forked from jan/opencl_fdtd
Initial commit
This commit is contained in:
commit
66d05ca830
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
.idea/
|
||||
.pyc
|
||||
|
34
README.md
Normal file
34
README.md
Normal file
@ -0,0 +1,34 @@
|
||||
# opencl-fdtd
|
||||
|
||||
**opencl-fdtd** is a python package for running 3D time-domain electromagnetic
|
||||
simulations on parallel compute hardware (mainly GPUs).
|
||||
|
||||
**Performance** highly depends on what hardware you have available:
|
||||
* A 395x345x73 cell simulation (~10 million points, 8-cell absorbing boundaries)
|
||||
runs at around 42 iterations/sec. on my Nvidia GTX 580.
|
||||
* On my laptop (Nvidia 940M) the same simulation achieves ~8 iterations/sec.
|
||||
* An L3 photonic crystal cavity ringdown simulation (1550nm source, 40nm
|
||||
discretization, 8000 steps) takes about 5 minutes on my laptop.
|
||||
|
||||
**Capabilities** are currently pretty minimal:
|
||||
* Absorbing boundaries (CPML)
|
||||
* Conducting boundaries (PMC)
|
||||
* Anisotropic media (eps_xx, eps_yy, eps_zz)
|
||||
* Direct access to fields (eg., you can trivially add a soft or hard
|
||||
current source with just sim.E[1] += sin(f0 * t), or save any portion
|
||||
of a field to a file)
|
||||
|
||||
## Installation
|
||||
|
||||
**Requirements:**
|
||||
* python 3 (written and tested with 3.5)
|
||||
* numpy
|
||||
* pyopencl
|
||||
* h5py (for file output)
|
||||
* [gridlock](https://mpxd.net/gogs/jan/gridlock)
|
||||
* [masque](https://mpxd.net/gogs/jan/masque)
|
||||
|
||||
You can install the requirements and their dependencies easily with
|
||||
```bash
|
||||
pip intall -r requirements.txt
|
||||
```
|
164
fdtd.py
Normal file
164
fdtd.py
Normal file
@ -0,0 +1,164 @@
|
||||
"""
|
||||
Example code for running an OpenCL FDTD simulation
|
||||
|
||||
See main() for simulation setup.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import time
|
||||
|
||||
import numpy
|
||||
import h5py
|
||||
|
||||
from fdtd.simulation import Simulation
|
||||
from masque import Pattern, shapes
|
||||
import gridlock
|
||||
import pcgen
|
||||
|
||||
|
||||
def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern:
|
||||
"""
|
||||
Generate a masque.Pattern object containing a perturbed L3 cavity.
|
||||
|
||||
:param a: Lattice constant.
|
||||
:param radius: Hole radius, in units of a (lattice constant).
|
||||
:param kwargs: Keyword arguments:
|
||||
hole_dose, trench_dose, hole_layer, trench_layer: Shape properties for Pattern.
|
||||
Defaults *_dose=1, hole_layer=0, trench_layer=1.
|
||||
shifts_a, shifts_r: passed to pcgen.l3_shift; specifies lattice constant (1 -
|
||||
multiplicative factor) and radius (multiplicative factor) for shifting
|
||||
holes adjacent to the defect (same row). Defaults are 0.15 shift for
|
||||
first hole, 0.075 shift for third hole, and no radius change.
|
||||
xy_size: [x, y] number of mirror periods in each direction; total size is
|
||||
2 * n + 1 holes in each direction. Default [10, 10].
|
||||
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
|
||||
(multiplicative factor). Default 1.1.
|
||||
trench width: Width of the undercut trenches. Default 1.2e3.
|
||||
:return: masque.Pattern object containing the L3 design
|
||||
"""
|
||||
|
||||
default_args = {'hole_dose': 1,
|
||||
'trench_dose': 1,
|
||||
'hole_layer': 0,
|
||||
'trench_layer': 1,
|
||||
'shifts_a': (0.15, 0, 0.075),
|
||||
'shifts_r': (1.0, 1.0, 1.0),
|
||||
'xy_size': (10, 10),
|
||||
'perturbed_radius': 1.1,
|
||||
'trench_width': 1.2e3,
|
||||
}
|
||||
kwargs = {**default_args, **kwargs}
|
||||
|
||||
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=kwargs['xy_size'],
|
||||
perturbed_radius=kwargs['perturbed_radius'],
|
||||
shifts_a=kwargs['shifts_a'],
|
||||
shifts_r=kwargs['shifts_r'])
|
||||
xyr *= a
|
||||
xyr[:, 2] *= radius
|
||||
|
||||
pat = Pattern()
|
||||
pat.name = 'L3p-a{:g}r{:g}rp{:g}'.format(a, radius, kwargs['perturbed_radius'])
|
||||
pat.shapes += [shapes.Circle(radius=r, offset=(x, y),
|
||||
dose=kwargs['hole_dose'],
|
||||
layer=kwargs['hole_layer'])
|
||||
for x, y, r in xyr]
|
||||
|
||||
maxes = numpy.max(numpy.fabs(xyr), axis=0)
|
||||
pat.shapes += [shapes.Polygon.rectangle(
|
||||
lx=(2 * maxes[0]), ly=kwargs['trench_width'],
|
||||
offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2)),
|
||||
dose=kwargs['trench_dose'], layer=kwargs['trench_layer'])
|
||||
for s in (-1, 1)]
|
||||
return pat
|
||||
|
||||
|
||||
def main():
|
||||
max_t = 8000 # number of timesteps
|
||||
|
||||
dx = 40 # discretization (nm/cell)
|
||||
pml_thickness = 8 # (number of cells)
|
||||
|
||||
wl = 1550 # Excitation wavelength and fwhm
|
||||
dwl = 200
|
||||
|
||||
# Device design parameters
|
||||
xy_size = numpy.array([10, 10])
|
||||
a = 430
|
||||
r = 0.285
|
||||
th = 170
|
||||
|
||||
# refractive indices
|
||||
n_slab = 3.408 # InGaAsP(80, 50) @ 1550nm
|
||||
n_air = 1.0 # air
|
||||
|
||||
# Half-dimensions of the simulation grid
|
||||
xy_max = (xy_size + 1) * a * [1, numpy.sqrt(3)/2]
|
||||
z_max = 1.6 * a
|
||||
xyz_max = numpy.hstack((xy_max, z_max)) + pml_thickness * dx
|
||||
|
||||
# Coordinates of the edges of the cells. The fdtd package can only do square grids at the moment.
|
||||
half_edge_coords = [numpy.arange(dx/2, m + dx, step=dx) for m in xyz_max]
|
||||
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
||||
|
||||
# #### Create the grid, mask, and draw the device ####
|
||||
grid = gridlock.Grid(edge_coords, initial=n_air**2, num_grids=3)
|
||||
grid.draw_slab(surface_normal=gridlock.Direction.z,
|
||||
center=[0, 0, 0],
|
||||
thickness=th,
|
||||
eps=n_slab**2)
|
||||
mask = perturbed_l3(a, r)
|
||||
grid.draw_polygons(surface_normal=gridlock.Direction.z,
|
||||
center=[0, 0, 0],
|
||||
thickness=2 * th,
|
||||
eps=n_air**2,
|
||||
polygons=mask.as_polygons())
|
||||
|
||||
print(grid.shape)
|
||||
# #### Create the simulation grid ####
|
||||
sim = Simulation(grid.grids)
|
||||
|
||||
# Conducting boundaries and pmls in every direction
|
||||
c_args = []
|
||||
pml_args = []
|
||||
for d in (0, 1, 2):
|
||||
for p in (-1, 1):
|
||||
c_args += [{'direction': d, 'polarity': p}]
|
||||
pml_args += [{'direction': d, 'polarity': p, 'epsilon_eff': n_slab**2}]
|
||||
sim.init_conductors(c_args)
|
||||
sim.init_cpml(pml_args)
|
||||
|
||||
# Source parameters and function
|
||||
w = 2 * numpy.pi * dx / wl
|
||||
fwhm = dwl * w * w / (2 * numpy.pi * dx)
|
||||
alpha = (fwhm ** 2) / 8 * numpy.log(2)
|
||||
delay = 7/numpy.sqrt(2 * alpha)
|
||||
field_source = lambda t: numpy.sin(w * (t * sim.dt - delay)) * \
|
||||
numpy.exp(-alpha * (t * sim.dt - delay)**2)
|
||||
|
||||
# #### Run a bunch of iterations ####
|
||||
# event = sim.whatever([prev_event]) indicates that sim.whatever should be queued immediately and run
|
||||
# once prev_event is finished.
|
||||
output_file = h5py.File('simulation_output.h5', 'w')
|
||||
start = time.perf_counter()
|
||||
for t in range(max_t):
|
||||
event = sim.cpml_E([])
|
||||
sim.update_E([event]).wait()
|
||||
|
||||
sim.E[1][tuple(grid.shape//2)] += field_source(t)
|
||||
event = sim.conductor_E([])
|
||||
event = sim.cpml_H([event])
|
||||
event = sim.update_H([event])
|
||||
sim.conductor_H([event]).wait()
|
||||
|
||||
print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
||||
sys.stdout.flush()
|
||||
|
||||
# Save field slices
|
||||
if (t % 20 == 0 and (max_t - t < 1000 or t < 1000)) or t == max_t-1:
|
||||
print('saving E-field')
|
||||
for j, f in enumerate(sim.E):
|
||||
a = f.get()
|
||||
output_file['/E{}_t{}'.format('xyz'[j], t)] = a[:, :, round(a.shape[2]/2)]
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
0
fdtd/__init__.py
Normal file
0
fdtd/__init__.py
Normal file
BIN
fdtd/__pycache__/__init__.cpython-35.pyc
Normal file
BIN
fdtd/__pycache__/__init__.cpython-35.pyc
Normal file
Binary file not shown.
BIN
fdtd/__pycache__/base.cpython-35.pyc
Normal file
BIN
fdtd/__pycache__/base.cpython-35.pyc
Normal file
Binary file not shown.
BIN
fdtd/__pycache__/boundary.cpython-35.pyc
Normal file
BIN
fdtd/__pycache__/boundary.cpython-35.pyc
Normal file
Binary file not shown.
BIN
fdtd/__pycache__/simulation.cpython-35.pyc
Normal file
BIN
fdtd/__pycache__/simulation.cpython-35.pyc
Normal file
Binary file not shown.
75
fdtd/base.py
Normal file
75
fdtd/base.py
Normal file
@ -0,0 +1,75 @@
|
||||
"""
|
||||
Basic code snippets for opencl FDTD
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
import numpy
|
||||
|
||||
|
||||
def shape_source(shape: List[int] or numpy.ndarray) -> str:
|
||||
"""
|
||||
Defines sx, sy, sz C constants specifying the shape of the grid in each of the 3 dimensions.
|
||||
|
||||
:param shape: [sx, sy, sz] values.
|
||||
:return: String containing C source.
|
||||
"""
|
||||
sxyz = """
|
||||
// Field sizes
|
||||
const int sx = {shape[0]};
|
||||
const int sy = {shape[1]};
|
||||
const int sz = {shape[2]};
|
||||
""".format(shape=shape)
|
||||
return sxyz
|
||||
|
||||
# Defines dix, diy, diz constants used for stepping in the x, y, z directions in a linear array
|
||||
# (ie, given Ex[i] referring to position (x, y, z), Ex[i+diy] will refer to position (x, y+1, z))
|
||||
dixyz_source = """
|
||||
// Convert offset in field xyz to linear index offset
|
||||
const int dix = sz * sy;
|
||||
const int diy = sz;
|
||||
const int diz = 1;
|
||||
"""
|
||||
|
||||
# Given a linear index i and shape sx, sy, sz, defines x, y, and z as the 3D indices of the current element (i).
|
||||
xyz_source = """
|
||||
// Convert linear index to field index (xyz)
|
||||
const int x = i / (sz * sy);
|
||||
const int y = (i - x * sz * sy) / sz;
|
||||
const int z = (i - y * sz - x * sz * sy);
|
||||
"""
|
||||
|
||||
# Source code for updating the E field; maxes use of dixyz_source.
|
||||
maxwell_E_source = """
|
||||
// E update equations
|
||||
Ex[i] += dt / epsx[i] * ((Hz[i] - Hz[i-diy]) - (Hy[i] - Hy[i-diz]));
|
||||
Ey[i] += dt / epsy[i] * ((Hx[i] - Hx[i-diz]) - (Hz[i] - Hz[i-dix]));
|
||||
Ez[i] += dt / epsz[i] * ((Hy[i] - Hy[i-dix]) - (Hx[i] - Hx[i-diy]));
|
||||
"""
|
||||
|
||||
# Source code for updating the H field; maxes use of dixyz_source and assumes mu=0
|
||||
maxwell_H_source = """
|
||||
// H update equations
|
||||
Hx[i] -= dt * ((Ez[i+diy] - Ez[i]) - (Ey[i+diz] - Ey[i]));
|
||||
Hy[i] -= dt * ((Ex[i+diz] - Ex[i]) - (Ez[i+dix] - Ez[i]));
|
||||
Hz[i] -= dt * ((Ey[i+dix] - Ey[i]) - (Ex[i+diy] - Ex[i]));
|
||||
"""
|
||||
|
||||
|
||||
def type_to_C(float_type: numpy.float32 or numpy.float64) -> str:
|
||||
"""
|
||||
Returns a string corresponding to the C equivalent of a numpy type.
|
||||
Only works for float32 and float64.
|
||||
|
||||
:param float_type: numpy.float32 or numpy.float64
|
||||
:return: string containing the corresponding C type (eg. 'double')
|
||||
"""
|
||||
if float_type == numpy.float32:
|
||||
arg_type = 'float'
|
||||
elif float_type == numpy.float64:
|
||||
arg_type = 'double'
|
||||
else:
|
||||
raise Exception('Unsupported type')
|
||||
return arg_type
|
||||
|
||||
|
||||
|
185
fdtd/boundary.py
Normal file
185
fdtd/boundary.py
Normal file
@ -0,0 +1,185 @@
|
||||
from typing import List, Dict
|
||||
import numpy
|
||||
|
||||
|
||||
def conductor(direction: int,
|
||||
polarity: int,
|
||||
) -> List[str]:
|
||||
"""
|
||||
Create source code for conducting boundary conditions.
|
||||
|
||||
:param direction: integer in range(3), corresponding to x,y,z.
|
||||
:param polarity: -1 or 1, specifying eg. a -x or +x boundary.
|
||||
:return: [E_source, H_source] source code for E and H boundary update steps.
|
||||
"""
|
||||
if direction not in range(3):
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
|
||||
if polarity not in (-1, 1):
|
||||
raise Exception('Invalid polarity: {}'.format(polarity))
|
||||
|
||||
r = 'xyz'[direction]
|
||||
uv = 'xyz'.replace(r, '')
|
||||
|
||||
if polarity < 0:
|
||||
bc_E = """
|
||||
if ({r} == 0) {{
|
||||
E{r}[i] = 0;
|
||||
E{u}[i] = E{u}[i+di{r}];
|
||||
E{v}[i] = E{v}[i+di{r}];
|
||||
}}
|
||||
"""
|
||||
bc_H = """
|
||||
if ({r} == 0) {{
|
||||
H{r}[i] = H{r}[i+di{r}];
|
||||
H{u}[i] = 0;
|
||||
H{v}[i] = 0;
|
||||
}}
|
||||
"""
|
||||
|
||||
elif polarity > 0:
|
||||
bc_E = """
|
||||
if ({r} == s{r} - 1) {{
|
||||
E{r}[i] = -E{r}[i-2*di{r}];
|
||||
E{u}[i] = +E{u}[i-di{r}];
|
||||
E{v}[i] = +E{v}[i-di{r}];
|
||||
}} else if ({r} == s{r} - 2) {{
|
||||
E{r}[i] = 0;
|
||||
}}
|
||||
"""
|
||||
bc_H = """
|
||||
if ({r} == s{r} - 1) {{
|
||||
H{r}[i] = +H{r}[i-di{r}];
|
||||
H{u}[i] = -H{u}[i-2*di{r}];
|
||||
H{v}[i] = -H{v}[i-2*di{r}];
|
||||
}} else if ({r} == s{r} - 2) {{
|
||||
H{u}[i] = 0;
|
||||
H{v}[i] = 0;
|
||||
}}
|
||||
"""
|
||||
else:
|
||||
raise Exception()
|
||||
|
||||
replacements = {'r': r, 'u': uv[0], 'v': uv[1]}
|
||||
return [s.format(**replacements) for s in (bc_E, bc_H)]
|
||||
|
||||
|
||||
def cpml(direction: int,
|
||||
polarity: int,
|
||||
dt: float,
|
||||
thickness: int=8,
|
||||
epsilon_eff: float=1,
|
||||
) -> Dict:
|
||||
"""
|
||||
Generate source code for complex phase matched layer (cpml) absorbing boundaries.
|
||||
These are not full boundary conditions and require a conducting boundary to be added
|
||||
in the same direction as the pml.
|
||||
|
||||
:param direction: integer in range(3), corresponding to x, y, z directions.
|
||||
:param polarity: -1 or 1, corresponding to eg. -x or +x direction.
|
||||
:param dt: timestep used by the simulation
|
||||
:param thickness: Number of cells used by the pml (the grid is NOT expanded to add these cells). Default 8.
|
||||
:param epsilon_eff: Effective epsilon_r of the pml layer. Default 1.
|
||||
:return: Dict with entries 'E', 'H' (update equations for E and H) and 'psi_E', 'psi_H' (lists of str,
|
||||
specifying the field names of the cpml fields used in the E and H update steps. Eg.,
|
||||
Psi_xn_Ex for the complex Ex component for the x- pml.)
|
||||
"""
|
||||
if direction not in range(3):
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
|
||||
if polarity not in (-1, 1):
|
||||
raise Exception('Invalid polarity: {}'.format(polarity))
|
||||
|
||||
if thickness <= 2:
|
||||
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
|
||||
|
||||
if epsilon_eff <= 0:
|
||||
raise Exception('epsilon_eff must be positive')
|
||||
|
||||
m = (3.5, 1)
|
||||
sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(epsilon_eff)
|
||||
alpha_max = 0 # TODO: Decide what to do about non-zero alpha
|
||||
transverse = numpy.delete(range(3), direction)
|
||||
|
||||
r = 'xyz'[direction]
|
||||
np = 'nVp'[numpy.sign(polarity)+1]
|
||||
uv = ['xyz'[i] for i in transverse]
|
||||
|
||||
xE = numpy.arange(1, thickness+1, dtype=float)[::-1]
|
||||
xH = numpy.arange(1, thickness+1, dtype=float)[::-1]
|
||||
if polarity > 0:
|
||||
xE -= 0.5
|
||||
elif polarity < 0:
|
||||
xH -= 0.5
|
||||
|
||||
def par(x):
|
||||
sigma = ((x / thickness) ** m[0]) * sigma_max
|
||||
alpha = ((1 - x / thickness) ** m[1]) * alpha_max
|
||||
p0 = numpy.exp(-(sigma + alpha) * dt)
|
||||
p1 = sigma / (sigma + alpha) * (p0 - 1)
|
||||
return p0, p1
|
||||
p0e, p1e = par(xE)
|
||||
p0h, p1h = par(xH)
|
||||
|
||||
vals = {'r': r,
|
||||
'u': uv[0],
|
||||
'v': uv[1],
|
||||
'np': np,
|
||||
'th': thickness,
|
||||
'p0e': ', '.join((str(x) for x in p0e)),
|
||||
'p1e': ', '.join((str(x) for x in p1e)),
|
||||
'p0h': ', '.join((str(x) for x in p0h)),
|
||||
'p1h': ', '.join((str(x) for x in p1h)),
|
||||
'se': '-+'[direction % 2],
|
||||
'sh': '+-'[direction % 2]}
|
||||
|
||||
if polarity < 0:
|
||||
bounds_if = """
|
||||
if ( 0 < {r} && {r} < {th} + 1 ) {{
|
||||
const int ir = {r} - 1; // index into pml parameters
|
||||
const int ip = {v} + {u} * s{v} + ir * s{v} * s{u}; // linear index into Psi
|
||||
"""
|
||||
elif polarity > 0:
|
||||
bounds_if = """
|
||||
if ( (s{r} - 1) > {r} && {r} > (s{r} - 1) - ({th} + 1) ) {{
|
||||
const int ir = (s{r} - 1) - ({r} + 1); // index into pml parameters
|
||||
const int ip = {v} + {u} * s{v} + ir * s{v} * s{u}; // linear index into Psi
|
||||
"""
|
||||
else:
|
||||
raise Exception('Bad polarity (=0)')
|
||||
|
||||
code_E = """
|
||||
// pml parameters:
|
||||
const float p0[{th}] = {{ {p0e} }};
|
||||
const float p1[{th}] = {{ {p1e} }};
|
||||
|
||||
Psi_{r}{np}_E{u}[ip] = p0[ir] * Psi_{r}{np}_E{u}[ip] + p1[ir] * (H{v}[i] - H{v}[i-di{r}]);
|
||||
Psi_{r}{np}_E{v}[ip] = p0[ir] * Psi_{r}{np}_E{v}[ip] + p1[ir] * (H{u}[i] - H{u}[i-di{r}]);
|
||||
|
||||
E{u}[i] {se}= dt / eps{u}[i] * Psi_{r}{np}_E{u}[ip];
|
||||
E{v}[i] {sh}= dt / eps{v}[i] * Psi_{r}{np}_E{v}[ip];
|
||||
}}
|
||||
"""
|
||||
code_H = """
|
||||
// pml parameters:
|
||||
const float p0[{th}] = {{ {p0h} }};
|
||||
const float p1[{th}] = {{ {p1h} }};
|
||||
|
||||
Psi_{r}{np}_H{u}[ip] = p0[ir] * Psi_{r}{np}_H{u}[ip] + p1[ir] * (E{v}[i+di{r}] - E{v}[i]);
|
||||
Psi_{r}{np}_H{v}[ip] = p0[ir] * Psi_{r}{np}_H{v}[ip] + p1[ir] * (E{u}[i+di{r}] - E{u}[i]);
|
||||
|
||||
H{u}[i] {sh}= dt * Psi_{r}{np}_H{u}[ip];
|
||||
H{v}[i] {se}= dt * Psi_{r}{np}_H{v}[ip];
|
||||
}}
|
||||
"""
|
||||
|
||||
pml_data = {
|
||||
'E': (bounds_if + code_E).format(**vals),
|
||||
'H': (bounds_if + code_H).format(**vals),
|
||||
'psi_E': ['Psi_{r}{np}_E{u}'.format(**vals),
|
||||
'Psi_{r}{np}_E{v}'.format(**vals)],
|
||||
'psi_H': ['Psi_{r}{np}_H{u}'.format(**vals),
|
||||
'Psi_{r}{np}_H{v}'.format(**vals)],
|
||||
}
|
||||
|
||||
return pml_data
|
207
fdtd/simulation.py
Normal file
207
fdtd/simulation.py
Normal file
@ -0,0 +1,207 @@
|
||||
"""
|
||||
Class for constructing and holding the basic FDTD operations and fields
|
||||
"""
|
||||
|
||||
from typing import List, Dict, Callable
|
||||
import numpy
|
||||
import warnings
|
||||
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
from pyopencl.elementwise import ElementwiseKernel
|
||||
|
||||
from . import boundary, base
|
||||
from .base import type_to_C
|
||||
|
||||
|
||||
class Simulation(object):
|
||||
"""
|
||||
Constructs and holds the basic FDTD operations and related fields
|
||||
"""
|
||||
E = None # type: List[pyopencl.array.Array]
|
||||
H = None # type: List[pyopencl.array.Array]
|
||||
eps = None # type: List[pyopencl.array.Array]
|
||||
dt = None # type: float
|
||||
|
||||
arg_type = None # type: numpy.float32 or numpy.float64
|
||||
|
||||
context = None # type: pyopencl.Context
|
||||
queue = None # type: pyopencl.CommandQueue
|
||||
|
||||
update_E = None # type: Callable[[],pyopencl.Event]
|
||||
update_H = None # type: Callable[[],pyopencl.Event]
|
||||
|
||||
conductor_E = None # type: Callable[[],pyopencl.Event]
|
||||
conductor_H = None # type: Callable[[],pyopencl.Event]
|
||||
|
||||
cpml_E = None # type: Callable[[],pyopencl.Event]
|
||||
cpml_H = None # type: Callable[[],pyopencl.Event]
|
||||
|
||||
cpml_psi_E = None # type: Dict[str, pyopencl.array.Array]
|
||||
cpml_psi_H = None # type: Dict[str, pyopencl.array.Array]
|
||||
|
||||
def __init__(self,
|
||||
epsilon: List[numpy.ndarray],
|
||||
dt: float=.99/numpy.sqrt(3),
|
||||
initial_E: List[numpy.ndarray]=None,
|
||||
initial_H: List[numpy.ndarray]=None,
|
||||
context: pyopencl.Context=None,
|
||||
queue: pyopencl.CommandQueue=None,
|
||||
float_type: numpy.float32 or numpy.float64=numpy.float32):
|
||||
"""
|
||||
Initialize the simulation.
|
||||
|
||||
:param epsilon: List containing [eps_r,xx, eps_r,yy, eps_r,zz], where each element is a Yee-shifted ndarray
|
||||
spanning the simulation domain. Relative epsilon is used.
|
||||
:param dt: Time step. Default is the Courant factor.
|
||||
:param initial_E: Initial E-field (default is 0 everywhere). Same format as epsilon.
|
||||
:param initial_H: Initial H-field (default is 0 everywhere). Same format as epsilon.
|
||||
:param context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called.
|
||||
:param queue: pyOpenCL command queue. If not given, pyopencl.CommandQueue(context) is called.
|
||||
:param float_type: numpy.float32 or numpy.float64. Default numpy.float32.
|
||||
"""
|
||||
|
||||
if len(epsilon) != 3:
|
||||
Exception('Epsilon must be a list with length of 3')
|
||||
if not all((e.shape == epsilon[0].shape for e in epsilon[1:])):
|
||||
Exception('All epsilon grids must have the same shape. Shapes are {}', [e.shape for e in epsilon])
|
||||
|
||||
if context is None:
|
||||
self.context = pyopencl.create_some_context(False)
|
||||
else:
|
||||
self.context = context
|
||||
|
||||
if queue is None:
|
||||
self.queue = pyopencl.CommandQueue(self.context)
|
||||
else:
|
||||
self.queue = queue
|
||||
|
||||
if dt > .99/numpy.sqrt(3):
|
||||
warnings.warn('Warning: unstable dt: {}'.format(dt))
|
||||
elif dt <= 0:
|
||||
raise Exception('Invalid dt: {}'.format(dt))
|
||||
else:
|
||||
self.dt = dt
|
||||
|
||||
self.arg_type = float_type
|
||||
|
||||
self.eps = [pyopencl.array.to_device(self.queue, e.astype(float_type)) for e in epsilon]
|
||||
|
||||
if initial_E is None:
|
||||
self.E = [pyopencl.array.zeros_like(self.eps[0]) for _ in range(3)]
|
||||
else:
|
||||
if len(initial_E) != 3:
|
||||
Exception('Initial_E must be a list of length 3')
|
||||
if not all((E.shape == epsilon[0].shape for E in initial_E)):
|
||||
Exception('Initial_E list elements must have same shape as epsilon elements')
|
||||
self.E = [pyopencl.array.to_device(self.queue, E.astype(float_type)) for E in initial_E]
|
||||
|
||||
if initial_H is None:
|
||||
self.H = [pyopencl.array.zeros_like(self.eps[0]) for _ in range(3)]
|
||||
else:
|
||||
if len(initial_H) != 3:
|
||||
Exception('Initial_H must be a list of length 3')
|
||||
if not all((H.shape == epsilon[0].shape for H in initial_H)):
|
||||
Exception('Initial_H list elements must have same shape as epsilon elements')
|
||||
self.H = [pyopencl.array.to_device(self.queue, H.astype(float_type)) for H in initial_H]
|
||||
|
||||
E_args = [type_to_C(self.arg_type) + ' *E' + c for c in 'xyz']
|
||||
H_args = [type_to_C(self.arg_type) + ' *H' + c for c in 'xyz']
|
||||
eps_args = [type_to_C(self.arg_type) + ' *eps' + c for c in 'xyz']
|
||||
dt_arg = [type_to_C(self.arg_type) + ' dt']
|
||||
|
||||
sxyz = base.shape_source(epsilon[0].shape)
|
||||
E_source = sxyz + base.dixyz_source + base.maxwell_E_source
|
||||
H_source = sxyz + base.dixyz_source + base.maxwell_H_source
|
||||
|
||||
E_update = ElementwiseKernel(self.context, operation=E_source,
|
||||
arguments=', '.join(E_args + H_args + dt_arg + eps_args))
|
||||
|
||||
H_update = ElementwiseKernel(self.context, operation=H_source,
|
||||
arguments=', '.join(E_args + H_args + dt_arg))
|
||||
|
||||
self.update_E = lambda e: E_update(*self.E, *self.H, self.dt, *self.eps, wait_for=e)
|
||||
self.update_H = lambda e: H_update(*self.E, *self.H, self.dt, wait_for=e)
|
||||
|
||||
def init_cpml(self, pml_args: List[Dict]):
|
||||
"""
|
||||
Initialize absorbing layers (cpml: complex phase matched layer). PMLs are not actual
|
||||
boundary conditions, so you should add a conducting boundary (.init_conductors()) for
|
||||
all directions in which you add PMLs.
|
||||
Allows use of self.cpml_E(events) and self.cpml_H(events).
|
||||
All necessary additional fields are created on the opencl device.
|
||||
|
||||
:param pml_args: A list containing dictionaries which are passed to .boundary.cpml(...).
|
||||
The dt argument is set automatically, but the others must be passed in each entry
|
||||
of pml_args.
|
||||
"""
|
||||
sxyz = base.shape_source(self.eps[0].shape)
|
||||
|
||||
# Prepare per-iteration constants for later use
|
||||
pml_E_source = sxyz + base.dixyz_source + base.xyz_source
|
||||
pml_H_source = sxyz + base.dixyz_source + base.xyz_source
|
||||
|
||||
psi_E = []
|
||||
psi_H = []
|
||||
psi_E_names = []
|
||||
psi_H_names = []
|
||||
for arg_set in pml_args:
|
||||
pml_data = boundary.cpml(dt=self.dt, **arg_set)
|
||||
|
||||
pml_E_source += pml_data['E']
|
||||
pml_H_source += pml_data['H']
|
||||
|
||||
ti = numpy.delete(range(3), arg_set['direction'])
|
||||
trans = [self.eps[0].shape[i] for i in ti]
|
||||
psi_shape = (8, trans[0], trans[1])
|
||||
|
||||
psi_E += [pyopencl.array.zeros(self.queue, psi_shape, dtype=self.arg_type)
|
||||
for _ in pml_data['psi_E']]
|
||||
psi_H += [pyopencl.array.zeros(self.queue, psi_shape, dtype=self.arg_type)
|
||||
for _ in pml_data['psi_H']]
|
||||
|
||||
psi_E_names += pml_data['psi_E']
|
||||
psi_H_names += pml_data['psi_H']
|
||||
|
||||
E_args = [type_to_C(self.arg_type) + ' *E' + c for c in 'xyz']
|
||||
H_args = [type_to_C(self.arg_type) + ' *H' + c for c in 'xyz']
|
||||
eps_args = [type_to_C(self.arg_type) + ' *eps' + c for c in 'xyz']
|
||||
dt_arg = [type_to_C(self.arg_type) + ' dt']
|
||||
arglist_E = [type_to_C(self.arg_type) + ' *' + psi for psi in psi_E_names]
|
||||
arglist_H = [type_to_C(self.arg_type) + ' *' + psi for psi in psi_H_names]
|
||||
pml_E_args = ', '.join(E_args + H_args + dt_arg + eps_args + arglist_E)
|
||||
pml_H_args = ', '.join(E_args + H_args + dt_arg + arglist_H)
|
||||
|
||||
pml_E = ElementwiseKernel(self.context, arguments=pml_E_args, operation=pml_E_source)
|
||||
pml_H = ElementwiseKernel(self.context, arguments=pml_H_args, operation=pml_H_source)
|
||||
|
||||
self.cpml_E = lambda e: pml_E(*self.E, *self.H, self.dt, *self.eps, *psi_E, wait_for=e)
|
||||
self.cpml_H = lambda e: pml_H(*self.E, *self.H, self.dt, *psi_H, wait_for=e)
|
||||
self.cmpl_psi_E = {k: v for k, v in zip(psi_E_names, psi_E)}
|
||||
self.cmpl_psi_H = {k: v for k, v in zip(psi_H_names, psi_H)}
|
||||
|
||||
def init_conductors(self, conductor_args: List[Dict]):
|
||||
"""
|
||||
Initialize reflecting boundary conditions.
|
||||
Allows use of self.conductor_E(events) and self.conductor_H(events).
|
||||
|
||||
:param conductor_args: List of dictionaries with which to call .boundary.conductor(...).
|
||||
"""
|
||||
|
||||
sxyz = base.shape_source(self.eps[0].shape)
|
||||
|
||||
# Prepare per-iteration constants
|
||||
bc_E_source = sxyz + base.dixyz_source + base.xyz_source
|
||||
bc_H_source = sxyz + base.dixyz_source + base.xyz_source
|
||||
for arg_set in conductor_args:
|
||||
[e, h] = boundary.conductor(**arg_set)
|
||||
bc_E_source += e
|
||||
bc_H_source += h
|
||||
|
||||
E_args = [type_to_C(self.arg_type) + ' *E' + c for c in 'xyz']
|
||||
H_args = [type_to_C(self.arg_type) + ' *H' + c for c in 'xyz']
|
||||
bc_E = ElementwiseKernel(self.context, arguments=E_args, operation=bc_E_source)
|
||||
bc_H = ElementwiseKernel(self.context, arguments=H_args, operation=bc_H_source)
|
||||
|
||||
self.conductor_E = lambda e: bc_E(*self.E, wait_for=e)
|
||||
self.conductor_H = lambda e: bc_H(*self.H, wait_for=e)
|
206
pcgen.py
Normal file
206
pcgen.py
Normal file
@ -0,0 +1,206 @@
|
||||
"""
|
||||
Routines for creating normalized 2D lattices and common photonic crystal
|
||||
cavity designs.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
def triangular_lattice(dims: List[int],
|
||||
asymmetrical: bool=False
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
Return an ndarray of [[x0, y0], [x1, y1], ...] denoting lattice sites for
|
||||
a triangular lattice in 2D. The lattice will be centered around (0, 0),
|
||||
unless asymmetrical=True in which case there will be extra holes in the +x
|
||||
direction.
|
||||
|
||||
:param dims: Number of lattice sites in the [x, y] directions.
|
||||
:param asymmetrical: If true, each row in x will contain the same number of
|
||||
lattice sites. If false, the structure is symmetrical around (0, 0).
|
||||
:return: [[x0, y0], [x1, 1], ...] denoting lattice sites.
|
||||
"""
|
||||
dims = numpy.array(dims, dtype=int)
|
||||
|
||||
if asymmetrical:
|
||||
k = 0
|
||||
else:
|
||||
k = 1
|
||||
|
||||
positions = []
|
||||
for j in numpy.arange(dims[1]):
|
||||
j_odd = j % 2
|
||||
x_offset = (j_odd * 0.5) - dims[0]/2
|
||||
y_offset = dims[1]/2
|
||||
xs = numpy.arange(dims[0] - k * j_odd) + x_offset
|
||||
ys = numpy.full_like(xs, j * numpy.sqrt(3)/2 + y_offset)
|
||||
positions += [numpy.vstack((xs, ys)).T]
|
||||
xy = numpy.vstack(tuple(positions))
|
||||
return xy[xy[:, 0].argsort(), ]
|
||||
|
||||
|
||||
def square_lattice(dims: List[int]) -> numpy.ndarray:
|
||||
"""
|
||||
Return an ndarray of [[x0, y0], [x1, y1], ...] denoting lattice sites for
|
||||
a square lattice in 2D. The lattice will be centered around (0, 0).
|
||||
|
||||
:param dims: Number of lattice sites in the [x, y] directions.
|
||||
:return: [[x0, y0], [x1, 1], ...] denoting lattice sites.
|
||||
"""
|
||||
xs, ys = numpy.meshgrid(range(dims[0]), range(dims[1]), 'xy')
|
||||
xs -= dims[0]/2
|
||||
ys -= dims[1]/2
|
||||
xy = numpy.vstack((xs.flatten(), ys.flatten())).T
|
||||
return xy[xy[:, 0].argsort(), ]
|
||||
|
||||
# ### Photonic crystal functions ###
|
||||
|
||||
|
||||
def nanobeam_holes(a_defect: float,
|
||||
num_defect_holes: int,
|
||||
num_mirror_holes: int
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
Returns a list of [[x0, r0], [x1, r1], ...] of nanobeam hole positions and radii.
|
||||
Creates a region in which the lattice constant and radius are progressively
|
||||
(linearly) altered over num_defect_holes holes until they reach the value
|
||||
specified by a_defect, then symmetrically returned to a lattice constant and
|
||||
radius of 1, which is repeated num_mirror_holes times on each side.
|
||||
|
||||
:param a_defect: Minimum lattice constant for the defect, as a fraction of the
|
||||
mirror lattice constant (ie., for no defect, a_defect = 1).
|
||||
:param num_defect_holes: How many holes form the defect (per-side)
|
||||
:param num_mirror_holes: How many holes form the mirror (per-side)
|
||||
:return: Ndarray [[x0, r0], [x1, r1], ...] of nanobeam hole positions and radii.
|
||||
"""
|
||||
a_values = numpy.linspace(a_defect, 1, num_defect_holes, endpoint=False)
|
||||
xs = a_values.cumsum() - (a_values[0] / 2) # Later mirroring makes center distance 2x as long
|
||||
mirror_xs = numpy.arange(1, num_mirror_holes + 1) + xs[-1]
|
||||
mirror_rs = numpy.ones_like(mirror_xs)
|
||||
return numpy.vstack((numpy.hstack((-mirror_xs[::-1], -xs[::-1], xs, mirror_xs)),
|
||||
numpy.hstack((mirror_rs[::-1], a_values[::-1], a_values, mirror_rs)))).T
|
||||
|
||||
|
||||
def ln_defect(mirror_dims: List[int], defect_length: int) -> numpy.ndarray:
|
||||
"""
|
||||
N-hole defect in a triangular lattice.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param defect_length: Length of defect. Should be an odd number.
|
||||
:return: [[x0, y0], [x1, y1], ...] for all the holes
|
||||
"""
|
||||
if defect_length % 2 != 1:
|
||||
raise Exception('defect_length must be odd!')
|
||||
p = triangular_lattice([2 * d + 1 for d in mirror_dims])
|
||||
half_length = numpy.floor(defect_length / 2)
|
||||
hole_nums = numpy.arange(-half_length, half_length + 1)
|
||||
holes_to_keep = numpy.in1d(p[:, 0], hole_nums, invert=True)
|
||||
return p[numpy.logical_or(holes_to_keep, p[:, 1] != 0), ]
|
||||
|
||||
|
||||
def ln_shift_defect(mirror_dims: List[int],
|
||||
defect_length: int,
|
||||
shifts_a: List[float]=(0.15, 0, 0.075),
|
||||
shifts_r: List[float]=(1, 1, 1)
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
N-hole defect with shifted holes (intended to give the mode a gaussian profile
|
||||
in real- and k-space so as to improve both Q and confinement). Holes along the
|
||||
defect line are shifted and altered according to the shifts_* parameters.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param defect_length: Length of defect. Should be an odd number.
|
||||
:param shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
|
||||
:param shifts_r: Factor to multiply the radius by. Should match length of shifts_a
|
||||
:return: [[x0, y0, r0], [x1, y1, r1], ...] for all the holes
|
||||
"""
|
||||
if not hasattr(shifts_a, "__len__") and shifts_a is not None:
|
||||
shifts_a = [shifts_a]
|
||||
if not hasattr(shifts_r, "__len__") and shifts_r is not None:
|
||||
shifts_r = [shifts_r]
|
||||
|
||||
xy = ln_defect(mirror_dims, defect_length)
|
||||
|
||||
# Add column for radius
|
||||
xyr = numpy.hstack((xy, numpy.ones((xy.shape[0], 1))))
|
||||
|
||||
# Shift holes
|
||||
# Expand shifts as necessary
|
||||
n_shifted = max(len(shifts_a), len(shifts_r))
|
||||
|
||||
tmp_a = numpy.array(shifts_a)
|
||||
shifts_a = numpy.ones((n_shifted, ))
|
||||
shifts_a[:len(tmp_a)] = tmp_a
|
||||
|
||||
tmp_r = numpy.array(shifts_r)
|
||||
shifts_r = numpy.ones((n_shifted, ))
|
||||
shifts_r[:len(tmp_r)] = tmp_r
|
||||
|
||||
x_removed = numpy.floor(defect_length / 2)
|
||||
|
||||
for ind in range(n_shifted):
|
||||
for sign in (-1, 1):
|
||||
x_val = sign * (x_removed + ind + 1)
|
||||
which = numpy.logical_and(xyr[:, 0] == x_val, xyr[:, 1] == 0)
|
||||
xyr[which, ] = (x_val + numpy.sign(x_val) * shifts_a[ind], 0, shifts_r[ind])
|
||||
|
||||
return xyr
|
||||
|
||||
|
||||
def r6_defect(mirror_dims: List[int]) -> numpy.ndarray:
|
||||
"""
|
||||
R6 defect in a triangular lattice.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:return: [[x0, y0], [x1, y1], ...] specifying hole centers.
|
||||
"""
|
||||
xy = triangular_lattice([2 * d + 1 for d in mirror_dims])
|
||||
|
||||
rem_holes_plus = numpy.array([[1, 0],
|
||||
[0.5, +numpy.sqrt(3)/2],
|
||||
[0.5, -numpy.sqrt(3)/2]])
|
||||
rem_holes = numpy.vstack((rem_holes_plus, -rem_holes_plus))
|
||||
|
||||
for rem_xy in rem_holes:
|
||||
xy = xy[(xy != rem_xy).any(axis=1), ]
|
||||
|
||||
return xy
|
||||
|
||||
|
||||
def l3_shift_perturbed_defect(mirror_dims: List[int],
|
||||
perturbed_radius: float=1.1,
|
||||
shifts_a: List[float]=(),
|
||||
shifts_r: List[float]=()
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
3-hole defect with perturbed hole sizes intended to form an upwards-directed
|
||||
beam. Can also include shifted holes along the defect line, intended
|
||||
to give the mode a more gaussian profile to improve Q.
|
||||
|
||||
:param mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
|
||||
is 2 * n + 1 in each direction.
|
||||
:param perturbed_radius: Amount to perturb the radius of the holes used for beam-forming
|
||||
:param shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
|
||||
:param shifts_r: Factor to multiply the radius by. Should match length of shifts_a
|
||||
:return: [[x0, y0, r0], [x1, y1, r1], ...] for all the holes
|
||||
"""
|
||||
xyr = ln_shift_defect(mirror_dims, 3, shifts_a, shifts_r)
|
||||
|
||||
abs_x, abs_y = (numpy.fabs(xyr[:, i]) for i in (0, 1))
|
||||
|
||||
# Sorted unique xs and ys
|
||||
# Ignore row y=0 because it might have shifted holes
|
||||
xs = numpy.unique(abs_x[abs_x != 0])
|
||||
ys = numpy.unique(abs_y)
|
||||
|
||||
# which holes should be perturbed? (xs[[3, 7]], ys[1]) and (xs[[2, 6]], ys[2])
|
||||
perturbed_holes = ((xs[a], ys[b]) for a, b in ((3, 1), (7, 1), (2, 2), (6, 2)))
|
||||
for row in xyr:
|
||||
if numpy.fabs(row) in perturbed_holes:
|
||||
row[2] = perturbed_radius
|
||||
return xyr
|
6
requirements.txt
Normal file
6
requirements.txt
Normal file
@ -0,0 +1,6 @@
|
||||
numpy
|
||||
h5py
|
||||
pyopencl
|
||||
-e git+https://mpxd.net/gogs/jan/float_raster.git@release#egg=float_raster
|
||||
-e git+https://mpxd.net/gogs/jan/gridlock.git@release#egg=gridlock
|
||||
-e git+https://mpxd.net/gogs/jan/masque.git@release#egg=masque
|
Loading…
Reference in New Issue
Block a user