Compare commits

..

9 Commits

Author SHA1 Message Date
jan
1f9a9949c0 Clarify memo and cleanup 2018-01-15 22:44:59 -08:00
jan
323bcf88ad Propagate mu correctly 2018-01-15 22:44:26 -08:00
jan
ee9abb77d9 Fix approx_inverse operator 2018-01-15 22:44:14 -08:00
jan
c1f65f61c1 Use pyfftw if available 2018-01-15 22:43:59 -08:00
jan
e8f836c908 Cleanup 2018-01-15 22:43:33 -08:00
jan
0e47fdd5fb randomize imaginary part of starting vector 2018-01-09 00:00:58 -08:00
jan
e02040c709 fixes and clarification 2018-01-08 23:33:22 -08:00
jan
c4cbdff751 cleanup 2018-01-08 23:28:57 -08:00
jan
4067766478 use own CG implementation 2018-01-08 17:01:44 -08:00
2 changed files with 276 additions and 145 deletions

View File

@ -30,11 +30,11 @@ g2.shifts = numpy.zeros((6,3))
g2.grids = [numpy.zeros(g.shape) for _ in range(6)] g2.grids = [numpy.zeros(g.shape) for _ in range(6)]
epsilon = [g.grids[0],] * 3 epsilon = [g.grids[0],] * 3
reciprocal_lattice = numpy.diag(1e6/numpy.array([x_period, y_period, z_period])) #cols are vectors reciprocal_lattice = numpy.diag(1000/numpy.array([x_period, y_period, z_period])) #cols are vectors
#print('Finding k at 1550nm') #print('Finding k at 1550nm')
#k, f = bloch.find_k(frequency=1/1550, #k, f = bloch.find_k(frequency=1000/1550,
# tolerance=(1/1550 - 1/1551), # tolerance=(1000 * (1/1550 - 1/1551)),
# direction=[1, 0, 0], # direction=[1, 0, 0],
# G_matrix=reciprocal_lattice, # G_matrix=reciprocal_lattice,
# epsilon=epsilon, # epsilon=epsilon,
@ -47,10 +47,10 @@ for k0x in [.25]:
k0 = numpy.array([k0x, 0, 0]) k0 = numpy.array([k0x, 0, 0])
kmag = norm(reciprocal_lattice @ k0) kmag = norm(reciprocal_lattice @ k0)
tolerance = (1e6/1550) * 1e-4/1.5 # df = f * dn_eff / n tolerance = (1000/1550) * 1e-4/1.5 # df = f * dn_eff / n
logger.info('tolerance {}'.format(tolerance)) logger.info('tolerance {}'.format(tolerance))
n, v = bloch.eigsolve(4, k0, G_matrix=reciprocal_lattice, epsilon=epsilon, tolerance=tolerance) n, v = bloch.eigsolve(4, k0, G_matrix=reciprocal_lattice, epsilon=epsilon, tolerance=tolerance**2)
v2e = bloch.hmn_2_exyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon) v2e = bloch.hmn_2_exyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
v2h = bloch.hmn_2_hxyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon) v2h = bloch.hmn_2_hxyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
ki = bloch.generate_kmn(k0, reciprocal_lattice, g.shape) ki = bloch.generate_kmn(k0, reciprocal_lattice, g.shape)

View File

@ -73,21 +73,44 @@ This module contains functions for generating and solving the
''' '''
from typing import List, Tuple, Callable, Dict from typing import Tuple, Callable
import logging import logging
import numpy import numpy
from numpy.fft import fftn, ifftn, fftfreq from numpy import pi, real, trace
from numpy.fft import fftfreq
import scipy import scipy
import scipy.optimize import scipy.optimize
from scipy.linalg import norm from scipy.linalg import norm
import scipy.sparse.linalg as spalg import scipy.sparse.linalg as spalg
from .eigensolvers import rayleigh_quotient_iteration
from . import field_t from . import field_t
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
try:
import pyfftw.interfaces.numpy_fft
import pyfftw.interfaces
import multiprocessing
pyfftw.interfaces.cache.enable()
pyfftw.interfaces.cache.set_keepalive_time(3600)
fftw_args = {
'threads': multiprocessing.cpu_count(),
'overwrite_input': True,
'planner_effort': 'FFTW_EXHAUSTIVE',
}
def fftn(*args, **kwargs):
return pyfftw.interfaces.numpy_fft.fftn(*args, **kwargs, **fftw_args)
def ifftn(*args, **kwargs):
return pyfftw.interfaces.numpy_fft.ifftn(*args, **kwargs, **fftw_args)
except ImportError:
from numpy.fft import fftn, ifftn
def generate_kmn(k0: numpy.ndarray, def generate_kmn(k0: numpy.ndarray,
G_matrix: numpy.ndarray, G_matrix: numpy.ndarray,
shape: numpy.ndarray shape: numpy.ndarray
@ -255,7 +278,7 @@ def hmn_2_hxyz(k0: numpy.ndarray,
:return: Function for converting h_mn into H_xyz :return: Function for converting h_mn into H_xyz
""" """
shape = epsilon[0].shape + (1,) shape = epsilon[0].shape + (1,)
k_mag, m, n = generate_kmn(k0, G_matrix, shape) _k_mag, m, n = generate_kmn(k0, G_matrix, shape)
def operator(h: numpy.ndarray): def operator(h: numpy.ndarray):
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)] hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
@ -329,147 +352,14 @@ def inverse_maxwell_operator_approx(k0: numpy.ndarray,
d_xyz = fftn(ifftn(e_xyz, axes=range(3)) * epsilon, axes=range(3)) d_xyz = fftn(ifftn(e_xyz, axes=range(3)) * epsilon, axes=range(3))
# cross product and transform into mn basis crossinv_t2c # cross product and transform into mn basis crossinv_t2c
h_m = numpy.sum(e_xyz * n, axis=3)[:, :, :, None] / +k_mag h_m = numpy.sum(d_xyz * n, axis=3)[:, :, :, None] / +k_mag
h_n = numpy.sum(e_xyz * m, axis=3)[:, :, :, None] / -k_mag h_n = numpy.sum(d_xyz * m, axis=3)[:, :, :, None] / -k_mag
return numpy.hstack((h_m.ravel(), h_n.ravel())) return numpy.hstack((h_m.ravel(), h_n.ravel()))
return operator return operator
def eigsolve(num_modes: int,
k0: numpy.ndarray,
G_matrix: numpy.ndarray,
epsilon: field_t,
mu: field_t = None,
tolerance = 1e-8,
) -> Tuple[numpy.ndarray, numpy.ndarray]:
"""
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
k0 of the specified structure.
:param k0: Bloch wavevector, [k0x, k0y, k0z].
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param epsilon: Dielectric constant distribution for the simulation.
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
:param mu: Magnetic permability distribution for the simulation.
Default None (1 everywhere).
:return: (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the
vector eigenvectors[i, :]
"""
h_size = 2 * epsilon[0].size
kmag = norm(G_matrix @ k0)
'''
Generate the operators
'''
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
y_shape = (h_size, num_modes)
def rayleigh_quotient(Z: numpy.ndarray, approx_grad: bool = True):
"""
Absolute value of the block Rayleigh quotient, and the associated gradient.
See Johnson and Joannopoulos, Opt. Expr. 8, 3 (2001) for details (full
citation in module docstring).
===
Notes on my understanding of the procedure:
Minimize f(Y) = |trace((Y.H @ A @ Y)|, making use of Y = Z @ inv(Z.H @ Z)^(1/2)
(a polar orthogonalization of Y). This gives f(Z) = |trace(Z.H @ A @ Z @ U)|,
where U = inv(Z.H @ Z). We minimize the absolute value to find the eigenvalues
with smallest magnitude.
The gradient is P @ (A @ Z @ U), where P = (1 - Z @ U @ Z.H) is a projection
onto the space orthonormal to Z. If approx_grad is True, the approximate
inverse of the maxwell operator is used to precondition the gradient.
"""
z = Z.view(dtype=complex).reshape(y_shape)
U = numpy.linalg.inv(z.conj().T @ z)
zU = z @ U
AzU = scipy_op @ zU
zTAzU = z.conj().T @ AzU
f = numpy.real(numpy.trace(zTAzU))
if approx_grad:
df_dy = scipy_iop @ (AzU - zU @ zTAzU)
else:
df_dy = (AzU - zU @ zTAzU)
df_dy_flat = df_dy.view(dtype=float).ravel()
return numpy.abs(f), numpy.sign(f) * df_dy_flat
'''
Use the conjugate gradient method and the approximate gradient calculation to
quickly find approximate eigenvectors.
'''
result = scipy.optimize.minimize(rayleigh_quotient,
numpy.random.rand(*y_shape, 2),
jac=True,
method='L-BFGS-B',
tol=1e-20,
options={'maxiter': 2000, 'gtol':0, 'ftol':1e-20 , 'disp':True})#, 'maxls':80, 'm':30})
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, True),
result.x,
jac=True,
method='L-BFGS-B',
tol=1e-20,
options={'maxiter': 2000, 'gtol':0, 'disp':True})
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, False),
result.x,
jac=True,
method='L-BFGS-B',
tol=1e-20,
options={'maxiter': 2000, 'gtol':0, 'disp':True})
for i in range(20):
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, False),
result.x,
jac=True,
method='L-BFGS-B',
tol=1e-20,
options={'maxiter': 70, 'gtol':0, 'disp':True})
if result.nit == 0:
# We took 0 steps, so re-running won't help
break
z = result.x.view(dtype=complex).reshape(y_shape)
'''
Recover eigenvectors from Z
'''
U = numpy.linalg.inv(z.conj().T @ z)
y = z @ scipy.linalg.sqrtm(U)
w = y.conj().T @ (scipy_op @ y)
eigvals, w_eigvecs = numpy.linalg.eig(w)
eigvecs = y @ w_eigvecs
for i in range(len(eigvals)):
v = eigvecs[:, i]
n = eigvals[i]
v /= norm(v)
eigness = norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )
f = numpy.sqrt(-numpy.real(n))
df = numpy.sqrt(-numpy.real(n + eigness))
neff_err = kmag * (1/df - 1/f)
logger.info('eigness {}: {}\n neff_err: {}'.format(i, eigness, neff_err))
order = numpy.argsort(numpy.abs(eigvals))
return eigvals[order], eigvecs.T[order]
def find_k(frequency: float, def find_k(frequency: float,
tolerance: float, tolerance: float,
direction: numpy.ndarray, direction: numpy.ndarray,
@ -499,7 +389,7 @@ def find_k(frequency: float,
def get_f(k0_mag: float, band: int = 0): def get_f(k0_mag: float, band: int = 0):
k0 = direction * k0_mag k0 = direction * k0_mag
n, _v = eigsolve(band + 1, k0, G_matrix=G_matrix, epsilon=epsilon) n, _v = eigsolve(band + 1, k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
f = numpy.sqrt(numpy.abs(numpy.real(n[band]))) f = numpy.sqrt(numpy.abs(numpy.real(n[band])))
return f return f
@ -511,3 +401,244 @@ def find_k(frequency: float,
return res.x * direction, res.fun + frequency return res.x * direction, res.fun + frequency
def eigsolve(num_modes: int,
k0: numpy.ndarray,
G_matrix: numpy.ndarray,
epsilon: field_t,
mu: field_t = None,
tolerance: float = 1e-20,
max_iters: int = 10000,
reset_iters: int = 100,
) -> Tuple[numpy.ndarray, numpy.ndarray]:
"""
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
k0 of the specified structure.
:param k0: Bloch wavevector, [k0x, k0y, k0z].
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param epsilon: Dielectric constant distribution for the simulation.
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
:param mu: Magnetic permability distribution for the simulation.
Default None (1 everywhere).
:param tolerance: Solver stops when fractional change in the objective
trace(Z.H @ A @ Z @ inv(Z Z.H)) is smaller than the tolerance
:return: (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the
vector eigenvectors[i, :]
"""
h_size = 2 * epsilon[0].size
kmag = norm(G_matrix @ k0)
'''
Generate the operators
'''
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
y_shape = (h_size, num_modes)
prev_E = 0
d_scale = 1
prev_traceGtKG = 0
#prev_theta = 0.5
D = numpy.zeros(shape=y_shape, dtype=complex)
y0 = None
if y0 is None:
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
else:
Z = y0
while True:
Z *= num_modes / norm(Z)
ZtZ = Z.conj().T @ Z
try:
U = numpy.linalg.inv(ZtZ)
except numpy.linalg.LinAlgError:
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
continue
trace_U = real(trace(U))
if trace_U > 1e8 * num_modes:
Z = Z @ scipy.linalg.sqrtm(U).conj().T
prev_traceGtKG = 0
continue
break
for i in range(max_iters):
ZtZ = Z.conj().T @ Z
U = numpy.linalg.inv(ZtZ)
AZ = scipy_op @ Z
AZU = AZ @ U
ZtAZU = Z.conj().T @ AZU
E_signed = real(trace(ZtAZU))
sgn = numpy.sign(E_signed)
E = numpy.abs(E_signed)
G = (AZU - Z @ U @ ZtAZU) * sgn
if i > 0 and abs(E - prev_E) < tolerance * 0.5 * (E + prev_E + 1e-7):
logging.info('Optimization succeded: {} - 5e-8 < {} * {} / 2'.format(abs(E - prev_E), tolerance, E + prev_E))
break
KG = scipy_iop @ G
traceGtKG = _rtrace_AtB(G, KG)
if prev_traceGtKG == 0 or i % reset_iters == 0:
logger.info('CG reset')
gamma = 0
else:
gamma = traceGtKG / prev_traceGtKG
D = gamma / d_scale * D + KG
d_scale = num_modes / norm(D)
D *= d_scale
ZtAZ = Z.conj().T @ AZ
AD = scipy_op @ D
DtD = D.conj().T @ D
DtAD = D.conj().T @ AD
symZtD = _symmetrize(Z.conj().T @ D)
symZtAD = _symmetrize(Z.conj().T @ AD)
Qi_memo = [None, None]
def Qi_func(theta):
nonlocal Qi_memo
if Qi_memo[0] == theta:
return Qi_memo[1]
c = numpy.cos(theta)
s = numpy.sin(theta)
Q = c*c * ZtZ + s*s * DtD + 2*s*c * symZtD
try:
Qi = numpy.linalg.inv(Q)
except numpy.linalg.LinAlgError:
logger.info('taylor Qi')
# if c or s small, taylor expand
if c < 1e-4 * s and c != 0:
DtDi = numpy.linalg.inv(DtD)
Qi = DtDi / (s*s) - 2*c/(s*s*s) * (DtDi @ (DtDi @ symZtD).conj().T)
elif s < 1e-4 * c and s != 0:
ZtZi = numpy.linalg.inv(ZtZ)
Qi = ZtZi / (c*c) - 2*s/(c*c*c) * (ZtZi @ (ZtZi @ symZtD).conj().T)
else:
raise Exception('Inexplicable singularity in trace_func')
Qi_memo[0] = theta
Qi_memo[1] = Qi
return Qi
def trace_func(theta):
c = numpy.cos(theta)
s = numpy.sin(theta)
Qi = Qi_func(theta)
R = c*c * ZtAZ + s*s * DtAD + 2*s*c * symZtAD
trace = _rtrace_AtB(R, Qi)
return numpy.abs(trace)
'''
def trace_deriv(theta):
Qi = Qi_func(theta)
c2 = numpy.cos(2 * theta)
s2 = numpy.sin(2 * theta)
F = -0.5*s2 * (ZtAZ - DtAD) + c2 * symZtAD
trace_deriv = _rtrace_AtB(Qi, F)
G = Qi @ F.conj().T @ Qi.conj().T
H = -0.5*s2 * (ZtZ - DtD) + c2 * symZtD
trace_deriv -= _rtrace_AtB(G, H)
trace_deriv *= 2
return trace_deriv * sgn
U_sZtD = U @ symZtD
dE = 2.0 * (_rtrace_AtB(U, symZtAD) -
_rtrace_AtB(ZtAZU, U_sZtD))
d2E = 2 * (_rtrace_AtB(U, DtAD) -
_rtrace_AtB(ZtAZU, U @ (DtD - 4 * symZtD @ U_sZtD)) -
4 * _rtrace_AtB(U, symZtAD @ U_sZtD))
# Newton-Raphson to find a root of the first derivative:
theta = -dE/d2E
if d2E < 0 or abs(theta) >= pi:
theta = -abs(prev_theta) * numpy.sign(dE)
# theta, new_E, new_dE = linmin(theta, E, dE, 0.1, min(tolerance, 1e-6), 1e-14, 0, -numpy.sign(dE) * K_PI, trace_func)
theta, n, _, new_E, _, _new_dE = scipy.optimize.line_search(trace_func, trace_deriv, xk=theta, pk=numpy.ones((1,1)), gfk=dE, old_fval=E, c1=min(tolerance, 1e-6), c2=0.1, amax=pi)
'''
result = scipy.optimize.minimize_scalar(trace_func, bounds=(0, pi), tol=tolerance)
new_E = result.fun
theta = result.x
improvement = numpy.abs(E - new_E) * 2 / numpy.abs(E + new_E)
logger.info('linmin improvement {}'.format(improvement))
Z *= numpy.cos(theta)
Z += D * numpy.sin(theta)
prev_traceGtKG = traceGtKG
#prev_theta = theta
prev_E = E
'''
Recover eigenvectors from Z
'''
U = numpy.linalg.inv(Z.conj().T @ Z)
Y = Z @ scipy.linalg.sqrtm(U)
W = Y.conj().T @ (scipy_op @ Y)
eigvals, W_eigvecs = numpy.linalg.eig(W)
eigvecs = Y @ W_eigvecs
for i in range(len(eigvals)):
v = eigvecs[:, i]
n = eigvals[i]
v /= norm(v)
eigness = norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )
f = numpy.sqrt(-numpy.real(n))
df = numpy.sqrt(-numpy.real(n + eigness))
neff_err = kmag * (1/df - 1/f)
logger.info('eigness {}: {}\n neff_err: {}'.format(i, eigness, neff_err))
order = numpy.argsort(numpy.abs(eigvals))
return eigvals[order], eigvecs.T[order]
'''
def linmin(x_guess, f0, df0, x_max, f_tol=0.1, df_tol=min(tolerance, 1e-6), x_tol=1e-14, x_min=0, linmin_func):
if df0 > 0:
x0, f0, df0 = linmin(-x_guess, f0, -df0, -x_max, f_tol, df_tol, x_tol, -x_min, lambda q, dq: -linmin_func(q, dq))
return -x0, f0, -df0
elif df0 == 0:
return 0, f0, df0
else:
x = x_guess
fx = f0
dfx = df0
isave = numpy.zeros((2,), numpy.intc)
dsave = numpy.zeros((13,), float)
x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
x_min, x_max, isave, dsave)
for i in range(int(1e6)):
if task != 'F':
logging.info('search converged in {} iterations'.format(i))
break
fx = f(x, dfx)
x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
x_min, x_max, isave, dsave)
return x, fx, dfx
'''
def _rtrace_AtB(A, B):
return real(numpy.sum(A.conj() * B))
def _symmetrize(A):
return (A + A.conj().T) * 0.5