self
1 year ago
def translate(self, offset: ArrayLike) -> Self:
"""
Translate the pattern and all ports.
Args:
offset: (x, y) distance to translate by
Returns:
self
"""
self.pattern.translate_elements(offset)
return self
1 year ago
def rotate_around(self, pivot: ArrayLike, angle: float) -> Self:
"""
Rotate the pattern and all ports.
Args:
angle: angle (radians, counterclockwise) to rotate by
pivot: location to rotate around
Returns:
self
"""
self.pattern.rotate_around(pivot, angle)
for port in self.ports.values():
port.rotate_around(pivot, angle)
return self
1 year ago
def mirror(self, axis: int) -> Self:
"""
Mirror the pattern and all ports across the specified axis.
Args:
axis: Axis to mirror across (x=0, y=1)
Returns:
self
"""
self.pattern.mirror(axis)
for p in self.ports.values():
p.mirror(axis)
return self
1 year ago
def set_dead(self) -> Self:
"""
Disallows further changes through `plug()` or `place()`.
This is meant for debugging:
```
dev.plug(a, ...)
dev.set_dead() # added for debug purposes
dev.plug(b, ...) # usually raises an error, but now skipped
dev.plug(c, ...) # also skipped
dev.pattern.visualize() # shows the device as of the set_dead() call
```
Returns:
self
"""
self._dead = True
return self
def __repr__(self) -> str:
1 year ago
s = f'<Builder {self.pattern} >' # TODO maybe show lib and tools? in builder repr?
return s
class Pather(Builder):
"""
TODO DOCUMENT Builder
A `Device` is a combination of a `Pattern` with a set of named `Port`s
which can be used to "snap" devices together to make complex layouts.
`Device`s can be as simple as one or two ports (e.g. an electrical pad
or wire), but can also be used to build and represent a large routed
layout (e.g. a logical block with multiple I/O connections or even a
full chip).
For convenience, ports can be read out using square brackets:
- `device['A'] == Port((0, 0), 0)`
- `device[['A', 'B']] == {'A': Port((0, 0), 0), 'B': Port((0, 0), pi)}`
Examples: Creating a Device
===========================
- `Device(pattern, ports={'A': port_a, 'C': port_c})` uses an existing
pattern and defines some ports.
- `Device(ports=None)` makes a new empty pattern with
default ports ('A' and 'B', in opposite directions, at (0, 0)).
- `my_device.build('my_layout')` makes a new pattern and instantiates
`my_device` in it with offset (0, 0) as a base for further building.
- `my_device.as_interface('my_component', port_map=['A', 'B'])` makes a new
(empty) pattern, copies over ports 'A' and 'B' from `my_device`, and
creates additional ports 'in_A' and 'in_B' facing in the opposite
directions. This can be used to build a device which can plug into
`my_device` (using the 'in_*' ports) but which does not itself include
`my_device` as a subcomponent.
Examples: Adding to a Device
============================
- `my_device.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
instantiates `subdevice` into `my_device`, plugging ports 'A' and 'B'
of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports
are removed and any unconnected ports from `subdevice` are added to
`my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
- `my_device.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
of `my_device`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`,
argument is provided, and the `inherit_name` argument is not explicitly
set to `False`, the unconnected port of `wire` is automatically renamed to
'myport'. This allows easy extension of existing ports without changing
their names or having to provide `map_out` each time `plug` is called.
- `my_device.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
instantiates `pad` at the specified (x, y) offset and with the specified
rotation, adding its ports to those of `my_device`. Port 'A' of `pad` is
renamed to 'gnd' so that further routing can use this signal or net name
rather than the port name on the original `pad` device.
"""
__slots__ = ('tools',)
library: MutableLibrary
"""
Library from which existing patterns should be referenced, and to which
new ones should be added
"""
tools: dict[str | None, Tool]
"""
Tool objects are used to dynamically generate new single-use Devices
(e.g wires or waveguides) to be plugged into this device.
"""
def __init__(
self,
library: MutableLibrary,
*,
pattern: Pattern | None = None,
ports: str | Mapping[str, Port] | None = None,
tools: Tool | MutableMapping[str | None, Tool] | None = None,
name: str | None = None,
) -> None:
"""
# TODO documentation for Builder() constructor
# TODO MOVE THE BELOW DOCS to PortList
# If `ports` is `None`, two default ports ('A' and 'B') are created.
# Both are placed at (0, 0) and have default `ptype`, but 'A' has rotation 0
# (attached devices will be placed to the left) and 'B' has rotation
# pi (attached devices will be placed to the right).
"""
self._dead = False
self.library = library
if pattern is not None:
self.pattern = pattern
else:
self.pattern = Pattern()
if ports is not None:
if self.pattern.ports:
raise BuildError('Ports supplied for pattern with pre-existing ports!')
if isinstance(ports, str):
ports = library.abstract(ports).ports
self.pattern.ports.update(copy.deepcopy(dict(ports)))
if tools is None:
self.tools = {}
elif isinstance(tools, Tool):
self.tools = {None: tools}
else:
self.tools = dict(tools)
1 year ago
if name is not None:
library[name] = self.pattern
@classmethod
def mk(
cls,
library: MutableLibrary,
base_name: str,
*,
ports: str | Mapping[str, Port] | None= None,
tools: Tool | MutableMapping[str | None, Tool] | None = None,
) -> tuple['Pather', str]:
""" Name-and-make combination """
pat = library.create(base_name)
pather = Pather(library, pattern=pat, ports=ports, tools=tools)
return pather, pat.name
@classmethod
def from_builder(
cls,
builder: Builder,
*,
library: MutableLibrary | None = None,
tools: Tool | MutableMapping[str | None, Tool] | None = None,
) -> 'Pather':
"""TODO from_builder docs"""
library = library if library is not None else builder.library
if library is None:
raise BuildError('No library available for Pather!')
new = Pather(library=library, tools=tools, pattern=builder.pattern)
return new
@classmethod
def interface(
cls,
source: PortList | Mapping[str, Port] | str,
*,
library: MutableLibrary | None = None,
tools: Tool | MutableMapping[str | None, Tool] | None = None,
in_prefix: str = 'in_',
out_prefix: str = '',
port_map: dict[str, str] | Sequence[str] | None = None,
name: str | None = None,
) -> 'Pather':
"""
TODO doc pather.interface
"""
if library is None:
if hasattr(source, 'library') and isinstance(source.library, MutableLibrary):
library = source.library
else:
raise BuildError('No library provided (and not present in `source.library`')
if tools is None and hasattr(source, 'tools') and isinstance(source.tools, dict):
tools = source.tools
new = Pather.from_builder(
Builder.interface(
source=source,
library=library,
in_prefix=in_prefix,
out_prefix=out_prefix,
port_map=port_map,
name=name,
),
tools=tools,
)
return new
def __repr__(self) -> str:
s = f'<Pather {self.pattern} >' # TODO maybe show lib and tools? in builder repr?
return s
def retool(
1 year ago
self,
tool: Tool,
keys: str | Sequence[str | None] | None = None,
1 year ago
) -> Self:
if keys is None or isinstance(keys, str):
self.tools[keys] = tool
else:
for key in keys:
self.tools[key] = tool
return self
def path(
1 year ago
self,
portspec: str,
ccw: SupportsBool | None,
length: float,
*,
tool_port_names: Sequence[str] = ('A', 'B'),
base_name: str = '_path',
**kwargs,
1 year ago
) -> Self:
if self._dead:
logger.error('Skipping path() since device is dead')
return self
tool = self.tools.get(portspec, self.tools[None])
1 year ago
in_ptype = self.pattern[portspec].ptype
pat = tool.path(ccw, length, in_ptype=in_ptype, port_names=tool_port_names, **kwargs)
name = self.library.get_name(base_name)
self.library[name] = pat
return self.plug(Abstract(name, pat.ports), {portspec: tool_port_names[0]})
def path_to(
1 year ago
self,
portspec: str,
ccw: SupportsBool | None,
position: float,
*,
tool_port_names: Sequence[str] = ('A', 'B'),
base_name: str = '_pathto',
**kwargs,
1 year ago
) -> Self:
if self._dead:
logger.error('Skipping path_to() since device is dead')
return self
1 year ago
port = self.pattern[portspec]
x, y = port.offset
if port.rotation is None:
raise PortError(f'Port {portspec} has no rotation and cannot be used for path_to()')
if not numpy.isclose(port.rotation % (pi / 2), 0):
raise BuildError('path_to was asked to route from non-manhattan port')
is_horizontal = numpy.isclose(port.rotation % pi, 0)
if is_horizontal:
if numpy.sign(numpy.cos(port.rotation)) == numpy.sign(position - x):
raise BuildError(f'path_to routing to behind source port: x={x:g} to {position:g}')
length = numpy.abs(position - x)
else:
if numpy.sign(numpy.sin(port.rotation)) == numpy.sign(position - y):
raise BuildError(f'path_to routing to behind source port: y={y:g} to {position:g}')
length = numpy.abs(position - y)
1 year ago
return self.path(portspec, ccw, length, tool_port_names=tool_port_names, base_name=base_name, **kwargs)
def mpath(
1 year ago
self,
portspec: str | Sequence[str],
ccw: SupportsBool | None,
*,
spacing: float | ArrayLike | None = None,
set_rotation: float | None = None,
tool_port_names: Sequence[str] = ('A', 'B'),
force_container: bool = False,
base_name: str = '_mpath',
**kwargs,
1 year ago
) -> Self:
if self._dead:
1 year ago
logger.error('Skipping mpath() since device is dead')
return self
bound_types = set()
if 'bound_type' in kwargs:
bound_types.add(kwargs['bound_type'])
bound = kwargs['bound']
for bt in ('emin', 'emax', 'pmin', 'pmax', 'min_past_furthest'):
if bt in kwargs:
bound_types.add(bt)
bound = kwargs[bt]
if not bound_types:
raise BuildError('No bound type specified for mpath')
elif len(bound_types) > 1:
raise BuildError(f'Too many bound types specified for mpath: {bound_types}')
bound_type = tuple(bound_types)[0]
if isinstance(portspec, str):
portspec = [portspec]
1 year ago
ports = self.pattern[tuple(portspec)]
extensions = ell(ports, ccw, spacing=spacing, bound=bound, bound_type=bound_type, set_rotation=set_rotation)
if len(ports) == 1 and not force_container:
# Not a bus, so having a container just adds noise to the layout
port_name = tuple(portspec)[0]
return self.path(port_name, ccw, extensions[port_name], tool_port_names=tool_port_names)
else:
bld = Pather.interface(source=ports, library=self.library, tools=self.tools)
1 year ago
for port_name, length in extensions.items():
bld.path(port_name, ccw, length, tool_port_names=tool_port_names)
name = self.library.get_name(base_name)
self.library[name] = bld.pattern
return self.plug(Abstract(name, bld.pattern.ports), {sp: 'in_' + sp for sp in ports.keys()}) # TODO safe to use 'in_'?
# TODO def path_join() and def bus_join()?
1 year ago
def flatten(self) -> Self:
"""
Flatten the contained pattern, using the contained library to resolve references.
Returns:
self
"""
self.pattern.flatten(self.library)
return self