masque/masque/repetition.py

546 lines
16 KiB
Python
Raw Normal View History

"""
Repetitions provides support for efficiently nesting multiple identical
instances of a Pattern in the same parent Pattern.
"""
from typing import Union, List, Dict, Tuple, Optional, Sequence, TYPE_CHECKING, Any
import copy
import numpy
from numpy import pi
2019-12-12 00:38:11 -08:00
from .error import PatternError, PatternLockedError
from .utils import is_scalar, rotation_matrix_2d, vector2
if TYPE_CHECKING:
from . import Pattern
# TODO need top-level comment about what order rotation/scale/offset/mirror/array are applied
class GridRepetition:
"""
GridRepetition provides support for efficiently embedding multiple copies of a `Pattern`
into another `Pattern` at regularly-spaced offsets.
"""
__slots__ = ('_pattern',
'_offset',
'_rotation',
'_dose',
'_scale',
'_mirrored',
'_a_vector',
'_b_vector',
2019-12-06 22:28:11 -08:00
'_a_count',
'_b_count',
2019-12-12 00:38:11 -08:00
'identifier',
'locked')
_pattern: Optional['Pattern']
""" The `Pattern` being instanced """
_offset: numpy.ndarray
""" (x, y) offset for the base instance """
_dose: float
""" Dose factor """
_rotation: float
""" Rotation of the individual instances in the grid (not the grid vectors).
Radians, counterclockwise.
"""
_scale: float
""" Scaling factor applied to individual instances in the grid (not the grid vectors) """
_mirrored: numpy.ndarray # ndarray[bool]
""" Whether to mirror individual instances across the x and y axes
(Applies to individual instances in the grid, not the grid vectors)
"""
_a_vector: numpy.ndarray
""" Vector `[x, y]` specifying the first lattice vector of the grid.
Specifies center-to-center spacing between adjacent elements.
"""
2019-12-06 22:28:11 -08:00
_a_count: int
""" Number of instances along the direction specified by the `a_vector` """
_b_vector: Optional[numpy.ndarray]
""" Vector `[x, y]` specifying a second lattice vector for the grid.
Specifies center-to-center spacing between adjacent elements.
Can be `None` for a 1D array.
"""
2019-12-06 22:28:11 -08:00
_b_count: int
""" Number of instances along the direction specified by the `b_vector` """
identifier: Tuple[Any, ...]
""" Arbitrary identifier """
2019-12-12 00:38:11 -08:00
locked: bool
""" If `True`, disallows changes to the GridRepetition """
def __init__(self,
pattern: Optional['Pattern'],
a_vector: numpy.ndarray,
a_count: int,
b_vector: Optional[numpy.ndarray] = None,
b_count: int = 1,
offset: vector2 = (0.0, 0.0),
rotation: float = 0.0,
mirrored: Optional[Sequence[bool]] = None,
dose: float = 1.0,
2019-12-12 00:38:11 -08:00
scale: float = 1.0,
locked: bool = False,
identifier: Tuple[Any, ...] = ()):
"""
Args:
a_vector: First lattice vector, of the form `[x, y]`.
Specifies center-to-center spacing between adjacent elements.
a_count: Number of elements in the a_vector direction.
b_vector: Second lattice vector, of the form `[x, y]`.
Specifies center-to-center spacing between adjacent elements.
Can be omitted when specifying a 1D array.
b_count: Number of elements in the `b_vector` direction.
Should be omitted if `b_vector` was omitted.
locked: Whether the `GridRepetition` is locked after initialization.
Raises:
PatternError if `b_*` inputs conflict with each other
or `a_count < 1`.
"""
if b_vector is None:
if b_count > 1:
raise PatternError('Repetition has b_count > 1 but no b_vector')
else:
b_vector = numpy.array([0.0, 0.0])
if a_count < 1:
raise PatternError('Repetition has too-small a_count: '
'{}'.format(a_count))
if b_count < 1:
raise PatternError('Repetition has too-small b_count: '
'{}'.format(b_count))
object.__setattr__(self, 'locked', False)
self.a_vector = a_vector
self.b_vector = b_vector
self.a_count = a_count
self.b_count = b_count
self.identifier = identifier
self.pattern = pattern
self.offset = offset
self.rotation = rotation
self.dose = dose
self.scale = scale
if mirrored is None:
mirrored = [False, False]
self.mirrored = mirrored
2019-12-12 00:38:11 -08:00
self.locked = locked
def __setattr__(self, name, value):
if self.locked and name != 'locked':
raise PatternLockedError()
object.__setattr__(self, name, value)
def __copy__(self) -> 'GridRepetition':
new = GridRepetition(pattern=self.pattern,
a_vector=self.a_vector.copy(),
b_vector=copy.copy(self.b_vector),
a_count=self.a_count,
b_count=self.b_count,
offset=self.offset.copy(),
rotation=self.rotation,
dose=self.dose,
scale=self.scale,
2019-12-12 00:38:11 -08:00
mirrored=self.mirrored.copy(),
locked=self.locked)
return new
def __deepcopy__(self, memo: Dict = None) -> 'GridRepetition':
memo = {} if memo is None else memo
2019-12-13 01:25:38 -08:00
new = copy.copy(self).unlock()
new.pattern = copy.deepcopy(self.pattern, memo)
2019-12-13 01:25:38 -08:00
new.locked = self.locked
return new
# pattern property
@property
def pattern(self) -> Optional['Pattern']:
return self._pattern
@pattern.setter
def pattern(self, val: Optional['Pattern']):
from .pattern import Pattern
if val is not None and not isinstance(val, Pattern):
raise PatternError('Provided pattern {} is not a Pattern object or None!'.format(val))
self._pattern = val
# offset property
@property
def offset(self) -> numpy.ndarray:
return self._offset
@offset.setter
def offset(self, val: vector2):
2019-12-12 00:38:11 -08:00
if self.locked:
raise PatternLockedError()
if not isinstance(val, numpy.ndarray):
val = numpy.array(val, dtype=float)
if val.size != 2:
raise PatternError('Offset must be convertible to size-2 ndarray')
2019-04-18 01:12:51 -07:00
self._offset = val.flatten().astype(float)
# dose property
@property
def dose(self) -> float:
return self._dose
@dose.setter
def dose(self, val: float):
if not is_scalar(val):
raise PatternError('Dose must be a scalar')
if not val >= 0:
raise PatternError('Dose must be non-negative')
self._dose = val
# scale property
@property
def scale(self) -> float:
return self._scale
@scale.setter
def scale(self, val: float):
if not is_scalar(val):
raise PatternError('Scale must be a scalar')
if not val > 0:
raise PatternError('Scale must be positive')
self._scale = val
# Rotation property [ccw]
@property
def rotation(self) -> float:
return self._rotation
@rotation.setter
def rotation(self, val: float):
if not is_scalar(val):
raise PatternError('Rotation must be a scalar')
self._rotation = val % (2 * pi)
# Mirrored property
@property
def mirrored(self) -> numpy.ndarray: # ndarray[bool]
return self._mirrored
@mirrored.setter
def mirrored(self, val: Sequence[bool]):
if is_scalar(val):
raise PatternError('Mirrored must be a 2-element list of booleans')
2020-05-11 18:49:30 -07:00
self._mirrored = numpy.array(val, dtype=bool, copy=True)
# a_vector property
@property
def a_vector(self) -> numpy.ndarray:
return self._a_vector
@a_vector.setter
def a_vector(self, val: vector2):
if not isinstance(val, numpy.ndarray):
val = numpy.array(val, dtype=float)
if val.size != 2:
raise PatternError('a_vector must be convertible to size-2 ndarray')
2020-05-11 18:49:30 -07:00
self._a_vector = val.flatten().astype(float)
# b_vector property
@property
def b_vector(self) -> numpy.ndarray:
return self._b_vector
@b_vector.setter
def b_vector(self, val: vector2):
if not isinstance(val, numpy.ndarray):
2020-05-11 18:49:30 -07:00
val = numpy.array(val, dtype=float, copy=True)
if val.size != 2:
raise PatternError('b_vector must be convertible to size-2 ndarray')
self._b_vector = val.flatten()
2019-12-06 22:28:11 -08:00
# a_count property
@property
def a_count(self) -> int:
return self._a_count
@a_count.setter
def a_count(self, val: int):
if val != int(val):
raise PatternError('a_count must be convertable to an int!')
self._a_count = int(val)
# b_count property
@property
def b_count(self) -> int:
return self._b_count
@b_count.setter
def b_count(self, val: int):
if val != int(val):
raise PatternError('b_count must be convertable to an int!')
self._b_count = int(val)
def as_pattern(self) -> 'Pattern':
"""
2019-05-15 00:12:34 -07:00
Returns a copy of self.pattern which has been scaled, rotated, repeated, etc.
etc. according to this `GridRepetition`'s properties.
Returns:
A copy of self.pattern which has been scaled, rotated, repeated, etc.
etc. according to this `GridRepetition`'s properties.
"""
assert(self.pattern is not None)
patterns = []
for a in range(self.a_count):
for b in range(self.b_count):
offset = a * self.a_vector + b * self.b_vector
2019-12-12 00:38:11 -08:00
newPat = self.pattern.deepcopy().deepunlock()
newPat.translate_elements(offset)
patterns.append(newPat)
combined = patterns[0]
for p in patterns[1:]:
combined.append(p)
combined.scale_by(self.scale)
[combined.mirror(ax) for ax, do in enumerate(self.mirrored) if do]
combined.rotate_around((0.0, 0.0), self.rotation)
combined.translate_elements(self.offset)
combined.scale_element_doses(self.dose)
return combined
def translate(self, offset: vector2) -> 'GridRepetition':
"""
Translate by the given offset
Args:
offset: `[x, y]` to translate by
Returns:
self
"""
self.offset += offset
return self
def rotate_around(self, pivot: vector2, rotation: float) -> 'GridRepetition':
"""
Rotate the array around a point
Args:
pivot: Point `[x, y]` to rotate around
rotation: Angle to rotate by (counterclockwise, radians)
Returns:
self
"""
pivot = numpy.array(pivot, dtype=float)
self.translate(-pivot)
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
self.rotate(rotation)
self.translate(+pivot)
return self
def rotate(self, rotation: float) -> 'GridRepetition':
"""
Rotate around (0, 0)
Args:
rotation: Angle to rotate by (counterclockwise, radians)
Returns:
self
"""
self.rotate_elements(rotation)
self.a_vector = numpy.dot(rotation_matrix_2d(rotation), self.a_vector)
if self.b_vector is not None:
self.b_vector = numpy.dot(rotation_matrix_2d(rotation), self.b_vector)
return self
def rotate_elements(self, rotation: float) -> 'GridRepetition':
"""
Rotate each element around its origin
Args:
rotation: Angle to rotate by (counterclockwise, radians)
Returns:
self
"""
self.rotation += rotation
return self
def mirror(self, axis: int) -> 'GridRepetition':
"""
2019-05-15 00:12:34 -07:00
Mirror the GridRepetition across an axis.
Args:
axis: Axis to mirror across.
(0: mirror across x-axis, 1: mirror across y-axis)
Returns:
self
"""
self.mirror_elements(axis)
2020-02-10 10:09:07 -08:00
self.a_vector[1-axis] *= -1
2019-12-05 23:18:18 -08:00
if self.b_vector is not None:
2020-02-10 10:09:07 -08:00
self.b_vector[1-axis] *= -1
return self
def mirror_elements(self, axis: int) -> 'GridRepetition':
"""
Mirror each element across an axis relative to its origin.
Args:
axis: Axis to mirror across.
(0: mirror across x-axis, 1: mirror across y-axis)
Returns:
self
"""
self.mirrored[axis] = not self.mirrored[axis]
self.rotation *= -1
return self
def get_bounds(self) -> Optional[numpy.ndarray]:
"""
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
extent of the `GridRepetition` in each dimension.
Returns `None` if the contained `Pattern` is empty.
Returns:
`[[x_min, y_min], [x_max, y_max]]` or `None`
"""
if self.pattern is None:
return None
return self.as_pattern().get_bounds()
def scale_by(self, c: float) -> 'GridRepetition':
"""
2019-05-15 00:12:34 -07:00
Scale the GridRepetition by a factor
Args:
c: scaling factor
Returns:
self
"""
self.scale_elements_by(c)
self.a_vector *= c
if self.b_vector is not None:
self.b_vector *= c
return self
def scale_elements_by(self, c: float) -> 'GridRepetition':
"""
Scale each element by a factor
Args:
c: scaling factor
Returns:
self
"""
self.scale *= c
return self
def copy(self) -> 'GridRepetition':
"""
Return a shallow copy of the repetition.
Returns:
`copy.copy(self)`
"""
return copy.copy(self)
2019-05-15 00:12:34 -07:00
def deepcopy(self) -> 'GridRepetition':
"""
Return a deep copy of the repetition.
Returns:
`copy.deepcopy(self)`
"""
return copy.deepcopy(self)
2019-12-12 00:38:11 -08:00
def lock(self) -> 'GridRepetition':
"""
Lock the `GridRepetition`, disallowing changes.
2019-12-12 00:38:11 -08:00
Returns:
self
2019-12-12 00:38:11 -08:00
"""
self.offset.flags.writeable = False
self.a_vector.flags.writeable = False
self.mirrored.flags.writeable = False
if self.b_vector is not None:
self.b_vector.flags.writeable = False
2019-12-12 00:38:11 -08:00
object.__setattr__(self, 'locked', True)
return self
def unlock(self) -> 'GridRepetition':
"""
Unlock the `GridRepetition`
2019-12-12 00:38:11 -08:00
Returns:
self
2019-12-12 00:38:11 -08:00
"""
self.offset.flags.writeable = True
self.a_vector.flags.writeable = True
self.mirrored.flags.writeable = True
if self.b_vector is not None:
self.b_vector.flags.writeable = True
2019-12-12 00:38:11 -08:00
object.__setattr__(self, 'locked', False)
return self
def deeplock(self) -> 'GridRepetition':
"""
Recursively lock the `GridRepetition` and its contained pattern
2019-12-12 00:38:11 -08:00
Returns:
self
2019-12-12 00:38:11 -08:00
"""
assert(self.pattern is not None)
2019-12-12 00:38:11 -08:00
self.lock()
self.pattern.deeplock()
return self
def deepunlock(self) -> 'GridRepetition':
"""
Recursively unlock the `GridRepetition` and its contained pattern
2019-12-12 00:38:11 -08:00
This is dangerous unless you have just performed a deepcopy, since
the component parts may be reused elsewhere.
2019-12-12 00:38:11 -08:00
Returns:
self
2019-12-12 00:38:11 -08:00
"""
assert(self.pattern is not None)
2019-12-12 00:38:11 -08:00
self.unlock()
self.pattern.deepunlock()
return self
def __repr__(self) -> str:
name = self.pattern.name if self.pattern is not None else None
rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else ''
scale = f' d{self.scale:g}' if self.scale != 1 else ''
mirrored = ' m{:d}{:d}'.format(*self.mirrored) if self.mirrored.any() else ''
dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else ''
2020-05-12 14:17:50 -07:00
bv = f', {self.b_vector}' if self.b_vector is not None else ''
return (f'<GridRepetition "{name}" at {self.offset} {rotation}{scale}{mirrored}{dose}'
f' {self.a_count}x{self.b_count} ({self.a_vector}{bv}){locked}>')